Stephens Group

Stephens Group
Stephens Group
Len Stephens
Group Leader
Stephens Group

Research Summary

The programmes of work in the laboratory are currently aimed at understanding the molecular mechanisms and physiological significance of intracellular signalling networks which involve a family of enzymes called phosphoinositide 3OH-kinases (PI3Ks).

PI3Ks are now accepted to be critical regulators of numerous important and complex cell responses, including cell growth, division, survival and movement.

PI3Ks catalyse the formation of one or more critical phospholipid messenger molecules, which signal information by binding to specific domains in target proteins. Currently the best understood pathway involves the activation of Class I PI3Ks by cell surface receptors.

In recent years, the laboratory has increasingly focused on the role of PI3Ks in the signalling mechanisms which allow receptors on neutrophils (white blood cells) to control various aspects of neutrophil function.

Neutrophils are key players in the front line of our immune system, responsible primarily for the recognition and destruction of bacterial and fungal pathogens. However, they are also involved in the amplification cascades that underlie various inflammatory pathologies, e.g. Acute Respiratory Distress Syndrome (ARDS) and rheumatoid arthritis.

Latest Publications

Chessa TAM, Jung P, Anwar A, Suire S, Anderson KE, Barneda D, Kielkowska A, Sadiq BA, Lai IW, Felisbino S, Turnham DJ, Pearson HB, Phillips WA, Sasaki J, Sasaki T, Oxley D, Spensberger D, Segonds-Pichon A, Wilson M, Walker S, Okkenhaug H, Cosulich S, Hawkins PT, Stephens LR Signalling, Imaging, Mass Spectrometry, Bioinformatics, Gene Targeting

The PIP/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP/PI(3,4)P phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP/PI(3,4)P-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of YXXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP signaling, and supports tumor progression.

+view abstract Molecular cell, PMID: 37567175 17 Aug 2023

Han X, Mei Y, Mishra RK, Bi H, Jain AD, Schiltz GE, Zhao B, Sukhanova M, Wang P, Grigorescu AA, Weber PC, Piwinski JJ, Prado MA, Paulo JA, Stephens L, Anderson KE, Abrams CS, Yang J, Ji P Signalling

Myeloproliferative neoplasms (MPNs) are characterized by the activated JAK2-STAT pathway. Pleckstrin-2 (Plek2) is a downstream target of the JAK2-STAT pathway and overexpressed in patients with MPNs. We previously revealed that Plek2 plays critical roles in the pathogenesis of JAK2 mutated MPNs. The non-essential roles of Plek2 under physiologic conditions makes it an ideal target for MPN therapy. Here we identified first-in-class Plek2 inhibitors through an in silico high-throughput screening and cell-based assays followed by the synthesis of analogs. The Plek2 specific small molecule inhibitors showed potent inhibitory effects on cell proliferation. Mechanistically, Plek2 interacts with and enhances the activity of Akt through the recruitment of downstream effector proteins. The Plek2 signaling complex also includes Hsp72 that protects Akt from degradation. These functions were blocked by Plek2 inhibitors via their direct binding to Plek2 DEP domain. The role of Plek2 in activating the Akt signaling was further confirmed in vivo using a hematopoietic specific Pten knockout mouse model. We next tested Plek2 inhibitors alone or in combination with an Akt inhibitor in various MPN mouse models, which showed significant therapeutic efficacies similar to the genetic depletion of Plek2. The Plek2 inhibitor was also effective in reducing proliferation of CD34 positive cells from MPN patients. Our studies reveal a Plek2-Akt complex that drives cell proliferation and can be targeted by a new class of anti-proliferative compounds for MPN therapy.

+view abstract The Journal of clinical investigation, PMID: 36719747 31 Jan 2023

Barneda D, Stephens L, Hawkins P Signalling

Li et al present the results of a proximity-interaction screen in mammalian cells for the effector proteins of 25 members of the Arf family of small GTPases. This study has generated an important resource for those working in several areas of cell biology and provided an initial characterisation of two new cellular roles for some of the least well studied members of this family, the regulation of PLD1 by ARL11/14 in phagocytosis, and the regulation of PI4KB by ARL5A/5B in the Golgi.

+view abstract The EMBO journal, PMID: 35929178 05 Aug 2022

Group Members

Len Stephens

Group Leader

Karen Anderson

Senior Research Associate

Arqum Anwar

Visiting Scientist

Tamara Chessa

Postdoc Research Scientist

Beth Cragoe

PhD Student

Piotr Kobialka

Visiting Student

Andrea Lopez

Visiting Scientist

Clement Pambrun

Visiting Student

Sarah Perrenot

Visiting Student

Jemeen Sreedharan

Visiting Scientist

Marion Trebosc

Visiting Scientist

Anna Wulf

Visiting Student