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PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-
exchange factor 2) is a PTEN (phosphatase and tensin homolog
deleted on chromosome 10) binding protein that is significantly
mutated in cutaneous melanoma and pancreatic ductal adenocar-
cinoma. Here, genetic and biochemical analyses were conducted to
elucidate the nature and mechanistic basis of PREX2 mutation in
melanoma development. By generating an inducible transgenic
mouse model we showed an oncogenic role for a truncating PREX2
mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using
integrative cross-species gene expression analysis, we identified
deregulated cell cycle and cytoskeleton organization as signifi-
cantly perturbed biological pathways in PREX2 mutant tumors.
Mechanistically, truncation of PREX2 activated its Rac1 guanine
nucleotide exchange factor activity, abolished binding to PTEN
and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signal-
ing pathway. We further showed that PREX2 truncating mutations
or PTEN deletion induces down-regulation of the tumor suppressor
and cell cycle regulator CDKN1C (also known as p57KIP2). This down-
regulation occurs, at least partially, through DNA hypomethylation of
a differentially methylated region in chromosome 11 that is a known
regulatory region for expression of the CDKN1C gene. Together, these
findings identify PREX2 as a mediator of NRAS-mutant melanoma de-
velopment that acts through the PI3K/PTEN/Akt pathway to regulate
gene expression of a cell cycle regulator.
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Recent large-scale multidimensional genomic analyses of many
cancers have established a framework in which biological

functions and genetic interactions of established and novel can-
cer genes can be explored (1, 2). We initially identified PREX2
(phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange
factor 2) as being significantly mutated in human melanomas (3),
an observation that was corroborated by the recently completed
TCGA melanoma study (4). PREX2 is a guanine nucleotide ex-
changer (GEF) for Rac1 (5, 6) and is known to bind to the tumor
suppressor PTEN (phosphatase and tensin homolog deleted on
chromosome 10) (7). PREX2 has recently been shown to regulate
insulin signaling and glucose homeostasis through modulation of
the PI3K (phosphatidyl inositol 3 kinase) pathway, and also to regulate
Rac1 mediated cellular invasion in a manner that cross-talks with
PTEN signaling (8). Further expanding the significance of ge-
netic perturbations of PREX2 in cancer, a recent report by the
International Cancer Genome Consortium (ICGC) described the
identification PREX2 as a significantly mutated gene in pancreatic
ductal adenocarcinoma (PDAC) (9). Interestingly, PREX2 harbors
a wide spectrum of mutations including missense and truncating
mutations in PDAC, similar to observations in melanoma (3, 9).

To date, the most obvious connection between PREX2 and
cancer relevant pathways is through its physical interaction with
PTEN (7). PTEN catalyzes the conversion of phosphatidylino-
sitol-3,4,5-trisphosphate to phosphatidylinositol-4,5 bisphosphate.
PTEN acts as a tumor suppressor and plays important roles in
multiple cellular processes primarily by antagonizing PI3-kinase-AKT
signaling (10–13). Pathologically, PTEN is inactivated via mul-
tiple mechanisms in about a third of melanoma tumors resulting
in activation of the downstream PI3K/Akt signaling pathway (14,
15). Despite these connections to cancer signaling pathways, the
exact mechanism of tumorigenesis by PREX2 mutations remains
unknown. Here, we elucidated a previously unidentified mechanism
of action of PREX2 mutations in melanoma pathogenesis.
To study PREX2 mutations in vivo, we generated an inducible

transgenic mouse model that expresses one of the truncating PREX2
mutants observed in melanoma patients, and showed that mela-
noma development was accelerated in this genetic context. Using
integrated gene expression analysis, we identified several cellular
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Fig. 1. Inducible truncating PREX2 transgene is oncogenic in vivo. (A) Schematic representation of the construct used to generate transgenic mice consisting of a
doxycycline responsive promoter and a stopper cassette flanked by loxp sites for tighter regulation of a truncated PREX2 mutant (E824*) fused to FLAG epitope tag.
(B) Kaplan–Meier curve of tumor free survival of indicated genotypes. Cohort size of each group is indicated. To induce the expression of the transgene, mice were
injected with tamoxifen (activates CreERT2) and fed with doxcycline-containing water at 3 wk of age to induce expression of transgenes from the TetO promoter.
(C) Hematoxylin and eosin (H&E) staining of a tumor from mice harboring TetO-LSL-PREX2E824* transgene. (D) Plot showing number of overlapped genes whose
expression is significantly changed in TetO-LSL-PREX2E824* transgenic tumors and xenograft tumors overexpressing PREX2E824*. (E) Gene set enrichment analysis. After
identifying genes whose expression change overlapped between xenograft and transgenic lines as in D, gene set enrichment was performed. Top 10 significantly
altered cellular signaling pathways between tumors harboring a truncating PREX2 mutant and those that do not have a PREX2 mutation.
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pathways including cell cycle regulation and cytoskeletal organiza-
tion to be deregulated in PREX2 mutant tumors. Biochemically, we
showed that truncating PREX2 mutations increase its Rac1 guanine
nucleotide exchange (GEF) activity, abolish binding to the tumor
suppressor PTEN and activate the PI3K/Akt signaling pathway.
Finally, we showed that PREX2 mutation or PTEN deletion in-
duces DNA hypomethylation and down-regulation of expression
of CDKN1C (p57KIP2), a critical cell cycle regulator. In conclusion,
this study demonstrates the oncogenic capability of PREX2 trun-
cations in vivo and identifies a mechanistic link to an established
oncogenic signaling pathway and downstream regulation of a tumor
suppressor to impact melanoma pathogenesis.

Results
A Truncating PREX2 Mutation (PREX2E824*) Cooperates with NRAS to
Accelerate Melanoma Development. Melanomas harbor both mis-
sense and truncating mutations in PREX2 (3, 4). We have pre-
viously shown that, although missense PREX2 mutations produce a
mixed oncogenic phenotype, all truncating PREX2 mutations con-
sistently accelerated xenograft tumor growth in vivo (3). Hence, to
understand the basic biology behind PREX2 mutations in mela-
noma, we genetically modeled one of the representative truncating
mutations, E824*, in mice. To control the expression of this trun-
cating PREX2 mutant in a tissue and time specific manner, we
generated a conditional PREX2E824* transgene under the con-
trol of a tet-operator with a lox-STOP-lox cassette inserted be-
tween the promoter and the start codon of the PREX2E824*
ORF, designated as TetO-LSL- PREX2E824* (Fig. 1A). We
crossed these mice to Tyr-CreERT2 and Tyr-rtTA mice to express
PREX2E824* only in melanocytes in response to doxycycline and
Cre activation by tamoxifen (16, 17). Subsequently, we crossed these
mice into an established mouse model of melanoma, termed iNRAS
(consisting of the alleles: Ink/Arf−/−, TetO-NRASQ61K, Tyr-rtTA)
(18) and generated two cohorts of mice with or without the in-
ducible TetO-LSL-PREX2E824* allele. We chose these particular
genotypes because we observed that truncating PREX2 mutations
cooperated with mutant NRAS in driving xenograft tumor growth,
but not BRAF mutations (3) (SI Appendix, Fig. S1 A and B). Mice
carrying the TetO-LSL-PREX2E824* transgene exhibited accelera-
ted melanoma development with increased penetrance com-
pared with the iNRAS model alone (Fig. 1 B and C). Together
with our previous work in a xenograft model system (3), these in
vivo transgenic mouse studies demonstrate that truncating PREX2
mutations observed in melanoma cooperate with mutant NRAS to
drive tumor formation.

Multiple Cellular Pathways Are Deregulated in PREX2 Mutant Tumors.
To elucidate the molecular basis of their oncogenic activity, we
profiled the transcriptomes of tumors with truncating PREX2
mutants in transgenic and xenograft model systems. Specifically,
we profiled melanomas from the iNRAS transgenic mouse model,
and xenograft tumors derived from isogenic primary immortalized
human melanocytes (19) expressing wild type PREX2 or one of three
truncating mutations (K278*, E824*, and Q1430*). Cross-species
comparison revealed statistically significant overlap between the
genes altered in mouse tumors expressing the TetO-LSL-PREX2E824*
transgene and in xenograft tumors derived from truncating PREX2
overexpressing human melanocytes (Fig. 1D).
Gene set enrichment analysis of the genes concordantly up-

regulated and down-regulated in both model systems revealed
cell adhesion and actin filament organization, cell cycle and
mitotic checkpoint regulation, and ribosomal and mitochondrial
biogenesis pathways as top significantly altered pathways (Fig.
1E and SI Appendix, Fig. S2). Pathway alterations in cell
adhesion and actin filament organization may reflect PREX2’s
role as a bona fide guanine nucleotide exchange factor for Rac
GTPases (5, 6), and changes in the ribosomal and mitochondrial
biogenesis likely relate to its intimate link to PTEN and PI3

kinase pathways (7). However, the direct molecular links of
PREX2 to cell cycle regulation and mitotic checkpoint have not
been reported previously and were investigated further.

PREX2 Mutant Tumors Have Markedly Increased Cell Proliferation.
Next, we performed Ki67 staining to assess the extent of cellu-
lar proliferation in tumors derived from mice with activated
TetO-LSL-PREX2E824* transgene or controls. Consistent with
the gene expression profiling experiment (Fig. 1E), we saw sta-
tistically significant increase in Ki67-positive staining in PREX2
transgene-containing tumors compared with the control (Fig. 2A,
Upper and Lower). In line with the histology and pathway analysis
implicating cell cycle regulation, the most consistently down-
regulated gene in xenografts expressing PREX2 truncations was
the known cell cycle regulator CDKN1C (also known as p57KIP2).
This down-regulation was verified by orthogonal methods,
including expression profiling by qRT-PCR (Fig. 2 B and C)
and Western blotting on total tumor lysates (Fig. 2D). Similar
down-regulation of CDKN1B is observed in transgenic tumors
expressing activated TetO-LSL-PREX2E824* allele (Fig. 2E). Fur-
thermore, we observed reduced expression of p21 and p27 on
Western blots of tumors harboring TetO-LSL-PREX2E824* allele
(SI Appendix, Fig. S3A). Interestingly, IGF2, which is found in a
genomic locus that is epigenetically coregulated with CDKN1C, is
highly expressed in truncating PREX2 expressing xenograft tumors
compared with control tumors (SI Appendix, Fig. S3B).

Oncogenic Truncating PREX2 Mutations Increase its Rac1 GEF Activity
and Abolish Binding to PTEN. To define a direct biochemical link
between the observed biological changes and PREX2 mutations,
we investigated how PREX2 mutations affect its known GEF
enzymatic activity and protein-protein interactions. Due to their
consistent oncogenic activity in xenograft models, we focused our
study on the truncating PREX2 mutations observed in our initial
sequencing project (SI Appendix, Fig. S4A) (3). It is important to
note that additional PREX2 truncating mutations have been
recently described (4, 20) (SI Appendix, Fig. S4B).
To test whether PREX2 truncations have any direct effect on

its GEF activity, we purified recombinant full length PREX2 and
an N-terminal fragment consisting of Dbl homology (DH) and
pleckstrin homology (PH) domains (Fig. 3A, Left). We used
these purified proteins in an in vitro GEF assay using Rac1 as a
substrate. We observed that PREX2 N-terminal fragment has
significantly higher GEF activity than full length PREX2 (Fig.
3A, Right). Next we asked whether truncating PREX2 mutants
also have increased GEF activity in cells. To answer this question, we
performed a pulldown experiment using Rac/Cdc42 (p21) bind-
ing domain (PBD) from p21 activated kinase 1 (PAK-PBD) that
binds to Rac1 only when loaded with GTP (21–23). Interestingly,
we observed a robust increase in Rac1 loaded with GTP in pri-
mary immortalized melanocytes expressing PREX2 truncating
mutants (Fig. 3B). Similarly, increased GEF activity as inferred
by increased GTP loaded Rac1 was seen in mouse xenograft
tumor-derived cells harboring PREX2 truncating mutants,
compared with GFP control or various full-length PREX2 mu-
tants (Fig. 3C). Taken together, these experiments show that
truncated PREX2 proteins possess an increased GEF activity.
To explore the molecular mechanisms underlying the increase

in GEF activity in PREX2 truncations, we produced a structural
homology model of the Rac1 GTPase bound to the PREX2 N
terminus, based on the recent X-ray crystal structure of the
Rac1:PREX1_DH-PH complex (24). The DH-PH regions of
PREX1 and PREX2 are 71% identical in sequence, resulting in a
high-confidence Rac1:PREX2_DH-PH structural model (Fig. 3D).
Model analysis showed that the Rac1 interface on the PREX1 DH
domain is strictly conserved in PREX2. In agreement with the
PREX1:Rac1 study, the model does not support a direct molecular
contribution from the PH domain to activating the Rac1 GTPase
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Fig. 2. Tumors expressing a PREX2 truncating mutant show increased proliferation and down-regulation of inhibitory cell cycle regulators. (A, Upper) Ki67
staining of formalin fixed paraffin embedded sections of four representative tumors derived from each GEM model of the iNRAS genotype or iNRAS+ TetO-
LSL-PREX2E824* alleles. (Lower) Tumors from each genotype were stained for Ki67 and nuclear staining was quantified and plotted by a trained pathologist
using NuclearQuant 1.15.1 software from 3DHISTECH. (B) Heatmap of most consistently down-regulated genes in PREX2 mutants compared with GFP or
PREX2 expressing xenografts. Shown are down-regulated probe sets in PREX2 mutants compared with control GFP and wild-type PREX2 expressing xeno-
grafts showing at least 1.5-fold change and P value less than 0.05. (C) Gene expression of CDKN1C from xenograft tumors derived from primary melanocytes
harboring the indicated genotypes. **P < 0.05 compared with GFP controls by Student’s t test. (D) Western blot of xenograft whole tumor lysates expressing
either GFP, PREX2 wild type, or truncating mutants showing CDKN1C (p57) expression. Three independent tumor lysates per experimental condition are
shown. (E) Comparison of mRNA expression of CDKN1B in tumors derived from transgenic mice with or without TetO-LSL-PREX2E824* transgene. ***P < 0.001
by Student’s t test.
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in PREX2. Given that the DH-PH architecture and Rac1 binding
sites appear completely conserved in PREX2, the mechanism of
GEF activity is also expected to be conserved. Importantly, Lucato
et al. suggested that the C-terminal domains of PREX1 autoinhibit
the GEF function of PREX1 through intramolecular interactions
with the DH-PH domains (24). Such an autoinhibitory mecha-
nism is supported by another study that revealed a C-terminal
intramolecular inhibition of GEF activity where PH, DEP, and
PDZ domains hold the DH domain in a low-activity state in
absence of stimuli (25). Moreover, the C-terminal inositol poly-
phosphate 4-phosphatase homology (IP4P) domain is needed for
keeping PREX1 correctly structured and stable through its intra-
molecular interactions with the DEP and PDZ domains (26). Im-
portantly, deletion of the C-terminal 34 residues was sufficient to
abolish binding of IP4P to other parts of PREX1 (25, 26). We
therefore propose that truncating PREX2 mutations remove the
autoinhibitory capacity of the C terminus, thus increasing the GEF
activity toward Rac1.
Interestingly, it has been recently reported that the GEF ac-

tivity of PREX2 is suppressed by PTEN and that certain PREX2
missense mutations affect its interaction with PTEN (27). Hence
we investigated the binding of truncated PREX2 proteins to PTEN.
All three PREX2 truncating mutants failed to bind endogenous
PTEN in two independent melanocyte lines (SI Appendix, Fig. S4
C and D). Additionally, we assessed the binding of ectopically
expressed PREX2 mutants to PTEN in HEK293T cells. Again,
the truncating PREX2 mutants lost the ability to bind to PTEN
(SI Appendix, Fig. S4E). Further protein–protein interaction
studies revealed that the PREX2-PTEN interaction is in-
dependent of PTEN’s catalytic activity but dependent on its
C-terminal PDZ binding domain (SI Appendix, Fig. S5). In conclu-
sion, the lack of an autoinhibitory C terminus and loss of binding of
a negative GEF regulator, PTEN, can explain the increased GEF
activity of PREX2 truncating mutants.

Oncogenic Truncating PREX2 Mutations Activate Phosphoinositide-3/
Akt Signaling. Regulation of the PI3K/Akt pathway is the best
documented role of PTEN (28). Hence, we looked at phosphorylation
of Akt as a surrogate for activation of this pathway in immortalized
primary melanocytes (PMEL-NRAS) expressing GFP, wild-type
PREX2, or various truncating PREX2 constructs (SI Appendix, Fig.
S6). Cells expressing PREX2 truncations had consistently elevated
levels of phosphorylated Akt both on Ser473 and Thr308 residues,
indicating full activation of the kinase (Fig. 4A). Additionally, we
performed reverse-phase protein array (RPPA) on total protein
lysates of xenograft tumors derived from GFP, wild-type PREX2, or
PREX2 truncation expressing melanocytes (SI Appendix, Table S1).
Similar to results using immortalized melanocytes, we observed
increased levels of phosphorylated Akt in tumor lysates with
PREX2 truncations compared with GFP or wild-type PREX2
controls (Fig. 4B). Next, we performed immunoblotting on tumor
lysates derived from two mouse models, iNRAS and iNRAS with
TetO-LSL-PREX2E824*, which demonstrated a similar increase in
phosphorylation of Ser473 and Thr308 residues in Akt (Fig. 4C).
We hypothesized that the increased GEF activity of PREX2

mutants and resulting activation of Rac1 contributes to this acti-
vation of Akt based on several reports that have shown Rac1 can
activate PI3K/Akt signaling by directly binding to PI3K (29–31). To
test this hypothesis in our model system, we expressed a constitutively
active Rac1 construct, Q61L, in primary melanocytes. We observed
an impressive increase in Akt phosphorylation both under serum
deprivation and regular serum growth conditions (Fig. 4D).
Importantly, we asked whether Akt phosphorylation mediated by
truncating PREX2 could be modulated by suppression of the
Rac1 pathway. Using the Rac1 inhibitor EHT 1864 (32–34), we ob-
served greatly abrogated levels of phosphorylated Akt (Fig. 4E),
suggesting Akt activation by PREX2 mutation is dependent, at least
partially, on Rac1.

Taken together, our data suggest that the mechanism of ac-
tivation of Akt by PREX2 mutations is multifactorial and at least
partially mediated by Rac1. One compounding factor as shown
in our expression analysis is that PREX2 mutant tumors have
high levels of IGF2, which is known to activate the PI3K pathway
(35, 36). Indeed addition of IGF2 to serum deprived immortal-
ized melanocytes potently activated Akt phosphorylation, sug-
gesting this as a possible additional mechanism of Akt activation
by PREX2 mutation that deserves further study (SI Appendix,
Fig. S7A).

Mechanism of Downstream Gene Expression Dysregulation. Finally,
to provide a direct mechanism for the observed increase in pro-
liferative index in tumors expressing truncated PREX2, we in-
vestigated the impact of PREX2 mutation on the expression of a
known cell cycle regulator, CDKN1C, as a model. We chose to study
CDKN1C because it was the most consistently down-regulated gene
in all PREX2 mutants compared with GFP and wild-type PREX2
controls (Fig. 2 B–D). Functionally, CDKN1C (also known as
p57KIP2) is a well-known cell cycle regulator and tumor suppressor
whose loss of expression is a cause of Beckwith-Wiedemann
syndrome (BWS) (37–41). Additionally, CDKN1C is a classic
imprinted gene located in an imprinting cluster on chromosome
11 (42). Molecularly, in addition to mutation and chromosomal
rearrangement of the CDKN1C gene, epigenetic alterations at the
imprint control region, differentially methylated region (DMR), such
as loss of methylation at the DMR, are known to affect CDKN1C
expression leading to BWS. However, the mechanism(s) regulating
methylation at the DMR has not been elucidated. Hence, we first
asked whether down-regulation of CDKN1C in PREX2 mutant cells
is associated with changes in the methylation status of the DMR (43,
44). Accordingly, DNA methylation of the DMR as assessed by
methylated DNA immunoprecipitation and qPCR confirmed a
marked DNA hypomethylation at the imprint control region of
CDKN1C in PREX2 mutant cells (Fig. 5A), with consequent
reduction in CDKN1C expression (44) (summarized in SI Appendix,
Fig. S8). Additionally, we also observed consistent down-regulation of
CDKN1C in multiple independently derived MEFs upon acute de-
pletion of PTEN (Fig. 5B), phenocopying cells with PREX2 trun-
cating mutants. Interestingly, in agreement with a prior report (45),
we observed that IGF2 can induce reduction in expression of
CDKN1C (SI Appendix, Fig. S7B). Taken together, our data showed
that PREX2 truncating mutants down-regulate CDKN1C tumor
suppressor through hypomethylation of its DMR, although the pre-
cise molecular link is not yet identified.

Human Melanoma with PTEN Deletion Have Decreased CDKN1C Expression
and Impaired DNA Methylation at the DMR. To demonstrate the human
relevance of our findings, we interrogated the multidimensional epi/
genomic data set generated by TCGA to seek evidence of dysregu-
lation of CDKN1C expression and altered methylation of its DMR in
human melanoma samples (4). Because the number of samples with
PREX2 truncations is small and inadequate for statistical tests of
significance, we compared CDKN1C expression and CpG island
methylation at DMR in PTEN homozygously deleted versus PTEN
wild-type samples. As expected, both CDKN1C expression andDMR
CpG methylation were significantly lower in PTEN deleted samples
compared with PTENwild-type cases, (Fig. 5C andD; P value= 0.04,
and P = 0.004, P = 0.001 for two independent CpG probes, re-
spectively). This correlative finding supports our thesis that PREX2
mutation that loses binding to PTEN, or direct loss of PTEN, results
in down-regulation of known tumor suppressor CDKN1C through
hypomethylation of the DMR CpG and consequent promotion of
melanoma development.

Discussion
We have generated a genetically engineered mouse (GEM)
model with inducible expression of a truncating PREX2 mutant
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(PREX2E824*) in a tissue- and time-dependent manner. We
showed that selective expression of this transgene in melanocytes in
a tumor sensitizing background results in accelerated melanoma

development with increased prevalence in mice. This analysis
confirmed our previous observation that truncating PREX2
mutants cooperate with NRAS mutation in a xenograft model
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system (3). Based on the recent ICGC data on the prevalence of
PREX2 mutations in PDAC (9), our PREX2 transgenic mice
could also be used to model PDAC in combination with
KRAS mutation.
Combined gene expression profiling in the GEM and xeno-

graft model systems revealed dysregulation of cell adhesion, cell
cycle regulators, and ribosomal biogenesis. These alterations are
consistent with known biological roles of PREX2 in regulating
the Rac1 GTPase (5, 6) and affecting the actin cytoskeleton, as
well as its connection to the PTEN-PI3K signaling pathway, and
influencing protein synthesis and growth (7, 8). In this study,
we have elucidated a previously unidentified role for PREX2
in cell cycle regulation through down-regulating expression of
CDKN1C (p57), p21, and p27. Furthermore, increased expres-
sion of the growth factor IGF2 in PREX2 mutant tumors is
expected to contribute to these phenotypes.
Biochemically, we showed that truncating PREX2 mutations

increase its Rac1 GEF activity both in vitro and in vivo. Struc-
tural homology modeling revealed a highly conserved mecha-
nism of interaction with Rac1. We propose that the GEF domain
in PREX2 truncating mutants is activated because of the re-
moval of the autoinhibitory C terminus, as shown for other GEFs
including the highly similar PREX1 (24, 25, 46). Interestingly,
Rac1 is recurrently mutated and constitutively activated in cu-
taneous melanoma (47, 48). Hence, overactivation of Rac1 sig-
naling pathway either through direct mutational activation or
through its upstream regulators (e.g., PREX2) appears to be an
emerging theme in melanoma biology. Truncating PREX2 mu-
tations also abolish its interaction with PTEN. We showed that
truncating PREX2 mutations activate downstream PI3K/Akt
signaling pathway by activating Rac1. Further, we have shown
that Akt activation by PREX2 is partially dependent on Rac1
using a Rac1 inhibitor. As pharmacologic agents can have non-
specific effects, future studies using genetic approaches such as
dominant negative Rac1 mutants will be helpful to strengthen
our conclusion. This observation expands on the role of Rac1 in
activating the PI3K pathway as documented recently (29–31).
Additionally, as a well-known modulator of growth signaling, the
increase in IGF2 expression in PREX2 mutants is also expected
to contribute to the activation of the PI3K/Akt pathway. Im-
portantly, the direct biochemical consequences of the lack of
PREX2/PTEN interaction due to PREX2 truncating mutations
is still not full resolved. Interestingly, a recent study demon-
strated that PTEN has a suppressive effect on the GEF activity of
PREX2 and that certain missense mutations can affect its in-
teraction with PTEN (27). Hence we propose that the lack of
binding of PTEN to truncating PREX2 mutations contributes to
the activation of PREX2 GEF activity.

Additionally, this study identified a previously unidentified
molecular mechanism controlling expression of an important tu-
mor suppressor, CDKN1C, downstream of PREX2 mutations or
inactivation of PTEN, thus showing the intricacies of regulation of
oncogenes and tumor suppressor. We showed deficiency of DNA
methylation at the imprint control region of CDKN1C in PREX2
mutant and PTEN deleted samples explaining, at least partially, why
CDKN1C is down-regulated in such samples. Furthermore, the
dysregulated expression of IGF2, which is found in the genomic
locus that is coregulated with CDKN1C, via genomic imprinting in
PREX2 mutant tumors adds further evidence to the involvement
of an epigenetic mechanism downstream of PREX2 mutations.
However, the direct molecular link between the PREX2/PI3K/Akt/
PTEN signaling axis and the epigenetic machinery regulating DNA
methylation is still unclear.
In conclusion, this study expands on the pleiotropic oncogenic

mechanisms associated with small GTPases and PI3K pathway
activation (28, 49). Our study also supports the thesis that on-
cogenic PREX2 mutations couple PI3K/Akt signaling to gene
expression regulatory machinery involving, among others, cell
cycle control in melanoma development.

Materials and Methods
To generate the tetO-Lox-Stop-Lox-PREX2E824* transgene, a fragment con-
taining PREX2E824* and a FLAG epitope sequence followed by a stop codon
was inserted into a previously described transgenic vector (50) by EcoRV
digestion. TetO-LSL-PREX2E824* mice were produced by injecting a linearized
transgenic fragment into FVB/N pronuclei according to standard protocols.
Transgenic founders were screened by PCR-based approach. TyrCreERT2
mice and the iNRAS mouse melanoma model have been described (16, 18).
Mice were interbred and kept on a FVB/C57Bl6 hybrid background in specific
pathogen free environment at MD Anderson Cancer Center mouse facility. For
induction of expression of transgenes, mice were fed with doxycycline water
(2 g/L, sucrose 20 g/L). Tamoxifen was administered by i.p. injection in sterile corn
oil carrier (100 μL of 20 mg/mL stock solution). All animal manipulations were
performed with University of Texas MD Anderson Cancer Center Institutional
Animal Care and Use Committee approval.

All remaining materials and methods are described in detail in SI Ap-
pendix, SI Materials and Methods.
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