Lawson CD, Hornigold K, Pan D, Niewczas I, Andrews S, Clark J, Welch H Signalling, Bioinformatics

P-Rex1 and P-Rex2 are guanine-nucleotide exchange factors (GEFs) that activate Rac small GTPases in response to the stimulation of G protein-coupled receptors and phosphoinositide 3-kinase. P-Rex Rac-GEFs regulate the morphology, adhesion and migration of various cell types, as well as reactive oxygen species production and cell cycle progression. P-Rex Rac-GEFs also have pathogenic roles in the initiation, progression or metastasis of several types of cancer. With one exception, all P-Rex functions are known or assumed to be mediated through their catalytic Rac-GEF activity. Thus, inhibitors of P-Rex Rac-GEF activity would be valuable research tools. We have generated a panel of small-molecule P-Rex inhibitors that target the interface between the catalytic DH domain of P-Rex Rac-GEFs and Rac. Our best-characterized compound, P-Rex inhibitor 1 (PREX-in1), blocks the Rac-GEF activity of full-length P-Rex1 and P-Rex2, and of their isolated catalytic domains, at low-micromolar concentration, without affecting the activities of several other Rho-GEFs. PREX-in1 blocks the P-Rex1 dependent spreading of PDGF-stimulated endothelial cells and the production of reactive oxygen species in fMLP-stimulated mouse neutrophils. Structure-function analysis revealed critical structural elements of PREX-in1, allowing us to develop derivatives with increased efficacy, the best with an IC of 2 µM. In summary, we have developed PREX-in1 and derivative small-molecule compounds that will be useful laboratory research tools for the study of P-Rex function. These compounds may also be a good starting point for the future development of more sophisticated drug-like inhibitors aimed at targeting P-Rex Rac-GEFs in cancer.

+view abstract Small GTPases, PMID: 36342857 Jan 2022

Hornigold K, Chu JY, Chetwynd SA, Machin PA, Crossland L, Pantarelli C, Anderson KE, Hawkins PT, Segonds-Pichon A, Oxley D, Welch HCE Signalling, Bioinformatics, Mass Spectrometry

Host defense against bacterial and fungal infections diminishes with age. In humans, impaired neutrophil responses are thought to contribute to this decline. However, it remains unclear whether neutrophil responses are also impaired in old mice. Here, we investigated neutrophil function in old mice, focusing on responses primed by lipopolysaccharide (LPS), an endotoxin released by gram-negative bacteria like , which signals through toll-like receptor (TLR) 4. We show that old mice have a reduced capacity to clear pathogenic during septic peritonitis. Neutrophil recruitment was elevated during LPS-induced but not aseptic peritonitis. Neutrophils from old mice showed reduced killing of . Their reactive oxygen species (ROS) production was impaired upon priming with LPS but not with GM-CSF/TNFα. Phagocytosis and degranulation were reduced in a partially LPS-dependent manner, whereas impairment of NET release in response to was independent of LPS. Unexpectedly, chemotaxis was normal, as were Rac1 and Rac2 GTPase activities. LPS-primed activation of Erk and p38 Mapk was defective. PIP production was reduced upon priming with LPS but not with GM-CSF/TNFα, whereas PIP levels were constitutively low. The expression of 5% of neutrophil proteins was dysregulated in old age. Granule proteins, particularly cathepsins and serpins, as well as TLR-pathway proteins and membrane receptors were upregulated, whereas chromatin and RNA regulators were downregulated. The upregulation of CD180 and downregulation of MyD88 likely contribute to the impaired LPS signaling. In summary, all major neutrophil responses except chemotaxis decline with age in mice, particularly upon LPS priming. This LPS/TLR4 pathway dependence resolves previous controversy regarding effects of age on murine neutrophils and confirms that mice are an appropriate model for the decline in human neutrophil function.

+view abstract Frontiers in immunology, PMID: 36090969 2022

Crainiciuc G, Palomino-Segura M, Molina-Moreno M, Sicilia J, Aragones DG, Li JLY, Madurga R, Adrover JM, Aroca-Crevillén A, Martin-Salamanca S, Del Valle AS, Castillo SD, Welch HCE, Soehnlein O, Graupera M, Sánchez-Cabo F, Zarbock A, Smithgall TE, Di Pilato M, Mempel TR, Tharaux PL, González SF, Ayuso-Sacido A, Ng LG, Calvo GF, González-Díaz I, Díaz-de-María F, Hidalgo A

Transcriptional and proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues. These approaches, however, do not describe dynamic scenarios in which cells continuously change their biochemical properties and downstream 'behavioural' outputs. Here we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamics of individual leukocytes at sites of active inflammation. By analysing more than 100,000 reconstructions of cell shapes and tracks over time, we obtained behavioural descriptors of individual cells and used these high-dimensional datasets to build behavioural landscapes. These landscapes recognized leukocyte identities in the inflamed skin and trachea, and uncovered a continuum of neutrophil states inside blood vessels, including a large, sessile state that was embraced by the underlying endothelium and associated with pathogenic inflammation. Behavioural screening in 24 mouse mutants identified the kinase Fgr as a driver of this pathogenic state, and interference with Fgr protected mice from inflammatory injury. Thus, behavioural landscapes report distinct properties of dynamic environments at high cellular resolution.

+view abstract Nature, PMID: 34987220 05 Jan 2022

Hampson E, Tsonou E, Baker MJ, Hornigold DC, Hubbard RE, Massey A, Welch HCE Signalling

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation.

+view abstract Cells, PMID: 34572121 18 Sep 2021

Floerchinger A, Murphy KJ, Latham SL, Warren SC, McCulloch AT, Lee YK, Stoehr J, Mélénec P, Guaman CS, Metcalf XL, Lee V, Zaratzian A, Da Silva A, Tayao M, Rolo S, Phimmachanh M, Sultani G, McDonald L, Mason SM, Ferrari N, Ooms LM, Johnsson AE, Spence HJ, Olson MF, Machesky LM, Sansom OJ, Morton JP, Mitchell CA, Samuel MS, Croucher DR, Welch HCE, Blyth K, Caldon CE, Herrmann D, Anderson KI, Timpson P, Nobis M Signalling

Assessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging. We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demonstrate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to improve overall survival.

+view abstract Cell reports, PMID: 34525350 14 Sep 2021

Pantarelli C, Pan D, Chetwynd S, Stark AK, Hornigold K, Machin P, Crossland L, Cleary SJ, Baker MJ, Hampson E, Mandel A, Segonds-Pichon A, Walker R, van 't Veer C, Riffo-Vasquez Y, Okkenhaug K, Pitchford S, Welch HCE Signalling, Bioinformatics

Streptococcal pneumonia is a worldwide health problem that kills ∼2 million people each year, particularly young children, the elderly, and immunosuppressed individuals. Alveolar macrophages and neutrophils provide the early innate immune response to clear pneumococcus from infected lungs. However, the level of neutrophil involvement is context dependent, both in humans and in mouse models of the disease, influenced by factors such as bacterial load, age, and coinfections. Here, we show that the G protein-coupled receptor (GPCR) adaptor protein norbin (neurochondrin, NCDN), which was hitherto known as a regulator of neuronal function, is a suppressor of neutrophil-mediated innate immunity. Myeloid norbin deficiency improved the immunity of mice to pneumococcal infection by increasing the involvement of neutrophils in clearing the bacteria, without affecting neutrophil recruitment or causing autoinflammation. It also improved immunity during Escherichia coli-induced septic peritonitis. It increased the responsiveness of neutrophils to a range of stimuli, promoting their ability to kill bacteria in a reactive oxygen species-dependent manner, enhancing degranulation, phagocytosis, and the production of reactive oxygen species and neutrophil extracellular traps, raising the cell surface levels of selected GPCRs, and increasing GPCR-dependent Rac and Erk signaling. The Rac guanine-nucleotide exchange factor Prex1, a known effector of norbin, was dispensable for most of these effects, which suggested that norbin controls additional downstream targets. We identified the Rac guanine-nucleotide exchange factor Vav as one of these effectors. In summary, our study presents the GPCR adaptor protein norbin as an immune suppressor that limits the ability of neutrophils to clear bacterial infections.

+view abstract Blood advances, PMID: 34402884 24 Aug 2021

Machin PA, Tsonou E, Hornigold DC, Welch HCE Signalling

Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.

+view abstract Cells, PMID: 33923452 16 Apr 2021

Srijakotre N, Liu HJ, Nobis M, Man J, Yip HYK, Papa A, Abud HE, Anderson KI, Welch HCE, Tiganis T, Timpson P, McLean CA, Ooms LM, Mitchell CA Signalling

The Rac-GEF, P-Rex1, activates Rac1 signaling downstream of G protein-coupled receptors and PI3K. Increased P-Rex1 expression promotes melanoma progression; however, its role in breast cancer is complex, with differing reports of the effect of its expression on disease outcome. To address this we analyzed human databases, undertook gene array expression analysis, and generated unique murine models of P-Rex1 gain or loss of function. Analysis of mRNA expression in breast cancer cDNA arrays and a METABRIC cohort revealed that higher mRNA in ER/luminal tumors was associated with poor outcome in luminal B cancers. deletion in MMTV- or MMTV- mice reduced Rac1 activation in vivo and improved survival. High level MMTVdriven transgenic expression resulted in apicobasal polarity defects and increased mammary epithelial cell proliferation associated with hyperplasia and development of de novo mammary tumors. MMTV- expression in MMTV- mice increased tumor initiation and enhanced metastasis in vivo, but had no effect on primary tumor growth. Pharmacological inhibition of Rac1 or MEK1/2 reduced P-Rex1-driven tumoroid formation and cell invasion. Therefore, P-Rex1 can act as an oncogene and cooperate with HER2/neu to enhance breast cancer initiation and metastasis, despite having no effect on primary tumor growth.

+view abstract PNAS, PMID: 33097662 23 Oct 2020

Warren SC, Nobis M, Magenau A, Mohammed YH, Herrmann D, Moran I, Vennin C, Conway JR, Mélénec P, Cox TR, Wang Y, Morton JP, Welch HC, Strathdee D, Anderson KI, Phan TG, Roberts MS, Timpson P Signalling,

Intravital microscopy can provide unique insights into the function of biological processes in a native context. However, physiological motion caused by peristalsis, respiration and the heartbeat can present a significant challenge, particularly for functional readouts such as fluorescence lifetime imaging (FLIM), which require longer acquisition times to obtain a quantitative readout. Here, we present and benchmark , a versatile multi-platform software tool for image-based correction of sample motion blurring in both time resolved and conventional laser scanning fluorescence microscopy data in two and three dimensions. We show that is able to resolve intravital FLIM-FRET images of intra-abdominal organs in murine models and NADH autofluorescence of human dermal tissue imaging subject to a wide range of physiological motions. Thus, can enable FLIM imaging in situations where a stable imaging platform is not always possible and rescue previously discarded quantitative imaging data.

+view abstract eLife, PMID: 29985127 2018

Pantarelli C, Welch HCE Signalling,

Rac-GTPases and their Rac-GEF activators play important roles in the recruitment and host defense functions of neutrophils. These proteins control the activation of adhesion molecules and the cytoskeletal dynamics that enable the adhesion, migration and tissue recruitment of neutrophils. They also regulate the effector functions that allow neutrophils to kill bacterial and fungal pathogens, and to clear debris. This review focusses on the roles of Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment. This article is protected by copyright. All rights reserved.

+view abstract European journal of clinical investigation, PMID: 29682742 2018

Nobis M, Herrmann D, Warren SC, Kadir S, Leung W, Killen M, Magenau A, Stevenson D, Lucas MC, Reischmann N, Vennin C, Conway JRW, Boulghourjian A, Zaratzian A, Law AM, Gallego-Ortega D, Ormandy CJ, Walters SN, Grey ST, Bailey J, Chtanova T, Quinn JMW, Baldock PA, Croucher PI, Schwarz JP, Mrowinska A, Zhang L, Herzog H, Masedunskas A, Hardeman EC, Gunning PW, Del Monte-Nieto G, Harvey RP, Samuel MS, Pajic M, McGhee EJ, Johnsson AE, Sansom OJ, Welch HCE, Morton JP, Strathdee D, Anderson KI, Timpson P Signalling,

The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.

+view abstract Cell reports, PMID: 28978480 2017

Pitchford S, Pan D, Welch HC Signalling,

This review describes the essential roles of platelets in neutrophil recruitment from the bloodstream into inflamed and infected tissues, with a focus on recent findings.

+view abstract Current opinion in hematology, PMID: 27820736 2016

Lissanu Deribe Y, Shi Y, Rai K, Nezi L, Amin SB, Wu CC, Akdemir KC, Mahdavi M, Peng Q, Chang QE, Hornigold K, Arold ST, Welch HC, Garraway LA, Chin L Signalling,

PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 26884185 2016

Pan D, Barber MA, Hornigold K, Baker MJ, Toth JM, Oxley D, Welch HC Signalling, Mass Spectrometry

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gβγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the PH domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gβγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pull-down assays demonstrated that Norbin promotes the P-Rex1 mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1.

+view abstract The Journal of biological chemistry, PMID: 26792863 2016

Baker MJ, Pan D, Welch HC Signalling,

The review describes the roles of Rho- and Rap-guanosine triphosphatases (GTPases) and of their activators, guanine-nucleotide exchange factors (GEFs), and inhibitors, GTPase activating proteins (GAPs), in neutrophil recruitment from the blood stream into inflamed tissues, with a focus on recently identified roles in neutrophils, endothelial cells, and platelets.

+view abstract Current opinion in hematology, PMID: 26619317 2016

Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AE, Welch HC, Timpson P Signalling,

Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma.

+view abstract Small GTPases, PMID: 26103062 2015

Welch HC Signalling,

The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signalling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumour growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.

+view abstract Small GTPases, PMID: 25961466 2015

Pan D, Amison RT, Riffo-Vasquez Y, Spina D, Cleary SJ, Wakelam MJ, Page CP, Pitchford SC, Welch HC Signalling,

The small GTPase Rac is required for neutrophil recruitment during inflammation, but its GEF activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during LPS-induced pulmonary inflammation, with altered ICAM1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin dependent adhesion in airway postcapillary venules. Analysis of adhesion molecule expression, neutrophil adhesion, spreading and migration suggested these defects to be only partially neutrophil-intrinsic and not obviously involving vascular endothelial cells. Instead, P1V1 and P1V3 platelets recapitulated the impairment of LPS-induced intravascular neutrophil adhesion and recruitment, revealing P-Rex and Vav expression in platelets to be crucial. Similarly, during ovalbumin-induced allergic inflammation, pulmonary recruitment of P1V1 and P1V3 eosinophils, monocytes and lymphocytes was compromised in a platelet-dependent manner, and airway inflammation essentially abolished, resulting in improved airway responsiveness. Therefore, platelet P-Rex and Vav family Rac-GEFs play important proinflammatory roles in leukocyte recruitment.

+view abstract Blood, PMID: 25538043 2014

Lindsay CR, Li A, Faller W, Ozanne B, Welch H, Machesky LM, Sansom OJ Signalling,

+view abstract The Journal of investigative dermatology, PMID: 25075639 2015

G Damoulakis, L Gambardella, KL Rossman, CD Lawson, KE Anderson, Y Fukui, HC Welch, CJ Der, LR Stephens, PT Hawkins ,

G-protein-coupled receptors (GPCRs) regulate the organisation of the actin cytoskeleton by activating the Rac subfamily of small GTPases. The guanine-nucleotide-exchange factor (GEF) P-Rex1 is engaged downstream of GPCRs and phosphoinositide 3-kinase (PI3K) in many cell types, and promotes tumorigenic signalling and metastasis in breast cancer and melanoma, respectively. Although P-Rex1-dependent functions have been attributed to its GEF activity towards Rac1, we show that P-Rex1 also acts as a GEF for the Rac-related GTPase RhoG, both in vitro and in GPCR-stimulated primary mouse neutrophils. Furthermore, loss of either P-Rex1 or RhoG caused equivalent reductions in GPCR-driven Rac activation and Rac-dependent NADPH oxidase activity, suggesting they both function upstream of Rac in this system. Loss of RhoG also impaired GPCR-driven recruitment of the Rac GEF DOCK2, and F-actin, to the leading edge of migrating neutrophils. Taken together, our results reveal a new signalling hierarchy in which P-Rex1, acting as a GEF for RhoG, regulates Rac-dependent functions indirectly through RhoG-dependent recruitment of DOCK2. These findings thus have broad implications for our understanding of GPCR signalling to Rho GTPases and the actin cytoskeleton.

+view abstract Journal of cell science, PMID: 24659802 2014

AK Johnsson, Y Dai, M Nobis, MJ Baker, EJ McGhee, S Walker, JP Schwarz, S Kadir, JP Morton, KB Myant, DJ Huels, A Segonds-Pichon, OJ Sansom, KI Anderson, P Timpson, HC Welch Signalling, Bioinformatics

The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.

+view abstract Cell reports, PMID: 24630994 2014

AD Campbell, S Lawn, LC McGarry, HC Welch, BW Ozanne, JC Norman ,

Expression of the Rac-guanine nucleotide exchange factor (RacGEF), P-Rex1 is a key determinant of progression to metastasis in a number of human cancers. In accordance with this proposed role in cancer cell invasion and metastasis, we find that ectopic expression of P-Rex1 in an immortalised human fibroblast cell line is sufficient to drive multiple migratory and invasive phenotypes. The invasive phenotype is greatly enhanced by the presence of a gradient of serum or platelet-derived growth factor, and is dependent upon the expression of functional PDGF receptor β. Consistently, the invasiveness of WM852 melanoma cells, which endogenously express P-Rex1 and PDGFRβ, is opposed by siRNA of either of these proteins. Furthermore, the current model of P-Rex1 activation is advanced through demonstration of P-Rex1 and PDGFRβ as components of the same macromolecular complex. These data suggest that P-Rex1 has an influence on physiological migratory processes, such as invasion of cancer cells, both through effects upon classical Rac1-driven motility and a novel association with RTK signalling complexes.

+view abstract PloS one, PMID: 23382862 2013

JM Herter, J Rossaint, H Block, H Welch, A Zarbock ,

Integrin activation is essential for the function of leukocytes. Impaired integrin activation on leukocytes is the hallmark of the leukocyte adhesion deficiency syndrome in humans, characterized by impaired leukocyte recruitment and recurrent infections. In inflammation, leukocytes collect different signals during the contact with the microvasculature, which activate signaling pathways leading to integrin activation and leukocyte recruitment. We report the role of P-Rex1, a Rac-specific guanine nucleotide exchanging factor, in integrin activation and leukocyte recruitment. We find that P-Rex1 is required for inducing selectin-mediated lymphocyte function-associated antigen-1 (LFA-1) extension that corresponds to intermediate affinity and induces slow leukocyte rolling, whereas P-Rex1 is not involved in the induction of the high-affinity conformation of LFA-1 obligatory for leukocyte arrest. Furthermore, we demonstrate that P-Rex1 is involved in Mac-1-dependent intravascular crawling. In vivo, both LFA-1-dependent slow rolling and Mac-1-dependent crawling are defective in P-Rex1(-/-) leukocytes, whereas chemokine-induced arrest and postadhesion strengthening remain intact in P-Rex1-deficient leukocytes. Rac1 is involved in E-selectin-mediated slow rolling and crawling. In vivo, in an ischemia-reperfusion-induced model of acute kidney injury, abolished selectin-mediated integrin activation contributed to decreased neutrophil recruitment and reduced kidney damage in P-Rex1-deficient mice. We conclude that P-Rex1 serves distinct functions in LFA-1 and Mac-1 activation.

+view abstract Blood, PMID: 23343834 2013

MA Barber, A Hendrickx, M Beullens, H Ceulemans, D Oxley, S Thelen, M Thelen, M Bollen, HC Welch Signalling, Mass Spectrometry

P-Rex1 is a GEF (guanine-nucleotide-exchange factor) for the small G-protein Rac that is activated by PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and Gβγ subunits and inhibited by PKA (protein kinase A). In the present study we show that PP1α (protein phosphatase 1α) binds P-Rex1 through an RVxF-type docking motif. PP1α activates P-Rex1 directly in vitro, both independently of and additively to PIP3 and Gβγ. PP1α also substantially activates P-Rex1 in vivo, both in basal and PDGF (platelet-derived growth factor)- or LPA (lysophosphatidic acid)-stimulated cells. The phosphatase activity of PP1α is required for P-Rex1 activation. PP1β, a close homologue of PP1α, is also able to activate P-Rex1, but less effectively. PP1α stimulates P-Rex1-mediated Rac-dependent changes in endothelial cell morphology. MS analysis of wild-type P-Rex1 and a PP1α-binding-deficient mutant revealed that endogenous PP1α dephosphorylates P-Rex1 on at least three residues, Ser834, Ser1001 and Ser1165. Site-directed mutagenesis of Ser1165 to alanine caused activation of P-Rex1 to a similar degree as did PP1α, confirming Ser1165 as a dephosphorylation site important in regulating P-Rex1 Rac-GEF activity. In summary, we have identified a novel mechanism for direct activation of P-Rex1 through PP1α-dependent dephosphorylation.

+view abstract The Biochemical journal, PMID: 22242915 2012

CR Lindsay, S Lawn, AD Campbell, WJ Faller, F Rambow, RL Mort, P Timpson, A Li, P Cammareri, RA Ridgway, JP Morton, B Doyle, S Hegarty, M Rafferty, IG Murphy, EW McDermott, K Sheahan, K Pedone, AJ Finn, PA Groben, NE Thomas, H Hao, C Carson, JC Norman, LM Machesky, WM Gallagher, IJ Jackson, L Van Kempen, F Beermann, C Der, L Larue, HC Welch, BW Ozanne, OJ Sansom ,

Metastases are the major cause of death from melanoma, a skin cancer that has the fastest rising incidence of any malignancy in the Western world. Molecular pathways that drive melanoblast migration in development are believed to underpin the movement and ultimately the metastasis of melanoma. Here we show that mice lacking P-Rex1, a Rac-specific Rho GTPase guanine nucleotide exchange factor, have a melanoblast migration defect during development evidenced by a white belly. Moreover, these P-Rex1(-/-) mice are resistant to metastasis when crossed to a murine model of melanoma. Mechanistically, this is associated with P-Rex1 driving invasion in a Rac-dependent manner. P-Rex1 is elevated in the majority of human melanoma cell lines and tumour tissue. We conclude that P-Rex1 has an important role in melanoblast migration and cancer progression to metastasis in mice and humans.

+view abstract Nature communications, PMID: 22109529 2011

JE Aslan, AM Spencer, CP Loren, J Pang, HC Welch, DL Greenberg, OJ McCarty ,

Blood platelets undergo a carefully regulated change in shape to serve as the primary mediators of hemostasis and thrombosis. These processes manifest through platelet spreading and aggregation and are dependent on platelet actin cytoskeletal changes orchestrated by the Rho GTPase family member Rac1. To elucidate how Rac1 is regulated in platelets, we captured Rac1-interacting proteins from platelets and identified Rac1-associated proteins by mass spectrometry.

+view abstract Journal of molecular signaling, PMID: 21884615 2011

Y Dai, SA Walker, E de Vet, S Cook, HC Welch, PJ Lockyer ,

CAPRI is a member of the GAP1 family of GTPase-activating proteins (GAPs) for small G proteins. It is known to function as an amplitude sensor for intracellular Ca(2+) levels stimulated by extracellular signals and has a catalytic domain with dual RasGAP and RapGAP activities. Here, we have investigated the mechanism that switches CAPRI between its two GAP activities. We demonstrate that CAPRI forms homodimers in vitro and in vivo in a Ca(2+)-dependent manner. The site required for dimerization was pinpointed by deletion and point mutations to a helix motif that forms a hydrophobic face in the extreme C-terminal tail of the CAPRI protein. Deletion of this helix motif abolished dimer formation but did not affect translocation of CAPRI to the plasma membrane upon cell stimulation with histamine. We found that dimeric and monomeric CAPRI coexist in cells and that the ratio of dimeric to monomeric CAPRI increases upon cell stimulation with histamine. Free Ca(2+) at physiologically relevant concentrations was both necessary and sufficient for dimer formation. Importantly, the monomeric and dimeric forms of CAPRI exhibited differential GAP activities in vivo; the wild-type form of CAPRI had stronger RapGAP activity than RasGAP activity, whereas a monomeric CAPRI mutant showed stronger RasGAP than RapGAP activity. These results demonstrate that CAPRI switches between its dual GAP roles by forming monomers or homodimers through a process regulated by Ca(2+). We propose that Ca(2+)-dependent dimerization of CAPRI may serve to coordinate Ras and Rap1 signaling pathways.

+view abstract The Journal of biological chemistry, PMID: 21460216 2011

CD Lawson, S Donald, KE Anderson, DT Patton, HC Welch Signalling,

G protein-coupled receptor (GPCR) activation elicits neutrophil responses such as chemotaxis and reactive oxygen species (ROS) formation, which depend on the small G protein Rac and are essential for host defense. P-Rex and Vav are two families of guanine-nucleotide exchange factors (GEFs) for Rac, which are activated through distinct mechanisms but can both control GPCR-dependent neutrophil responses. It is currently unknown whether they play specific roles or whether they can compensate for each other in controlling these responses. In this study, we have assessed the function of neutrophils from mice deficient in P-Rex and/or Vav family GEFs. We found that both the P-Rex and the Vav family are important for LPS priming of ROS formation, whereas particle-induced ROS responses and cell spreading are controlled by the Vav family alone. Surprisingly, fMLF-stimulated ROS formation, adhesion, and chemotaxis were synergistically controlled by P-Rex1 and Vav1. These responses were more severely impaired in neutrophils lacking both P-Rex1 and Vav1 than those lacking the entire P-Rex family, the entire Vav family, or both P-Rex1 and Vav3. P-Rex1/Vav1 (P1V1) double-deficient cells also showed the strongest reduction in fMLF-stimulated activation of Rac1 and Rac2. This reduction in Rac activity may be sufficient to cause the defects observed in fMLF-stimulated P1V1 neutrophil responses. Additionally, Mac-1 surface expression was reduced in P1V1 cells, which might contribute further to defects in responses involving integrins, such as GPCR-stimulated adhesion and chemotaxis. We conclude that P-Rex1 and Vav1 together are the major fMLFR-dependent Dbl family Rac-GEFs in neutrophils and cooperate in the control of fMLF-stimulated neutrophil responses.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 21178006 2011

C Jackson, HC Welch, TC Bellamy Signalling,

Long-term potentiation (LTP) at the parallel fibre-Purkinje cell synapse in the cerebellum is a recently described and poorly characterized form of synaptic plasticity. The induction mechanism for LTP at this synapse is considered reciprocal to "classical" LTP at hippocampal CA1 pyramidal neurons: kinases promote increased trafficking of AMPA receptors into the postsynaptic density in the hippocampus, whereas phosphatases decrease internalization of AMPA receptors in the cerebellum. In the hippocampus, LTP occurs in overlapping phases, with the transition from early to late phases requiring the consolidation of initial induction processes by structural re-arrangements at the synapse. Many signalling pathways have been implicated in this process, including PI3 kinases and Rho GTPases.

+view abstract PloS one, PMID: 20694145 2010

S Donald, T Humby, I Fyfe, A Segonds-Pichon, SA Walker, SR Andrews, WJ Coadwell, P Emson, LS Wilkinson, HC Welch Signalling, Bioinformatics

The small GTPase Rac controls cell morphology, gene expression, and reactive oxygen species formation. Manipulations of Rac activity levels in the cerebellum result in motor coordination defects, but activators of Rac in the cerebellum are unknown. P-Rex family guanine-nucleotide exchange factors activate Rac. We show here that, whereas P-Rex1 expression within the brain is widespread, P-Rex2 is specifically expressed in the Purkinje neurons of the cerebellum. We have generated P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice, analyzed their Purkinje cell morphology, and assessed their motor functions in behavior tests. The main dendrite is thinned in Purkinje cells of P-Rex2(-/-) pups and dendrite structure appears disordered in Purkinje cells of adult P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice. P-Rex2(-/-) mice show a mild motor coordination defect that progressively worsens with age and is more pronounced in females than in males. P-Rex1(-/-)/P-Rex2(-/-) mice are ataxic, with reduced basic motor activity and abnormal posture and gait, as well as impaired motor coordination even at a young age. We conclude that P-Rex1 and P-Rex2 are important regulators of Purkinje cell morphology and cerebellar function.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 18334636 2008

MA Barber, S Donald, S Thelen, KE Anderson, M Thelen, HC Welch Signalling,

P-Rex1 is a guanine-nucleotide exchange factor (GEF) for the small GTPase Rac that is directly activated by the betagamma subunits of heterotrimeric G proteins and by the lipid second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), which is generated by phosphoinositide 3-kinase (PI3K). Gbetagamma subunits and PIP(3) are membrane-bound, whereas the intracellular localization of P-Rex1 in basal cells is cytosolic. Activation of PI3K alone is not sufficient to promote significant membrane translocation of P-Rex1. Here we investigated the subcellular localization of P-Rex1 by fractionation of Sf9 cells co-expressing P-Rex1 with Gbetagamma and/or PI3K. In basal, serum-starved cells, P-Rex1 was mainly cytosolic, but 7% of the total was present in the 117,000 x g membrane fraction. Co-expression of P-Rex1 with either Gbetagamma or PI3K caused only an insignificant increase in P-Rex1 membrane localization, whereas Gbetagamma and PI3K together synergistically caused a robust increase in membrane-localized P-Rex1 to 23% of the total. PI3K-driven P-Rex1 membrane recruitment was wortmannin-sensitive. The use of P-Rex1 mutants showed that the isolated Dbl homology/pleckstrin homology domain tandem of P-Rex1 is sufficient for synergistic Gbetagamma- and PI3K-driven membrane localization; that the enzymatic GEF activity of P-Rex1 is not required for membrane translocation; and that the other domains of P-Rex1 (DEP, PDZ, and IP4P) contribute to keeping the enzyme localized in the cytosol of basal cells. In vitro Rac2-GEF activity assays showed that membrane-derived purified P-Rex1 has a higher basal activity than cytosol-derived P-Rex1, but both can be further activated by PIP(3) and Gbetagamma subunits.

+view abstract The Journal of biological chemistry, PMID: 17698854 2007

S Suire, AM Condliffe, GJ Ferguson, CD Ellson, H Guillou, K Davidson, H Welch, J Coadwell, M Turner, ER Chilvers, PT Hawkins, L Stephens Immunology,

Through their ability to regulate production of the key lipid messenger PtdIns(3,4,5)P(3), the class I phosphatidylinositol-3-OH kinases (PI(3)Ks) support many critical cell responses. They, in turn, can be regulated by cell-surface receptors through signals acting on either their adaptor subunits (for example, through phosphotyrosine or Gbetagammas) or their catalytic subunits (for example, through GTP-Ras). The relative significance of these controlling inputs is undefined in vivo. Here, we have studied the roles of Gbetagammas, the adaptor p101, Ras and the Ras binding domain (RBD) in the control of the class I PI(3)K, PI(3)Kgamma, in mouse neutrophils. Loss of p101 leads to major reductions in the accumulation of PtdIns(3,4,5)P(3), activation of protein kinase B (PKB) and in migration towards G-protein activating ligands in vitro, and to an aseptically inflamed peritoneum in vivo. Loss of sensitivity of PI(3)Kgamma to Ras unexpectedly caused similar reductions, but additionally caused a substantial loss in production of reactive oxygen species (ROS). We conclude that Gbetagammas, p101 and the Ras-RBD interaction all have important roles in the regulation of PI(3)Kgamma in vivo and that they can simultaneously, but differentially, control distinct PI(3)Kgamma effectors.

+view abstract Nature cell biology, PMID: 17041586 2006

Welch HC, Condliffe AM, Milne LJ, Ferguson GJ, Hill K, Webb LM, Okkenhaug K, Coadwell WJ, Andrews SR, Thelen M, Jones GE, Hawkins PT, Stephens LR Immunology, Bioinformatics

Rac GTPases regulate cytoskeletal structure, gene expression, and reactive oxygen species (ROS) production. Rac2-deficient neutrophils cannot chemotax, produce ROS, or degranulate upon G protein-coupled receptor (GPCR) activation. Deficiency in PI3Kgamma, an upstream regulator of Rac, causes a similar phenotype. P-Rex1, a guanine-nucleotide exchange factor (GEF) for Rac, is believed to link GPCRs and PI3Kgamma to Rac-dependent neutrophil responses. We have investigated the functional importance of P-Rex1 by generating a P-Rex1(-/-) mouse. P-Rex1(-/-) mice are viable and healthy, with apparently normal leukocyte development, but with mild neutrophilia. In neutrophils from P-Rex1(-/-) mice, GPCR-dependent Rac2 activation is impaired, whereas Rac1 activation is less compromised. GPCR-dependent ROS formation is absent in lipopolysaccharide (LPS)-primed P-Rex1(-/-) neutrophils, but less affected in unprimed or TNFalpha-primed cells. Recruitment of P-Rex1(-/-) neutrophils to inflammatory sites is impaired. Surprisingly, chemotaxis of isolated neutrophils is only slightly reduced, with a mild defect in cell speed, but normal polarization and directionality. Secretion of azurophil granules is unaffected. In conclusion, P-Rex1 is an important regulator of neutrophil function by mediating a subset of Rac-dependent neutrophil responses. However, P-Rex1 is not an essential regulator of neutrophil chemotaxis and degranulation.

+view abstract Current biology : CB, PMID: 16243035 2005

Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR Signalling,

Rac, a member of the Rho family of monomeric GTPases, is an integrator of intracellular signaling in a wide range of cellular processes. We have purified a PtdIns(3,4,5)P3-sensitive activator of Rac from neutrophil cytosol. It is an abundant, 185 kDa guanine-nucleotide exchange factor (GEF), which we cloned and named P-Rex1. The recombinant enzyme has Rac-GEF activity that is directly, substantially, and synergistically activated by PtdIns(3,4,5)P3 and Gbetagammas both in vitro and in vivo. P-Rex1 antisense oligonucleotides reduced endogenous P-Rex1 expression and C5a-stimulated reactive oxygen species formation in a neutrophil-like cell line. P-Rex1 appears to be a coincidence detector in PtdIns(3,4,5)P3 and Gbetagamma signaling pathways that is particularly adapted to function downstream of heterotrimeric G proteins in neutrophils.

+view abstract Cell, PMID: 11955434 2002