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Abstract: Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes
is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family
GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of
glucose homeostasis. This review summates the current knowledge, focusing in particular on the
roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and
insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho
GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and
one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4
were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the
plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue.
The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release
of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs
P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion
of these GEFs either contributing to the development of metabolic syndrome or protecting from it.
This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research
will identify more roles for Rho GEFs in glucose homeostasis.

Keywords: Rho GTPase; small G protein; Rho GEF; guanine nucleotide exchange factor; glucose
homeostasis; metabolic syndrome; type 2 diabetes; GLUT4 glucose transporter; insulin-stimulated
glucose uptake; glucose-stimulated insulin secretion

1. Rho Family GTPases and Rho GEFs

The Rho family of Small Guanosine Triphosphatases (GTPases) are part of the Ras
GTPase superfamily and were discovered through their homology to the Ras GTPases [1–3].
The Rho family consists of twenty members in mammals, and is best known for controlling
the actin cytoskeleton and cell morphology [4]. The best-characterized members are RhoA
whose activation leads to stress fiber formation (F-actin bundles), Cdc42 which induces
filopodia formation (F-actin bundles ‘fingers’) and Rac1 which leads to lamellipodia for-
mation (F-actin sheets) [5]. The Rho GTPases are also known to influence cell polarity,
membrane trafficking, and microtubule formation. They also affect processes that may
be unrelated to cytoskeletal dynamics, such as transcription factor activity [6], cell cycle
control [7], and reactive oxygen species production [8]. It is not surprising that dysregula-
tion of this protein family can lead to serious health problems and that it is an essential
candidate for further research.

Diverse new roles have emerged recently for the Rho GTPase family in whole-body
metabolic processes, including glucose homeostasis and insulin signaling. Incidences of
metabolic diseases have been rising for several decades in the Western world, including
metabolic syndrome, which encompasses a plethora of metabolic abnormalities including
obesity, insulin resistance, hypertension and dyslipidemia. It is thought that 25% of
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the UK population suffer from metabolic syndrome, with type 2 diabetes mellitus and
cardiovascular disease being among the leading causes of death in these patients. Studying
the Rho GTPases in this context may further our understanding of metabolic disorders
and could lead to new therapeutics. This review will focus on the Rho GTPases, and
in particular their activators, guanine nucleotide exchange factors (GEFs), emphasizing
insights into the known and emerging roles that these proteins play in glucose metabolism
in vivo, as well discussing insights from in vitro studies of primary cells or cell lines derived
from the pancreas, skeletal muscle and adipose tissue.

1.1. Regulation of Rho GTPases

Small GTPases, also known as small guanine nucleotide-binding proteins (G proteins),
are monomeric molecular switches involved in signal transduction. They respond to
upstream signals by conformational change and transduce the signal by binding to down-
stream effectors. Small GTPases are inactive in their guanosine diphosphate (GDP)-bound
form and active in their guanosine triphosphate (GTP)-bound form (Figure 1). guanine
nucleotide exchange factors (GEFs) hold the GTPase in a conformation that has a low
affinity for nucleotides [9]. The GDP is released and GTP is then bound to the GTPase
due to the naturally high intracellular concentration of GTP. In the GTP-bound, active
state, the GTPase adopts a conformation that allows it to interact with its effector proteins,
thus transmitting signals downstream [10]. GTPase-activating proteins (GAPs) turn off
the signal through increasing the intrinsic GTPase activity of the Small GTPase, leading
to GTP hydrolysis to GDP. Some small GTPases, including the Rho family, are addition-
ally regulated by guanine nucleotide dissociation inhibitors (GDIs), which sequester the
inactive GTPase in the cytosol and prevent it from binding to the plasma membrane [11].
There are two flexible regions, switch I and switch II, which are critical for the biological
functions of small GTPases, as they confer the guanine nucleotide-sensitive conformational
change [12]. The mechanism for the Rho switch is simple, but it is carefully regulated by
over 80 known activating GEFs and 70 deactivating GAPs. This leads to a highly complex
biological system where spatiotemporal regulation of Rho family GTPases can lead to the
coordinated activation of several diverse signaling pathways.
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family, is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins 
(GAPs), and guanine nucleotide dissociation inhibitors (GDIs). GEFs activate Rho GTPases by 
promoting GTP loading. The active, GTP-bound form of the Rho GTPase adopts a conformation 
that allows it to interact with effector proteins. GAPs inactivate Rho GTPases by stimulating GTP 
hydrolysis. GDIs prevent the activation of Rho GTPases by promoting cytosolic localization. Fig-
ure made with BioRender. 
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same cell line showed that treatment with bradykinin-induced filopodia formation, and 
the effects were specifically inhibited by dominant-negative N17-Cdc42 [23]. Finally, a 
role for RhoA was discovered in focal adhesion and contractile actomyosin-rich stress fi-
ber formation, in Swiss 3T3 fibroblasts upon stimulation with lysophosphatidic acid 
[22,24]. This was blocked by the addition of C3 transferase, a toxin from Clostridium botu-
linum that inhibits RhoA through ADP-ribosylation. Since these early studies, Rho family 
proteins have been shown to be the most important regulators of cytoskeletal dynamics, 
in processes as varied as cell polarity, chemokinesis and chemotaxis, phagocytosis and 
axon guidance. Rho family proteins are not limited to their effect on the cytoskeleton. 
Through multiple downstream effectors in a number of different signal transduction path-
ways, they also regulate NADPH oxidase activity in phagocytes [25,26], as well as cycle 
progression [7], cell proliferation [27–31] and gene transcription pathways [32–34], high-
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Rac, Cdc42 and RhoA are the best-characterized Rho family GTPases. There are four 
Rac-like proteins: Rac1 and RhoG are ubiquitously expressed, whereas Rac2 is restricted 
to the hematopoietic system and Rac3 to the nervous system [36]. Major Rac effectors in-
clude the WASP-family scaffold protein WAVE [37], which links upstream signals to the 
activation of the Arp2/3 complex, leading to the polymerization of branched actin fila-
ments [38]. Another major Rac effector is the serine/threonine protein kinase PAK [39–41], 
which leads to actin polymerization, actomyosin contraction, microtubule stability [42] 
and activation of the ERK signaling pathway [43,44]. In humans, there are six PAKs, or-
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Figure 1. Regulation of Small GTPase activity. The activity of small GTPases, including the Rho
family, is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins
(GAPs), and guanine nucleotide dissociation inhibitors (GDIs). GEFs activate Rho GTPases by
promoting GTP loading. The active, GTP-bound form of the Rho GTPase adopts a conformation
that allows it to interact with effector proteins. GAPs inactivate Rho GTPases by stimulating GTP
hydrolysis. GDIs prevent the activation of Rho GTPases by promoting cytosolic localization. Figure
made with BioRender.
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Rho GTPase activity is regulated by mechanisms aside from GEF-GTP/GAP-GDP
cycling [9]. Small GTPases, including the Rho family, are generally post-translationally
lipid-modified by prenylation to tether the active protein to membranes. The C-terminal
CAAX motif is recognized by transferases for the addition of farnesyl (15-carbon chain) or
geranylgeranyl (20-carbon chain) groups at the cysteine residue [1,13,14]. Other lipid moi-
ety modifications to Rho proteins include palmitoylation, and some Rho family GTPases
also contain a C-terminal polybasic Lys/Arg region that targets the positively charged in-
terface region to the membrane. The targeting of active Rho family GTPases to membranes
leads to spatiotemporal regulation of Rho GTPase activity. The exceptions are RhoBTB1 and
RhoBTB2, which are tumor suppressers that are not modified by lipids [15]. Rho-GTPases
are also regulated at the level of gene expression, e.g., by microRNAs, or by a host of
post-translational modifications, including ubiquitination, sumoylation and phosphoryla-
tion [16–20]. Phosphorylation often occurs close to lipid modifications, leading to a change
in the localization of the GTPase, whereas ubiquitination leads to targeting degradation of
the GTPase. Sumoylation is not thought to be essential, but helps to maintain the GTPase
in an active state [9,21].

1.2. Rho GTPases and Their Downstream Effects

The earliest described function of Rho GTPases was their regulation of the actin
cytoskeleton. The activation of various membrane receptors by growth factors, including
epidermal growth factor, insulin and platelet-derived growth factor, were shown to induce
the formation of lamellipodia and membrane ruffling in Swiss 3T3 fibroblast cells, which
could be blocked using dominant-negative N17-Rac1 [22]. A separate study in the same
cell line showed that treatment with bradykinin-induced filopodia formation, and the
effects were specifically inhibited by dominant-negative N17-Cdc42 [23]. Finally, a role
for RhoA was discovered in focal adhesion and contractile actomyosin-rich stress fiber
formation, in Swiss 3T3 fibroblasts upon stimulation with lysophosphatidic acid [22,24].
This was blocked by the addition of C3 transferase, a toxin from Clostridium botulinum that
inhibits RhoA through ADP-ribosylation. Since these early studies, Rho family proteins
have been shown to be the most important regulators of cytoskeletal dynamics, in processes
as varied as cell polarity, chemokinesis and chemotaxis, phagocytosis and axon guidance.
Rho family proteins are not limited to their effect on the cytoskeleton. Through multiple
downstream effectors in a number of different signal transduction pathways, they also
regulate NADPH oxidase activity in phagocytes [25,26], as well as cycle progression [7], cell
proliferation [27–31] and gene transcription pathways [32–34], highlighting an important
area for cancer research [35].

Rac, Cdc42 and RhoA are the best-characterized Rho family GTPases. There are four
Rac-like proteins: Rac1 and RhoG are ubiquitously expressed, whereas Rac2 is restricted to
the hematopoietic system and Rac3 to the nervous system [36]. Major Rac effectors include
the WASP-family scaffold protein WAVE [37], which links upstream signals to the activation
of the Arp2/3 complex, leading to the polymerization of branched actin filaments [38].
Another major Rac effector is the serine/threonine protein kinase PAK [39–41], which leads
to actin polymerization, actomyosin contraction, microtubule stability [42] and activation
of the ERK signaling pathway [43,44]. In humans, there are six PAKs, organized into
group I (PAKs 1–3) and group II (PAKs 4–6) [45]. PAKs activate LIM domain kinases
(LIMKs), which catalyze the inactivating phosphorylation of cofilin, an actin severing
protein that leads to actin depolymerization [46]. Conversely, PAK1 can also act as an
upstream activator of Rac1, by interacting with the Rac-GEF PAK-interacting exchange
factor (PIX) [47]. PAK1 and PAK2 are the only group I isoforms expressed in skeletal
muscle [48,49], and they have both been implicated in insulin-stimulated skeletal muscle
glucose uptake. PAK1 whole-body deficiency in mice leads to impaired glucose tolerance
and insulin sensitivity in vivo [50]. In addition, several studies have linked both PAK1 and
PAK2 to the regulation of glucose homeostasis [51–53]. However, a recent study by the
Sylow lab challenges this, suggesting that insulin-stimulated glucose uptake relies partly
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on PAK2, but not PAK1 [54]. Glucose tolerance in vivo and the insulin-stimulated uptake
of 2-deoxy-D-glucose into extensor digitorum longus muscle ex vivo were mildly impaired
in mice lacking PAK2, but not PAK1, using muscle-specific deletion [54]. In addition to
WAVE and PAKs, Rac1 also activates the cofilin phosphatase slingshot1 (Ssh1), leading to
cofilin inactivation [55]. Other Rac effectors include MLK [56], which leads to activation of
the JNK pathway and AP1 transcription factor-dependent gene expression, and p67phox, a
member of the NADPH oxidase complex and integral part of ROS production [36,57,58].

Rac and Cdc42 have overlapping sets of downstream effectors due to the minimal
consensus Cdc42/Rac-binding motif known as the CRIB domain, to which both GTPases
bind in their active, GTP-bound conformation [56]. There are two isoforms of Cdc42
produced by alternative splicing. Isoform 1 or Cdc42a is ubiquitously expressed, whereas
isoform 2 or Cdc42b is restricted to the brain. Cdc42 is best known for inducing actin
polymerization in filopodia through binding to WASP [59,60], or the insulin receptor
substrate p53 (IRSp53) kinase to induce filamentous actin through Arp2/3 complex [61–63].
Actin polymerization is also induced through activation of mammalian diaphanous2
(mDia2), which is important for maintaining a stable pool of F-actin at the lamella [64].

RhoA is ubiquitously expressed, and activates Rho-associated protein kinase (ROCK)
to mediate stress-fiber formation through phosphorylation of MLC and inactivation of
MLC phosphatase, as well as through activation of LIMK, which phosphorylates cofilin to
stabilize actin filaments [65–67]. The diaphanous-related formins (DRFs) are other critical
downstream effectors of RhoA, whose activation leads to actin nucleation acceleration
due to removal of barbed-end capping proteins [68]. Crosstalk between Rho GTPases
is common. An early example in fibroblasts suggested that there is a linear hierarchical
relationship where Cdc42 activates Rac and Rac activates Rho [69]. The relationship
between these Rho family GTPases is not as linear as first thought, and more complex,
even reciprocal interactions between Rac and RhoA are frequently observed. For example,
Rac activation leads to RhoA inhibition during neurite outgrowth [70].

1.3. Rho GEFs

The Rho GEFs are classified into two families, Dbl and DOCK. Dbl was the first
identified mammalian GEF, isolated from a human diffuse B cell lymphoma, and has
become the prototype of the Dbl family [71,72]. Dbl-type GEFs have two highly conserved
domains—a catalytic Dbl homology (DH) domain and a tandem membrane-targeting
pleckstrin homology (PH) domain. The DH domain is necessary, and usually sufficient,
for GEF activity, binding the GTPase and catalyzing the exchange of GDP for GTP in
the binding pocket. The tandem PH domain is usually involved, but not sufficient, for
membrane targeting, for example through binding of phosphoinositides. The DOCK family
of GEFs were discovered later and are characterized by the presence of two domains:
the membrane-targeting DOCK homology region-1 (DHR-1) and the catalytic DHR-2
domain [73]. DOCK GEFs can activate Rac and/or Cdc42, but not Rho [73]. Rho GEFs can
often activate more than one Rho GTPase. As a general rule, Rho GEFs are regulated by
auto-inhibition, which is relieved by signals that free the catalytic GEF domain to activate
its target GTPase [10]. Rho GEFs are multidomain proteins, and each type is usually
regulated through many different mechanisms, including complex formation with other
proteins, lipid binding and/or phosphorylation. The domain structures of Rho GEFs which
are known to be involved in the regulation of glucose homeostasis are shown in Figure 2.
Nine of these Rho GEFs have been implicated in mammalian glucose homeostasis in vitro
or in vivo, and one in yeast. The expression pattern of the nine mammalian Rho GEFs in
human metabolic tissues, is shown in Figure 3. These data, extracted from public database
http://biogps.org, accessed on 10 April 2021 [74], show that the Rho GEFs are expressed
widely throughout major metabolic organs, with levels of Kalirin being particularly high in
skeletal muscle. The data suggest that Tiam1 may not be expressed in adipose tissue and
that levels of P-Rex2 in adipose tissue and pancreatic islets, or of Tiam1 in skeletal muscle,
are low or absent. However, it must be considered that such mRNA data do not necessarily
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reflect protein levels of Rho GEFs in these tissues. It is known, for example, that P-Rex2
protein levels are much higher in the liver than in skeletal muscle of mice [75], and Tiam1
protein is expressed in skeletal muscle, [76] despite the mRNA data suggesting otherwise.
The mRNA data do, however, emphasize an important gap in current understanding: the
liver is a major metabolic organ that expresses multiple Rho GEFs; however, there is, to our
knowledge, no research data available yet on glucoregulatory roles of Rho GEFs in this
organ. More details on the expression, general functions and mechanisms of regulation of
these Rho GEFs are given in Section 4, where we describe their roles in glucose homeostasis.

Cells 2021, 10, x FOR PEER REVIEW 5 of 27 
 

 

many different mechanisms, including complex formation with other proteins, lipid bind-
ing and/or phosphorylation. The domain structures of Rho GEFs which are known to be 
involved in the regulation of glucose homeostasis are shown in Figure 2. Nine of these 
Rho GEFs have been implicated in mammalian glucose homeostasis in vitro or in vivo, 
and one in yeast. The expression pattern of the nine mammalian Rho GEFs in human met-
abolic tissues, is shown in Figure 3. These data, extracted from public database http://bi-
ogps.org, accessed on 10 April 2021 [74], show that the Rho GEFs are expressed widely 
throughout major metabolic organs, with levels of Kalirin being particularly high in skel-
etal muscle. The data suggest that Tiam1 may not be expressed in adipose tissue and that 
levels of P-Rex2 in adipose tissue and pancreatic islets, or of Tiam1 in skeletal muscle, are 
low or absent. However, it must be considered that such mRNA data do not necessarily 
reflect protein levels of Rho GEFs in these tissues. It is known, for example, that P-Rex2 
protein levels are much higher in the liver than in skeletal muscle of mice [75], and Tiam1 
protein is expressed in skeletal muscle, [76] despite the mRNA data suggesting otherwise. 
The mRNA data do, however, emphasize an important gap in current understanding: the 
liver is a major metabolic organ that expresses multiple Rho GEFs; however, there is, to 
our knowledge, no research data available yet on glucoregulatory roles of Rho GEFs in 
this organ. More details on the expression, general functions and mechanisms of regula-
tion of these Rho GEFs are given in Section 4, where we describe their roles in glucose 
homeostasis. 

 
Figure 2. Domain structure of Rho GEFs involved in glucose homeostasis. The Rho GEFs are classified into two families, 
70 Dbl-type and 11 DOCK-type proteins in mammals. This figure depicts the domain structures of the nine mammalian 
Dbl-type GEFs and of yeast Dck1, a homologue of mammalian DOCK1, which have been implicated to date in the regu-
lation of glucose homeostasis. Dbl-type Rho GEFs are characterized by a catalytic Dbl homology (DH) domain and a 
tandem membrane-targeting pleckstrin homology (PH) domain. DOCK-type Rho GEFs have a membrane-targeting DHR-
1 domain and a catalytic DHR-2 domain. The structures of the DH and DHR-2 catalytic domains differ, but the guanine 
nucleotide exchange reaction they catalyze to activate Rho GTPases is the same. Most Rho GEFs harbor additional domains 
that aid in their regulation. Rho GEFs adopt an auto-inhibitory conformation that is relieved by the binding of signals to 
their regulatory domains. DH, Dbl homology. PH, pleckstrin homology. DEP, disheveled, EGL-10 and pleckstrin. PDZ, 
PSD−95, DLG, ZO-1 protein–protein interactions. PEST, motif rich in proline (P), glutamic acid (E), serine (S), and threo-
nine (T). CC, coiled coil. Ex, conserved sequence in Tiam1. RBD, Ras-binding domain. CH, calponin homology. C1, zinc 
finger cysteine-rich domain. SH3/2, SRC Homology 3/2. LH, Lsc homology. Sec14, lipid-binding domain. Spectrin, three-

Figure 2. Domain structure of Rho GEFs involved in glucose homeostasis. The Rho GEFs are classified into two families,
70 Dbl-type and 11 DOCK-type proteins in mammals. This figure depicts the domain structures of the nine mammalian
Dbl-type GEFs and of yeast Dck1, a homologue of mammalian DOCK1, which have been implicated to date in the regulation
of glucose homeostasis. Dbl-type Rho GEFs are characterized by a catalytic Dbl homology (DH) domain and a tandem
membrane-targeting pleckstrin homology (PH) domain. DOCK-type Rho GEFs have a membrane-targeting DHR-1 domain
and a catalytic DHR-2 domain. The structures of the DH and DHR-2 catalytic domains differ, but the guanine nucleotide
exchange reaction they catalyze to activate Rho GTPases is the same. Most Rho GEFs harbor additional domains that aid
in their regulation. Rho GEFs adopt an auto-inhibitory conformation that is relieved by the binding of signals to their
regulatory domains. DH, Dbl homology. PH, pleckstrin homology. DEP, disheveled, EGL-10 and pleckstrin. PDZ, PSD−95,
DLG, ZO-1 protein–protein interactions. PEST, motif rich in proline (P), glutamic acid (E), serine (S), and threonine (T).
CC, coiled coil. Ex, conserved sequence in Tiam1. RBD, Ras-binding domain. CH, calponin homology. C1, zinc finger
cysteine-rich domain. SH3/2, SRC Homology 3/2. LH, Lsc homology. Sec14, lipid-binding domain. Spectrin, three-helix
bundle structures. Ig, Immunoglobulin-like. FibIII, fibronectin III binding. Kinase, serine/threonine protein kinase. SMART
EMBL software was used to determine domain structure.
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Figure 3. Metabolic tissue distribution of mammalian Rho GEFs that are known to be involved in
the regulation of glucose homeostasis. Nine mammalian Rho GEFs are currently known to regulate
glucose homeostasis in vitro or in vivo. Their distribution in human metabolic tissues is shown here,
as extracted from public database BioGPS (http://biogps.org, accessed on 10 April 2021) [74]. Data
are mean mRNA expression values determined by Affymetrix microarray. Units are z-scores of mean
fluorescence intensity, determined using multiple probes for each transcript and processed using
gcrma algorithms. Genes with z-scores above 5, indicated by the stippled black line, are considered
to be expressed in that tissue. The graph was drawn using GraphPad Prism 8.

2. Glucose Homeostasis

The human body is highly dependent on the tight regulation of glucose homeostasis.
Glucose is an essential metabolic source of energy, and the majority of cells require glucose
for metabolic function such as respiration, protein synthesis or energy storage as glycogen.
The human brain accounts for 60% of all glucose uptake from the blood, and a further 25%
is taken up by the liver and gastrointestinal tissues in the unstimulated and rested state [77].
Both of these absorption processes are insulin independent. Only 25% of glucose uptake is
insulin dependent, with the majority of this occurring in adipose and skeletal muscle tissues.
It is vital to maintain blood glucose within its physiological range, and in the fully-grown
adult human, this is between 4 and 7.8 mM or 72.0 and 140.4 mg/dL, with fasting levels
at approximately 5.5 mM/99 mg/dL [78]. Blood glucose levels that differ significantly
above or below this range can lead to hyper- and hypoglycemia, respectively. The clinical
symptoms of these conditions can range from mild, headaches and tiredness, to severe,
coma and death, so it is important to maintain the levels within a narrow range. Following
a meal, food is digested and the nutrients are absorbed into the blood circulation from
the intestines. Blood glucose levels transiently rise postprandial (after a meal), but return
to the resting baseline level due to homeostatic mechanisms. In the fasting state, blood
glucose levels are maintained through the liver by glycogenolysis, breakdown of glycogen
to glucose, and gluconeogenesis, glucose synthesis from non-carbohydrate sources such as
amino acids.

The major organs involved in glucose homeostasis are the brain, digestive tract, pan-
creas, liver, muscle and adipose tissue. Pancreas, muscle and adipose tissue are discussed
in this review, and briefly also hormonal control by the brain. The digestive tract and liver,
however, will not be covered further here, as there is limited data available on the role

http://biogps.org
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of Rho GTPases and Rho GEFs in the glucoregulatory functions of these organs. Major
glucoregulatory hormones are insulin, which triggers glucose uptake into muscle, adipose
and liver cells; and glucagon, which promotes glucose liberation from glycogen in hep-
atocytes and de novo glucose production. Other important glucoregulatory hormones
include amylin, which suppresses postprandial glucagon secretion and slows the rate of
gastric emptying, and the incretins, glucose-dependent insulinotropic peptide (GIP) and
glucagon-like peptide-1 (GLP-1), which are released from the gut to regulate the amount
of postprandial insulin release, amongst other actions that affect blood glucose levels [79].
Among glucoregulatory hormones, insulin and the processes it regulates are the most
widely studied, because dysregulation of insulin signaling and loss of insulin sensitivity
lead to the development of insulin resistance, (defined here as a less-than-expected low-
ering of blood glucose levels in response to insulin), a hallmark of metabolic syndrome,
and to type 2 diabetes [80,81]. Accordingly, the currently known roles of Rho GTPases and
Rho GEFs in glucose homeostasis revolve around insulin secretion and insulin-dependent
glucose uptake, so the following sections will focus on these processes.

The pancreas is a key organ involved in glucose homeostasis. As an endocrine organ,
the pancreas has islets of Langerhans, a collective of several cell types that secrete hormones,
including α and β cells. Glucagon is produced by the pancreatic α cells, and promotes
glucose liberation from glycogen in hepatocytes and de novo glucose production. Insulin is
produced by the pancreatic β cells, is released in response to high blood glucose levels, and
causes glucose uptake into muscle and adipose tissue, as well as glycogen storage in the
liver. Insulin secretion from pancreatic β cells is initiated by glucose transporter-mediated
entry of glucose into the β cell (GLUT1/3 in humans, GLUT2 in mice) [82]. The signal
is transduced into an increase in the ATP/ADP ratio and closure of the ATP-sensitive
potassium channels present on the plasma membrane, leading to membrane depolarization
and the influx of Ca2+ through voltage-gated calcium channels. The resulting rise in
intracellular Ca2+ concentration is critical for the exocytosis of insulin granules to the
plasma membrane, where fusion of the secretory granule leads to release of insulin into the
blood circulation.

Insulin-dependent glucose uptake mainly occurs in the skeletal muscle and adipose
tissue. This is enabled by the insulin-stimulated translocation of the GLUT4 transporter to
the plasma membrane, to allow glucose entry into the cell [83]. Insulin binds to its insulin
receptor tyrosine kinase, leading to phosphorylation of insulin receptor substrate protein 1
(IRS1) and recruitment of phosphoinositide 3-kinase (PI3K), which leads to elevated levels
of the lipid second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [84]. Ele-
vated phosphoinositide levels lead to Akt2 activation through phosphoinositide-dependent
kinase (PDK)-1 and Rictor/mTORC2. Akt2 plays an important role in the maintenance
of glucose homeostasis [85,86], although, there are contrasting reports indicating that a
reduction in Akt activity does not lead to insulin resistance, or altered glucose uptake [87].
It is generally understood that Akt2 controls GLUT4 translocation from intracellular glu-
cose transporter storage vesicles to the plasma membrane, through inhibiting AS160, a
GAP for Rab GTPases [88–91]. A separate signaling pathway activated by insulin to induce
GLUT4 translocation to the plasma membrane, involves the insulin receptor and PI3K
pathway-dependent activation of the Small GTPase Rac1 [53,90,92–94]. This leads to actin
branching and rearrangement of actin filaments [95]. It should be noted that the canonical
insulin/PI3K/Akt2 signaling pathway is not restricted to muscle or adipose cells, and
has pleiotropic effects in addition to GLUT4 translocation, including gene expression, cell
growth, and cell survival [84,96]. An adipocyte-specific Akt2-independent pathway for
glucose uptake involving the Rho GTPase TC10 has is essential for maintaining whole-
body glucose homeostasis, as it accounts for the majority of insulin-stimulated also been
identified, and will be discussed in the subsequent section [97]. There are also insulin-
independent mechanisms of glucose uptake into skeletal muscle cells. These include
muscle contraction, which promotes glucose entry by stimulating GLUT4 translocation,
and constitutive glucose uptake through GLUT1.
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3. Rho GTPases in Glucose Homeostasis

The control of glucose homeostasis by Rho family GTPases is an emerging field. Best
understood are the roles of Rac1, Cdc42 and RhoA in insulin-dependent glucose uptake
into adipose and skeletal tissues, and the roles of Rac1 and Cdc42 in glucose-stimulated
insulin secretion by pancreatic β cells. There is already an extensive, recent review by
Møller et al. on the involvement of Rho GTPases in these processes [98]. This excellent
review enabled us to keep the subsequent section brief, we will summarize key findings
and update on new literature. The main body of our review will focus instead on Rho
GEFs, which were not covered by Møller et al.

Both Rac1 and Cdc42 have been implicated in glucose-stimulated insulin secretion by
pancreatic β cells via their roles in actin rearrangement [99–102]. During the fasting state
when blood glucose levels are low, the actin cytoskeleton of pancreatic β cells prevents
insulin storage vesicles from fusing with the plasma membrane and releasing insulin.
An increase in blood glucose levels leads to actin cytoskeleton rearrangements, to allow
granule fusion and thus insulin release. This granule translocation process has been shown
to be dependent on both Cdc42 [102] and Rac1 [99] activation, and is likely mediated
through the Rac effector PAK1 [50,103], although the precise mechanism is still unclear.

Skeletal muscle is essential for maintaining whole-body glucose homeostasis, as it
accounts for the majority of insulin-stimulated glucose uptake [104,105]. Insulin activates
Rac1 and RhoA in muscle cells [92,94,106]. It is accepted that actin remodeling by Rac1
is required for GLUT4 translocation to the sarcolemma [53,92,107]. Insulin-stimulated
GLUT4 translocation allows glucose entry into skeletal muscle cells. Accordingly, many
studies have identified Rac1 as an essential regulator of insulin-dependent glucose uptake
into skeletal muscle [92,94,107,108]. These include genetic studies using tissue-specific
inducible knockout of Rac1 in the skeletal muscle of mice [53].

Rac1 has also been implicated in insulin-independent mechanisms of glucose uptake
in muscle cells. Sylow et al. found that Rac1 is activated in both mouse and human
skeletal cells following muscle contraction induced by physical exercise. Muscle-specific
inducible Rac1 deficiency in mice, or pharmacological inhibition of Rac1 with NSC23766 or
a derivative of this compound decreased the contraction-stimulated glucose uptake [109].
AMP-activated protein kinase (AMPK) and Rac1 pathways were found to be important
for the regulation of contraction-induced muscle glucose uptake ex vivo, in the muscle-
specific AMPK β1β2 KO mouse [110]. The Rac1 inhibitor II and deletion of AMPK β1β2,
independently, and additively, led to decreased 2-deoxy-D-glucose transport in soleus
muscle ex vivo. Yet, when the authors investigated this in vivo using a muscle-specific
kinase-dead AMPK mouse and inducible muscle-specific Rac1 KO mouse, they found that
exercise-induced glucose uptake depends on Rac1 and not AMPK in mice [110]. These
differences highlight the importance of in vivo experiments. Rac1 has also been shown to
regulate exercise-induced GLUT4 translocation to the plasma membrane of skeletal muscle
cells in vivo [111]. The authors visualized GLUT4 translocation by immunohistochemistry
of cryosections from the tibialis anterior muscle of muscle-specific Rac1 KO mice, and
found it to be reduced compared to wild type.

The role which RhoA plays in regulating insulin-stimulated glucose uptake in skeletal
muscle is more widely contested, due to lack of data and indirect, inconsistent evidence [98];
however, the involvement of the downstream RhoA effector ROCK is likely [112,113]. There
are two ROCK isoforms, ROCK1 and ROCK2, and these are likely to have different effects
on glucose uptake, due to differences in actin regulation mechanisms, subcellular distribu-
tions, and interactions with IRS1 [114]. Downregulation of ROCK1 in 3T3-L1 adipocytes
and L6 myoblasts decreased insulin-stimulated glucose transport in a manner dependent on
actin cytoskeleton remodeling [114]. The role of RhoA in glucose transport in L6 myocytes
was examined by siRNA knockdown [115]. RhoA knockdown attenuated glucose transport,
whereas RhoA overexpression increased basal, but not insulin-induced glucose uptake.
The authors found that RhoA signals through an Akt-independent mechanism, where in
the starved state (absence of insulin), Akt signaling was minimal. RhoA was found to
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elicit its effects on the actin cytoskeleton by the ROCK pathway and ezrin/radixin/moesin
proteins [115].

Adipose tissue is essential for maintaining glucose homeostasis, and for the postpran-
dial reduction in blood glucose levels. Rho GTPases play similar roles in adipose tissue, as
in skeletal muscle, regulating glucose uptake through translocation of GLUT4. The litera-
ture is less extensive and more controversial, but overall glucose homeostasis in adipose
tissue is thought to be regulated by different combinations of Rho GTPase family members
compared to muscle cells [92]. In adipocytes, insulin stimulation leads to the activation of
Rho GTPases TC10, Rac1, Cdc42 and RhoA [97,116–118]. Cdc42 and the Cdc42-like TC10
are the most studied Rho family GTPases in adipocyte metabolism. siRNA knockdown of
Cdc42 in 3T3-L1 adipocytes confirmed Cdc42 as a regulator of insulin-mediated GLUT4
translocation [116]. TC10 regulates actin rearrangement likely through N-WASP and is
important for insulin-induced GLUT4 translocation, as dominant-negative TC10 (T31N)
prevents F-actin formation, GLUT4 translocation and subsequent glucose transport [119].
TC10 is activated in response to insulin, mediated by translocation of the E3 ubiquitin
ligase Cbl to lipid rafts and recruitment of C3G, a GEF for Rap-family GTPases, which indi-
rectly leads to TC10 activation [97]. The downstream effector of TC10 in actin cytoskeleton
rearrangement, Cdc42 interacting protein-4 (CIP4), is also required for insulin-stimulated
GLUT4 translocation in adipocytes [120].

RhoA was identified to be activated by insulin and to induce GLUT4 translocation
and glucose uptake in a transfection study in rat adipocytes [121]. Other studies contested
this role of RhoA, as expression of dominant-negative or constitutively active mutants of
RhoA in 3T3-L1 adipocytes had no effect on insulin-stimulated GLUT4 translocation and
glucose uptake [97]. A recent study has gone further to differentiate between the different
isotypes of Rho. The authors found that RhoA, but not RhoB or RhoC controls glucose
transport in adipocytes, through regulation of the actin cytoskeleton [115].

The role of Rac1 in adipose tissue is unclear, and some have suggested Rac1 does
not regulate insulin-induced glucose uptake in adipocytes [122]. A recent study by
Takenaka et al. [123] contests the observation made by Marcusohn et al. that neither
dominant-negative nor constitutively active ectopically expressed Rac1 mutants affected
glucose uptake in 3T3-L1 adipocytes [122]. Takenaka et al. used the Rac1 inhibitor
II (CAS 1090893-12-1); to suppress GLUT4 translocation induced by insulin or by constitu-
tively active mutants of Akt2 or PI3K in L1-GLUT4 adipocytes [123]. Unlike Marcusohn
et al., the authors also saw enhanced GLUT4 translocation in response to constitutively
active Rac1. The exact role of Rac1 in adipocyte glucose homeostasis, if any, requires further
study.

4. Rho GEFs in Glucose Homeostasis

Recent research efforts have begun to decipher which Rho GEFs are responsible for
the activation of Rho family GTPases in glucose homeostasis. However, considering the
large number of Rho GEFs and processes that have not yet been investigated, it is clear
that much remains to be explored. Currently best understood are the roles of Rho GEFs in
the translocation of GLUT4 glucose transporter and glucose-stimulated insulin uptake in
adipose and skeletal tissue, and in the glucose-stimulated secretion of insulin by pancreatic
β cells. Mouse models have been more widely used to study the roles of Rho GEFs than Rho
GTPases, and this approach has shown that Rho GEFs are important regulators of glucose
homeostasis in vivo, with deficiencies or deregulated expression commonly resulting in
impaired insulin signaling, insulin resistance, glucose intolerance, and the development of
metabolic syndrome and type 2 diabetes. We will discuss these findings here for individual
Rho GEFs.

4.1. P-Rex

The P-Rex family proteins, P-Rex1 and P-Rex2, are Rac GEFs for Rac proteins (Rac1,
Rac2, Rac2 and RhoG) [124–126]. The human PREX1 gene maps to a gene locus on



Cells 2021, 10, 915 10 of 27

chromosome 20q13.1 that has been linked to type 2 diabetes in many studies [127], and
SNPs in the perigenic region of PREX1 have been proposed to associate with the likelihood
of obesity developing into type 2 diabetes [128]. P-Rex1 is highly expressed in leukocytes
and neurons, but is present at lower levels in many other cell types, whereas P-Rex2 is more
widely expressed except in leukocytes. P-Rex-deficient mouse strains have revealed roles
for P-Rex1 in the pro-inflammatory functions of leukocytes and developmental migration
of melanocytes, and roles for P-Rex2 in neuronal morphology and plasticity, and in motor
coordination [124]. Both P-Rex proteins are activated in response to the stimulation of
G protein-coupled receptors (GPCRs), by the Gβγ subunits of heterotrimeric G proteins,
and in response to the stimulation of PI3K-coupled receptors, by PIP3, with additional
regulation through phosphorylation and protein /protein interactions [124]. P-Rex family
Rac GEFs are known to facilitate insulin signaling [124]. Upon insulin stimulation, P-Rex1
responds to the activation of PI3K and the production of PIP3, and transmits the insulin
signal through its catalytic Rac GEF activity. P-Rex2 may have this same role, but has
additionally been identified to inhibit the tumor suppressor PTEN. PTEN metabolizes PIP3
to terminate PI3K signaling, and thus the P-Rex2-mediated inhibition of PTEN promotes
PI3K signaling pathways such as Akt activation [129,130]. The inhibition of PTEN is
independent of Rac-GEF activity, mediated through the PH domain of P-Rex2 binding
to the catalytic and C2 domains of PTEN, and the IP4P domain of P-Rex2 contacting the
C-terminal PDZ-binding domain of PTEN. There is also, inversely, an inhibition of P-Rex2
Rac GEF activity by PTEN through a phosphatase-independent mechanism [131]. It has
been proposed that P-Rex2-mediated insulin signaling may depend on PTEN inhibition
rather than its Rac GEF catalytic activity, but this remains to be investigated. The roles
which P-Rex family GEFs play in insulin signaling and the pathways linking them together
are summarized in Figure 4.

An important binding partner of P-Rex proteins is the kinase mammalian target of
rapamycin (mTOR), which they bind constitutively through their DEP domains. As such,
P-Rex Rac GEFs form part of both the mTORC1 and mTORC2 protein complexes [132].
mTORC1 is a central regulator of protein synthesis, cell growth and cell metabolism,
involved in signaling pathways that control glucose metabolism and the synthesis of nu-
cleotides and lipids, through many downstream effectors [133]. For example, mTORC1
facilitates cell growth by promoting glycolysis through an increase in the translation of the
transcription factor HIF1α, leading to the expression of glycolytic enzymes [133]. mTORC2
was first recognized for its contribution to Rho GTPase activation and cytoskeletal rear-
rangements, but it also induces the full activation of Akt by acting as PDK2. mTORC2 has
been shown to the regulate whole-body glucose metabolism in the mouse. For example, a
fat cell-specific knockout of the mTORC2 component Rictor prevented insulin-stimulated
phosphorylation of Akt, and subsequent phosphorylation of downstream targets such
as AS160 [134], a Rab GAP involved in the translocation of GLUT4 to the plasma mem-
brane [135]. mTORC2 may also play a role in muscle insulin resistance [136]. Kleinert
et al. showed that mTORC2 inhibition by mTOR kinase inhibitor AZD8055 decreased
insulin-stimulated glucose uptake into L6 muscle cells, but this was not due to alterations
in GLUT4 translocation in L6-GLUT4myc myoblasts. Instead, mTORC2 inhibition induced
a defect in glycolysis, affecting the concentration gradient required for glucose uptake, but
this was independent of Akt activity. ADZ8055 induced insulin resistance in wild-type
mice in vivo, characterized by elevated blood glucose levels after feeding, compared to
control mice without the drug. Glucose uptake was also impaired in muscle-specific Rictor
knockout (a subunit of mTORC2) muscle cells in vivo. The functional consequences of
the interaction of P-Rex Rac GEFs with mTORC1 and mTORC2, however, remain to be
investigated, particularly in the context of glucose homeostasis.
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conformational changes which promote transphosphorylation and subsequent activation of the receptor tyrosine kinase
activity. Insulin receptor substrate-1 (IRS1) is phosphorylated and recruits PI3K to the plasma membrane. Class 1 PI3Ks
phosphorylate PtdIns(4,5)P2 to generate PIP3 [84]. PIP3 promotes the translocation of PDK1 and Akt to the membrane
through interaction with the PH domains, and phosphorylation of Akt by PDK1 and mTORC2 (PDK2) leads to the full
activation of Akt. P-Rex1 and P-Rex2 are direct binding partners of mTORC1 and mTORC2 [132], both of which are
important effectors of the insulin-signaling pathway. Both P-Rex proteins activate Rac1, and P-Rex1 has been implicated in
the insulin-dependent translocation of GLUT4 to the plasma membrane in adipocytes [137]. P-Rex2 has been identified to
inhibit PTEN through a mechanism independent of the GEF activity, and thus regulates the PIP3 signal [129,130]. Inversely,
PTEN also inhibits P-Rex2 [131]. Figure made with BioRender.

4.1.1. P-Rex1 in Pancreatic β Cells

Recently, new data have emerged indicating a role of P-Rex1 in glucose-stimulated
insulin release from pancreatic β cells [138]. siRNA knockdown of P-Rex1 in the rat
insulinoma INS-1 832/13 pancreatic β cell line led to a decrease in glucose-stimulated
insulin secretion, and inhibition of glucose-stimulated Rac1 activation. Knockdown of
P-Rex1 also reduced the membrane association of Rac1 under high glucose conditions
(Figure 5). Rac can usually translocate to the plasma membrane independently of its GEFs,
upon release from Rho-GDI, although activation by GEFs contributes to retaining the
GTPase at the membrane [139,140]. It would be of interest therefore, to investigate if this
phenotype can be rescued by reintroduction of a catalytically inactive P-Rex1 protein. The
authors also investigated the role of RhoG in glucose-stimulated insulin secretion, as P-Rex1
has GEF activity towards RhoG as well as Rac1, but no contribution of RhoG was found,
suggesting that P-Rex1 may regulate this process through its Rac1 GEF activity. Future
in vivo work is needed using the P-Rex1-deficient mouse model, and ex vivo analysis
of islets of Langerhans, to investigate the role of P-Rex1 in glucose-stimulated insulin
secretion.
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high glucose conditions, respectively, separated by the dashed line in the figure. (A) Under conditions of normal glucose
homeostasis in the pancreatic β cell, glucose entry mediates insulin secretion. Vav2 and Tiam1-Rac1 have been implicated
in remodeling the F-actin cytoskeleton to enable this secretory process [42,98]. P-Rex1 was implicated in glucose-induced
insulin secretion and shown to aid in Rac1 localization at the plasma membrane (PM) under high-glucose conditions [77].
β-PIX competes with caveolin-1 (Cav1) for binding to Cdc42 and activates Cdc42 as part of the secondary sustained phase
of insulin secretion. (B) Stress-related levels of glucose (or fatty acids) lead to the apoptotic death of pancreatic β cells
and a diabetic phenotype, and this is possibly linked to hyper-activation of the Tiam1–Rac1 pathway. Figure made with
BioRender.

4.1.2. P-Rex1 in Adipocytes

Overexpression of P-Rex1 has been shown to regulate the insulin-dependent traf-
ficking of GLUT4 in 3T3-L1 adipocytes [137]. This is conferred through its catalytic GEF
activity towards Rac1, leading to actin remodeling in membrane ruffles and PIP3 formation.
siRNA-mediated knockdown of P-Rex1 reduced insulin-stimulated glucose uptake, sup-
porting a role for the Rac GEF in this process [137]. In light of these findings, future studies
should seek to determine whether the P-Rex1-deficient mouse shows an insulin-resistant
phenotype.

P-Rex1 was shown to control metabolism also by conferring the thermogenic capacity
of brown adipose cells [141]. Xue et al. used microarray analysis of immortalized human
adipose tissues to investigate thermogenic potential. P-Rex1 was identified as a positive
UCP1 regulator, and CRISPR-Cas9 was used to knock out P-Rex1 in brown pre-adipocytes.
P-Rex1 deficiency did not affect the ability of pre-adipocytes to differentiate into adipocytes,
but did abolish UCP1 levels, respiration capacity and proton leak in the mature brown
adipocytes. This suggests an important role for P-Rex1 in the thermogenic potential of
brown adipose tissue.
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4.1.3. P-Rex2 In Vivo

An investigation into the role of P-Rex2 in insulin signaling has brought to light
that P-Rex2 affects glucose homeostasis in vivo. Hodakoski et al. suggested that whole-
body P-Rex2 deficiency in mice causes insulin resistance [129]. After insulin injection,
the blood glucose levels of P-Rex2-deficient mice did not remain low for as long as in
wild-type mice, although the initial drop in blood glucose levels was normal. This would
suggest that P-Rex2 deficiency may not cause bona fide insulin resistance, but rather
affects the maintenance of the insulin response. Further investigation showed reduced
Akt phosphorylation in adipose tissue after insulin injection. The authors also showed
that P-Rex2-deficient mice were glucose intolerant in vivo, as these mice failed to clear
glucose from the bloodstream after glucose challenge at the same rate as wild-type mice.
Finally, insulin-resistant humans were also shown to have lower levels of P-Rex2 protein in
insulin-sensitive tissues, such as adipose tissue [129].

As described above, P-Rex2 inhibits the tumor suppressor PTEN, leading to elevated
levels of PIP3 and PI3K signaling pathway activity [129]. On this basis, Hodakoski et al.
proposed that the role of P-Rex2 in glucose homeostasis may be mediated through PTEN
inhibition rather than the Rac GEF catalytic activity. The crystal structure of human P-Rex1
has been solved and confirmed the key residues for the catalytic Rac GEF activity [142,143].
Future studies using P-Rex1 and P-Rex2 mouse models that lack Rac GEF catalytic activity
should seek to determine whether these metabolic phenotypes are due to canonical GEF
activity or adapter function such as the P-Rex2-mediated inhibition of PTEN.

4.2. Vav

The Vav family GEFs are Dbl-type GEFs, and there are three members in mammalian
cells [3]. Vav1 is mainly restricted to the hematopoietic system, whereas Vav3 has a broader
expression profile and Vav2 is almost ubiquitously expressed. The Vav proteins are GEFs
for Rac1 and, to a lesser extent, RhoA. Their catalytic activities are stimulated by tyrosine
phosphorylation and modulated by a range of other signals, including phosphoinositides.
The classical known functions of Vav proteins have been discovered in mice. Vav2 is impor-
tant for B cell maturation [144] and blood vessel relaxation induced by nitric oxide [145];
Vav3 plays roles in the nervous system including cerebellar development [146]; and Vav1
is important for many immune cell responses [147].

4.2.1. Vav2 In Vivo

A study by Menacho-Márquez et al. from 2013 using mice with whole-body Vav2
deficiency showed that these mice did not have glucose intolerance, hyperglycemia or
liver steatosis, and suggested that Vav2 does not play a significant role in metabolic
regulation [148]. However, recently, a role for involvement of Vav2 in metabolic regulation
has been revealed. Rodríguez-Fdez et al. found that mice with low catalytic activity of
Vav2 were predisposed to high-fat diet-induced metabolic imbalance, including reduced
Akt and Rac1 signaling in insulin-stimulated skeletal muscle, but not in adipose tissue
or the liver [149]. These mice exhibited reduced skeletal muscle mass and decreased
responsiveness to insulin, leading to a metabolic syndrome-like condition. This phenotype
was reversed in mice expressing Vav2 with catalytic hyperactivity, as these mice were
protected from the high-fat diet-induced metabolic imbalance [149]. The authors went on
to investigate Vav2-dependent responses to insulin in murine C2C12 myoblast cells, and
showed these to be mediated by the activation of Rac1 and the downstream activation
of PI3K and Akt. Vav2 depletion delayed the translocation of GLUT4 to the plasma
membrane [149]. The difference in phenotype between mice with whole-body deletion of
Vav2 and altered Vav2 catalytic activity exemplifies the importance of sophisticated mouse
models for evaluating potential compensation or redundant functions with other GEFs,
and for the evaluation of GEF activity dependent effects compared to adaptor functions.
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4.2.2. Vav2 in Pancreatic β Cells

A study by Veluthakal et al. highlighted Vav2 as a GEF for Rac1 in glucose-stimulated
insulin secretion, through the use of Vav2 siRNA knockdown in INS-1 832/13 pancreatic
β cells [101]. Using the Vav2:Rac1 interaction inhibitor EHop−016, and live cell imaging
with Lifeact-GFP biosensor, the authors were able to show a marked reduction in F-actin
depolymerization during the second phase of insulin secretion. This phase requires F-actin
cytoskeleton remodeling to allow the movement of granules from intracellular to plasma
membrane localization (Figure 5). It should be noted, however, that EHop−016 is unlikely
to be a specific inhibitor of Vav2, as it was designed to block the binding of Rho GEFs
to Rac [150], and as this review shows, other Rho GEFs are also implicated in the actin
remodeling processes associated with insulin secretion.

4.2.3. Vav3 In Vivo

Menacho-Márquez et al. found that whole-body deficiency in Vav3 leads to varying
metabolic phenotypes depending on the type of diet. Vav3-deficient mice on chow diet
developed metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and type 2
diabetes, but not increased adiposity [148]. Conversely, Vav3-deficient mice on high-fat
diet were protected from obesity and metabolic syndrome due to increased levels of energy
consumption per lean mass and brown adipose tissue thermogenesis. These complex
diet-dependent effects were traced back to the abnormal regulation of the sympathetic
nervous system due to loss of Vav3, which led to enhanced white-to-brown adipose
transdifferentiation.

4.2.4. Vav3 in Skeletal Muscle Cells

Vav3 has also been shown to be involved in metformin-mediated glucose uptake.
Metformin is a drug used to treat diabetes, as it increases the effects of insulin through
suppression of gluconeogenesis and glycogenolysis in the liver, and the stimulation of
insulin signaling and glucose transport into muscles [151–153]. One of the mechanisms of
action of metformin is through activation of AMPK [154,155]. Vav3 expression in C2C12
myoblast cells rose under high glucose conditions as a consequence of AMPK signaling.
Knockdown of Vav3 in these cells potentiated metformin-mediated GLUT4 translocation
and glucose uptake [156].

4.3. Tiam

The Tiam (T cell lymphoma invasion and metastasis) family of GEFs are Dbl-type
GEFs specific for Rac1. There are two homologues, Tiam1 and Tiam2/STEF, which have
differential upstream interactors and subcellular localizations, leading to diversification
in their functions [157]. Tiam1 is the only family member currently implicated in glucose
homeostasis. Tiam1 is auto-inhibited by intramolecular interactions and is largely cyto-
plasmic when inactive. Tiam1 translocates to the plasma membrane upon binding PIP3
through its N-terminal PH domain, and it contains a myristoylation sequence which pro-
vides a lipid anchor, although that alone is not sufficient to target Tiam1 to the membrane.
The binding of GTP-loaded Ras GTPase to the Ras-binding domain of Tiam1 stimulates
Rac1 GEF activity. Tiam1 is also regulated through phosphorylation by various kinases,
through binding of the phosphoinositide PI (3)P to its C-terminal PH domain, and through
protein–protein interactions. The known roles of Tiam1 are diverse. Tiam1 has been shown
to play contradictory roles in cell migration and adhesion, dependent on cell type and
condition, and its expression is dysregulated in many cancers [157,158].

4.3.1. Tiam1 in Pancreatic β Cells

The Tiam1/Rac1 signaling pathway also plays a role in glucose-stimulated insulin
secretion in pancreatic β cells, through remodeling the actin cytoskeleton (Figure 5). Ve-
luthakal et al. showed this through the use of siRNA-mediated knockdown and the Rac
inhibitor NSC23766, both of which attenuated glucose-induced insulin secretion from
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granules in INS 832/13 cells and in rat islets of Langerhans [159]. Syed et al. proposed that
hyperactivation of Tiam1/Rac1 may bring about apoptotic death of pancreatic β cells, as
NSC23766 treatment reduced the superoxide production and mitochondrial dysfunction
brought about by stress-related levels of glucose and saturated fatty acids [160]. The poten-
tial protective role that inhibition of Tiam1/Rac1 might play, was further shown through
use of an in vivo mouse model of type 1 diabetes (NOD mouse), where intraperitoneal
daily injection of NSC23766 significantly prevented the development of spontaneous dia-
betes [161]. Furthermore, NSC23766 was used to implicate Tiam1/Rac1 in the development
of diabetic retinopathy, through the activation of Nox2 and p38 MAP kinase leading to
mitochondrial dysfunction and retinal endothelial cell death [162–164]. It should be noted
that NSC23766 is still widely used as a Rac inhibitor, and was originally proposed to block
the Tiam1-mediated activation of Rac1 [165]. The limited efficacy and selectivity of this
inhibitor mean conclusions regarding the involvement of specific Rac GEFs must backed
up by other means. Overall, the role of Tiam1 in pancreatic cells needs to investigated
further by in vivo studies in Tiam1-deficient mice.

4.3.2. Tiam1 in Skeletal Muscle Cells

Tiam1 has been identified to play a key role in metformin-mediated glucose uptake
into skeletal muscle cells. You et al. investigated glucose uptake in C2C12 myoblast cells
and showed that metformin induces an AMPK-dependent interaction between Tiam1 and
the scaffold protein 14:3:3, and that Tiam1 is required for metformin-mediated GLUT4
translocation to the plasma membrane [166]. This study did not investigate the physiologi-
cal consequences of Tiam1-mediated GLUT4 translocation, so further studies should be
performed in vivo. The authors did, however, use the hyperglycemic db/db mouse model,
in which they found downregulated Tiam1 mRNA levels in quadriceps muscle compared
to wild type. This corroborated cell culture data showing that high glucose conditions
lead to downregulation of Tiam1, indicating a role both in vitro and in vivo for Tiam1 in
diabetes. In a different study, Tiam1 has also been reported to induce GLUT4 translocation
in muscle cells [167]. Overexpression of Tiam1 stimulated the translocation of GLUT4 to
the membrane of L6 GLUT4myc muscle cells, and led to F-actin-rich membrane ruffles,
indicative of endogenous Rac1 activation.

Tiam1 has also been implicated in contraction-stimulated glucose uptake in skeletal
muscle cells. Contraction-dependent glucose uptake into skeletal muscle is known to
require AMPK and the Rab-GAPs AS160 and TBC1D1; however, as described above, more
recently, Rac1 has also been associated with this response [110,111]. AMPK activity lies
upstream of Rac1 activation during the electric pulse-stimulated contraction of C2C12
myotubes, as well as during contraction of the gastrocnemius muscle in mice [168]. In vitro
siRNA knockdown of Tiam1 in differentiated C2C12 myotubes inhibited Rac1 activation
by electrical pulse-stimulation [76]. Electric pulse-stimulated glucose uptake, as well as
the expression and translocation of GLUT4 were inhibited by Tiam1 knockdown. Finally,
Tiam1 protein levels in mouse gastrocnemius muscle were elevated upon exercising of
wild-type mice on a treadmill [76].

4.4. β-PIX

β-PIX (PAK-interacting exchange factor) is a Rac, Cdc42 and TC10-specific Dbl-type
GEF which binds to and is phosphorylated by PAK [47]. β-PIX is regulated through
phosphorylation by Ptk2/Fak1, which promotes the interaction with Rac1, and through
phosphorylation by CaMK1, which enhances the GEF activity. β-PIX has been implicated
in the regulation of focal adhesion maturation [169] and in actin and membrane remodel-
ing [170], as well as in regulating the transcription of β-catenin [171], and it is essential for
axon formation during cortical development [172].
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β-PIX in Pancreatic β cells

Kepner et al. identified β-PIX as a Cdc42 GEF in MIN6 pancreatic β cells [173]. siRNA-
mediated knockdown of β-PIX reduced glucose-stimulated insulin secretion in these cells.
Cdc42 is a key regulator of the secondary sustained phase of insulin release from granules,
and leads to PAK, then Rac1 activation. Kepner et al. showed that caveolin-1, the main
component of caveolae in the plasma membrane, binds Cdc42 in MIN6 β cells. They
showed that β-PIX competes with caveolin-1 for Cdc42 binding at the boundary between
insulin storage granule and plasma membrane. More work is needed to identify the
exact role of β-PIX in the second phase insulin secretion, for example through the study
of glucose-stimulated insulin secretion in β-PIX knockout mouse models or perfusion
experiments ex vivo using isolated pancreatic islets.

4.5. Kalirin

Kalirin is a Rho GEF with two catalytic GEF domains, one with activity towards Rac1
and the other towards RhoA. Kalirin is best known for its roles in neuronal development
and axonal outgrowth [174,175] and is highly expressed in the brain/CNS [176], but is
also found in non-neuronal systems such as the heart, endocrine and skeletal muscle [177].
Several splice variants of Kalirin exist with different functions in neurons. The GEF also
has a ubiquitously expressed homologue, Trio, but only Kalirin has been implicated in
glucose metabolism to date. Uniquely among Rho GEFs, Kalirin and Trio harbor a protein
kinase domain as well as their GEF activities. Membrane localization of Kalirin is mediated
by Arf6, a member of the Arf family of GTPases that crosstalks with Rac1 in several
pathways [178]. The catalytic activities of Kalirin are regulated by phosphorylation, for
example by CamKII, and by protein–protein interactions.

Kalirin in Skeletal Muscle Cells

Kalirin plays a role in glucose uptake in skeletal muscle cells stimulated with the
myokine Follistatin-like 1 (FSTL-1). Low levels of FSTL-1 are associated with diabetes
mellitus, making this an important area of research [179]. FSTL-1 treatment induced the
expression of Kalirin in L6 rat skeletal muscle cells [180]. A role for this GEF in FSTL-1-
mediated GLUT4 translocation and glucose uptake was confirmed using siRNA knock-
down. The authors also used knockdown of Kalirin in primary myoblasts to show that
FSTL-1-induced glucose uptake is dependent on Kalirin-1/Rac1 in a more physiologically
relevant system. The true physiological significance of this is yet to be determined, as the
concentrations of FSTL-1 used were 11–200-fold higher than have been found in vivo [181].

4.6. Plekhg4

Plekhg4, also known as FLJ00068 or puratrophin-1, is a Dbl-type Rho GEF for Rac1,
Cdc42 and RhoA [182] and is regulated by ubiquitination. Plekhg4 is widely expressed,
including in many epithelial cell types as well as pancreas, muscle tissue and Purkinje
cells [108,183]. Plekhg4 is regulated through auto-inhibition by the interaction of its N-
terminus with the C terminus, where the catalytic DH/PH domain tandem is found, and
N-terminal deletion renders the GEF constitutively active [108]. Plekhg4 was originally
identified through its role in the pathology of autosomal dominant cerebellar ataxia (ADCA)
in a Japanese population [183]. This pathology was caused by a single nucleotide substitu-
tion in the 5′ untranslated region, and led to protein aggregation [183]. However, mutations
in Plekhg4 were not found to be a common cause of ADCA in Caucasian populations [184].
Interesting new roles are emerging for Plekhg4 in glucose homeostasis.

4.6.1. Plekhg4 in Skeletal Muscle Cells

Ueda et al., identified Plekhg4 as a GEF responsible for Rac1 activation in GLUT4
translocation in muscle cells [108,185]. Several Dbl-type Rac1 GEFs that are significantly
expressed in skeletal muscle were ectopically expressed in the L6-GLUT4 myoblast cell
line, and only Plekhg4, amongst Dbl-I, α-PIX β-PIX, Swap70 (switch-associated protein
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70) and Vav2, enhanced insulin-stimulated Rac1 activation and insulin-dependent GLUT4
translocation to the plasma membrane. Expression of constitutively active Plekhg4 and
siRNA knockdown led to increased and decreased GLUT4 translocation, respectively.

4.6.2. Plekhg4 in Adipocytes

The Satoh group have shown a role for Plekhg4 in GLUT4 translocation in adipocytes [186].
Knockdown of Plekhg4 by siRNA treatment in differentiated 3T3-L1 adipocytes reduced
insulin-stimulated Rac1 activity, even in the presence of constitutively active Akt2, which
would usually increase Rac1 activity during the process of GLUT4 translocation. This
study suggested that Plekhg4 may lie downstream of Akt2 [186]; however, this is likely
to be through an intermediator protein as the GEF harbors no consensus sequence for
phosphorylation by Akt. Research is required to help decipher the mechanisms that
regulate Plekhg4, to enable GLUT4 translocation in skeletal muscle cells and adipocytes.

4.7. PDZ-RhoGEF

Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) is a ubiquitously expressed
Dbl-type GEF that activates RhoA and is best known for its role in neurotrophin-induced
neurite outgrowth [187,188]. Alongside the DH/PH domain tandem, PDZ-RhoGEF harbors
a PDZ protein–protein interaction domain and an Lsc homology (LH) domain which is
distantly related to Regulator of G Protein Signaling (RGS) domains, and binds to activated
Gα12/13 family heterotrimeric G proteins (Figure 2). The presence of the LH domain links
Gα12/13-coupled GPCRs to Rho activation. Several studies (referenced in [189]) found that
single nucleotide polymorphisms in the PDZ-RhoGEF gene are associated with insulin
resistance and type 2 diabetes in diverse human populations.

PDZ-RhoGEF In Vivo

Chang et al. found that mice with whole-body deficiency in PDZ-RhoGEF had in-
creased energy expenditure, as measured by an increased oxygen consumption rate in the
epididymal white adipose tissue. These mice were protected from high-fat diet-induced
development of insulin resistance, as their blood glucose levels dropped lower than in
wild-type mice following insulin injection. The mice were also protected from developing
glucose intolerance and eventually, type 2 diabetes [189]. Mechanistically, the protection
from insulin resistance was found to be due to reduced p70S6K signaling in white adipose
tissue of PDZ-RhoGEF KO mice, and altered RhoA/ROCK-dependent phosphorylation
of IRS1. In wild-type mice, high-fat diet led to elevated protein levels of PDZ-RhoGEF
in insulin target tissues, as well as increased p70S6K signaling and IRS1 inhibition. PDZ-
RhoGEF plays a functional role in glucose homeostasis, particularly in adipose tissue.
Ageing PDZ-RhoGEF-deficient mice weighed less than wild-type mice, primarily due
to a reduction in white adipose tissue mass (reduced mature adipocyte number, not cell
size) [189]. Adipocyte number is a factor relating to the fat mass in humans, as individuals
who have higher numbers of adipocytes tend towards obesity [190].

4.8. DOCK1

Rho protein signaling in glucose homeostasis is not restricted to mammalian systems.
Related processes have been found in Saccharomyces cerevisiae yeast. Mammalian Rac1 has
a yeast homologue, Rho5, which is activated by Dck1, the yeast homologue of mammalian
DOCK1 [191]. DOCK1, also known as DOCK180, is the founding member of the DOCK-
type Rho GEFs, which are characterized by their lipid-binding DOCK homology region-1
(DHR-1) domain and catalytic DHR-2 GEF domain (Figure 2). DOCK1 functions by binding
Elmo1 through the SH3 domain, which induces membrane translocation of DOCK1 and
conformational change that activates the GEF. In yeast, Dck1 functions equivalently in
conjunction with Lmo1.
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DOCK1 in the Yeast Stress Response

There are data suggesting that Rho5 may be implicated in the stress response of yeast
cells to low glucose conditions [192]. Glucose starvation induces Rho5 relocation from the
plasma membrane to the mitochondria, and this translocation is conferred by Dck1/Lmo1,
implicating the GEF in the change from cytoplasmic glycolytic fermentation to oxidative
phosphorylation where energy production is more efficient. It is unknown whether this
translates to mammalian cells, as there are key differences between the main roles of
mammalian Rac1 and yeast Rho5. For example, Rac1 in mammals primarily controls actin
dynamics. However, this role is only weakly conserved in the yeast homologue [192].

4.9. Summary of Rho GEF Functions in Glucose Homeostasis

In summary, 10 different Rho GEFs have been implicated to date in the regulation of
glucose homeostasis, nine of which are in mammals, and one, the DOCK1 homologue Dck1,
is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and
Plekhg4 have been identified in GLUT4 translocation and/or insulin-stimulated glucose
uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX
have been implicated in the glucose-stimulated release of insulin by pancreatic β cells.
In vivo studies in mice have shown the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF to
be involved in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs
either contributing to the development of metabolic syndrome or protecting mice from this
disease.

5. Conclusions and Future Challenges

We have summarized evidence for the emerging roles of Rho GTPases and Rho GEFs in
metabolism and metabolic diseases. The study of Rho GTPases in glucose homeostasis has
been limited by the wide-ranging essential cellular functions of these proteins, which mean
that long-term downregulation or overexpression are prone to inducing non-physiological
effects. Dominant-negative or constitutively active mutants are no longer widely used for
similar reasons. Rho GTPases function by protein/protein interaction, and pharmacological
inhibition is difficult to achieve with high specificity and efficacy. Some bacterial toxins
are highly efficient inhibitors, but with considerable cytotoxic effects. Increased use of
cell type-specific inducible deletion of the endogenous GTPase, as well as re-expression of
mutants to physiological levels, may advance our understanding of the roles Rho GTPases
play in metabolic processes, both in isolated cells and in animal models of metabolic disease.
Although great steps have been taken to decipher the roles of Rho-GEFs in metabolism,
these roles have been restricted to the relatively few examples discussed. Research should
focus on other processes such as hormone secretion from the intestine, and the counter-
regulatory responses to low glucose levels by glucagon. Global phosphoproteomic analysis
of myoblasts differentiated from type 2 diabetic patient iPS cells, has recently revealed cell
autonomous insulin resistance and dysregulation of a vast signaling network that goes
beyond canonical insulin signaling [193]. There was reduced phosphorylation of proteins
involved in Rho GTPase regulation, including the GEFs ARHGEF18 and ARHGEF10 and
the Rac1 GAP ARHGAP17, whilst there was downregulation of DOCK7 [193]. These are
exciting proteins for further research, as they may impact the actin cytoskeleton controlling
glucose uptake, or indeed regulate glucose homeostasis through cytoskeleton-independent
mechanisms.

The study of Rho GEFs promises to yield insights into specific signaling inputs into
Rho GTPases in glucose homeostasis. As we have described, several Rho GEFs have been
implicated in the regulation of glucose-stimulated insulin secretion in β cells (Figure 5),
and in the regulation of GLUT4 translocation and glucose uptake in skeletal muscle and
adipose tissue in response to various stimuli, amongst other processes. However, most
work has been performed in vitro, and there is a distinct lack of in vivo experiments to
show the true physiological relevance of both Rho GTPases and Rho GEFs in metabolism.
Among the 10 Rho-GEFs that have been identified to date, the roles of P-Rex2, Vav2, Vav3
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and PDZ-RhoGEF in glucose homeostasis mechanisms have so far been investigated using
mouse models with whole-body deletions, and only Vav2 has been investigated using
mouse models of mutants with low or high GEF activity. Hence, there is massive scope
for important in vivo studies in the future. In particular, sophisticated mouse models with
inducible deletion of GEFs in specific organs or cell types, or inducible expression of GEF
mutants would be desirable. In addition, the knowledge gap regarding potential roles of
Rho GEFs in glucoregulatory responses of the liver should be the focus of research groups
going forward. It is yet to be determined how translatable the in vivo evidence from mouse
models is to the human system, as there are few human studies supporting the mouse
work, one of these rare examples being the downregulation of P-Rex2 in adipose tissue of
insulin resistant patients [129].

Whether Rho GEFs can be pharmacologically targeted in metabolic disease is only just
beginning to be explored. It seems sensible to target the Rho GEF over the Rho GTPase, to
regulate with higher specificity for each signal. Whereas roles for Rho-GEFs in metabolic
disease are only starting to emerge, the widespread involvement of these proteins in the
onset, progression and metastasis of cancerous malignancies is well-documented [194,195].
Therefore, there is already great interest in developing inhibitors against these proteins for
therapeutic use [196]. Yet, Rho-GEFs are not traditionally considered ‘druggable’ targets,
as they function through protein-protein interaction with their target Rho-GTPase, and
such interactions involve large surfaces which are difficult to inhibit with high efficacy and
specificity [196]. Rho-GEF inhibitors that have been developed as laboratory tools exemplify
this point, as they usually have IC50s in the micromolar range and limited selectivity for
specific GEFs [197]. Most of these compounds target the surface of the catalytic domain
of the GEF that interphases with the Small GTPase. However, more indirect modes of
inhibition, such as compounds that block the phosphorylation or epigenetic regulation of
GEFs, are also being considered. Pharmaceutical companies have recognized the potential
of targeting Rho-GEFs and have begun to develop Rho-GEF inhibitors. For example,
Novartis is pursuing a Vav inhibitor for the prevention and treatment of graft rejection
(patents EP1617868A1 and WO2004091654). Future in vivo studies, combined with the
development and testing of Rho-GEF inhibitors, will be required to determine the potential
of targeting Rho-GEFs in type 2 diabetes and other metabolic diseases. This is an exciting
area for research, which should seek to determine more in vivo translation as well as
potential adapter functions of the Rho-GEFs in metabolism.
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