Florey Group

Florey Group
Florey Group

Research Summary

Research in our lab focuses on a non-canonical autophagy pathway, associated with CASM (conjugation of ATG8 to single-membranes), and its role in lysosomal biology. We aim to understand the molecular mechanisms underlying the regulation and function of this pathway in cellular processes such as cell stress responses and infection.

Vesicle section

Our work exploits a combination of molecular and cellular biology, state-of-the-art microscopy (long-term time-lapse imaging, spinning disk confocal and electron microscopy) and proteomics (mass spectrometry).

Existing projects aim to define the molecular mechanisms which underlie non-canonical autophagy, and exploring the potential to manipulate the pathway for therapeutic benefit.

Latest Publications

Hooper KM, Jacquin E, Li T, Goodwin JM, Brumell JH, Durgan J, Florey O Signalling

Non-canonical autophagy is a key cellular pathway in immunity, cancer, and neurodegeneration, characterized by conjugation of ATG8 to endolysosomal single membranes (CASM). CASM is activated by engulfment (endocytosis, phagocytosis), agonists (STING, TRPML1), and infection (influenza), dependent on K490 in the ATG16L1 WD40-domain. However, factors associated with non-canonical ATG16L1 recruitment and CASM induction remain unknown. Here, using pharmacological inhibitors, we investigate a role for V-ATPase during non-canonical autophagy. We report that increased V0-V1 engagement is associated with, and sufficient for, CASM activation. Upon V0-V1 binding, V-ATPase recruits ATG16L1, via K490, during LC3-associated phagocytosis (LAP), STING- and drug-induced CASM, indicating a common mechanism. Furthermore, during LAP, key molecular players, including NADPH oxidase/ROS, converge on V-ATPase. Finally, we show that LAP is sensitive to Salmonella SopF, which disrupts the V-ATPase-ATG16L1 axis and provide evidence that CASM contributes to the Salmonella host response. Together, these data identify V-ATPase as a universal regulator of CASM and indicate that SopF evolved in part to evade non-canonical autophagy.

+view abstract The Journal of cell biology, PMID: 35511089 06 Jun 2022

Timimi L, Figueras-Novoa C, Marcassa E, Florey O, Baillie JK, Beale R, Ulferts R Signalling

Conjugation of the Atg8 (autophagy related 8) family of ubiquitin-like proteins to phospholipids of the phagophore is a hallmark of macroautophagy/autophagy. Consequently, Atg8 family members, especially LC3B, are commonly used as a marker of autophagosomes. However, the Atg8 family of proteins are not found solely attached to double-membrane autophagosomes. In non-canonical Atg8-family protein lipidation they become conjugated to single membranes. We have shown that this process is triggered by recruitment of ATG16L1 by the vacuolar-type H-translocating ATPase (V-ATPase) proton pump, suggesting a role for pH sensing in recruitment of Atg8-family proteins to single membranes.

+view abstract Autophagy, PMID: 35258397 08 Mar 2022

Ulferts R, Marcassa E, Timimi L, Lee LC, Daley A, Montaner B, Turner SD, Florey O, Baillie JK, Beale R Signalling

Although commonly associated with autophagosomes, LC3 can also be recruited to membranes by covalent lipidation in a variety of non-canonical contexts. These include responses to ionophores such as the M2 proton channel of influenza A virus. We report a subtractive CRISPR screen that identifies factors required for non-canonical LC3 lipidation. As well as the enzyme complexes directly responsible for LC3 lipidation in all contexts, we show the RALGAP complex is important for M2-induced, but not ionophore drug-induced, LC3 lipidation. In contrast, ATG4D is responsible for LC3 recycling in M2-induced and basal LC3 lipidation. Identification of a vacuolar ATPase subunit in the screen suggests a common mechanism for non-canonical LC3 recruitment. Influenza-induced and ionophore drug-induced LC3 lipidation lead to association of the vacuolar ATPase and ATG16L1 and can be antagonized by Salmonella SopF. LC3 recruitment to erroneously neutral compartments may therefore represent a response to damage caused by diverse invasive pathogens.

+view abstract Cell reports, PMID: 34706226 26 Oct 2021

Group Members

Oliver Florey

Group Leader

Jake Cross

PhD Student

Joanne Durgan

Postdoc Research Scientist