
Cell Reports

Resource
The Rac-FRET Mouse Reveals
Tight Spatiotemporal Control of Rac Activity
in Primary Cells and Tissues
Anna-Karin E. Johnsson,1,4 Yanfeng Dai,1,4,5 Max Nobis,2 Martin J. Baker,1 Ewan J. McGhee,2 Simon Walker,1

Juliane P. Schwarz,2 Shereen Kadir,2 Jennifer P. Morton,2 Kevin B. Myant,2 David J. Huels,2 Anne Segonds-Pichon,1

Owen J. Sansom,2 Kurt I. Anderson,2 Paul Timpson,2,3,* and Heidi C.E. Welch1,*
1Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
2Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
3Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent’s Clinical School,
Faculty of Medicine, University of New South Wales, NSW, 2010 Sydney, Australia
4These authors contributed equally to this work
5Present address: Research Centre for Animal Genetic Resources of the Mongolia Plateau, Inner Mongolia University,
235 West University Road, 010021 Hohhot, China

*Correspondence: p.timpson@garvan.org.au (P.T.), heidi.welch@babraham.ac.uk (H.C.E.W.)

http://dx.doi.org/10.1016/j.celrep.2014.02.024

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
SUMMARY

The small G protein family Rac has numerous regula-
tors that integrate extracellular signals into tight
spatiotemporal maps of its activity to promote spe-
cific cell morphologies and responses. Here, we
have generated a mouse strain, Rac-FRET, which
ubiquitously expresses the Raichu-Rac biosensor.
It enables FRET imaging and quantification of
Rac activity in live tissues and primary cells with-
out affecting cell properties and responses. We
assessed Rac activity in chemotaxing Rac-FRET
neutrophils and found enrichment in leading-edge
protrusions and unexpected longitudinal shifts and
oscillations during protruding and stalling phases of
migration. We monitored Rac activity in normal or
disease states of intestinal, liver, mammary, pancre-
atic, and skin tissue, in response to stimulation or in-
hibition and upon genetic manipulation of upstream
regulators, revealing unexpected insights into Rac
signaling during disease development. The Rac-
FRET strain is a resource that promises to fundamen-
tally advance our understanding of Rac-dependent
responses in primary cells and native environments.

INTRODUCTION

The small G protein family Rac is an essential controller of actin

cytoskeletal dynamics and hence cell shape, adhesion, motility,

regulated secretion, and phagocytosis, as well as of gene

expression and reactive oxygen species (ROS) formation (Heas-

man and Ridley, 2008; Wennerberg et al., 2005). Rac is active

(i.e., able to bind downstream effectors) when guanosine

triphosphate (GTP)-bound and inactive when guanosine diphos-
Ce
phate (GDP)-bound. Its activation is catalyzed by at least 20

different DBL- or DOCK-type guanine nucleotide exchange fac-

tors (GEFs) (Rossman et al., 2005) and its inhibition by an equally

large number of Rac-GTPase-activating proteins (GAPs). Rac

downstream signaling specificity and the ensuing Rac-depen-

dent cell responses are largely conferred through the types of

GEFs and GAPs that couple Rac to any given upstream signal

(Rossman et al., 2005).

Förster resonance energy transfer (FRET) technology is widely

used to monitor protein/protein interactions, coupling fluoro-

phore pairs such as cyan fluorescent protein (CFP) and yellow

fluorescent protein (YFP) to two proteins of interest. Inter- and in-

tramolecular FRET probes have been used for a decade to visu-

alize Rac activity (Aoki andMatsuda, 2009; Hodgson et al., 2010;

Itoh et al., 2002; Kraynov et al., 2000). Intermolecular Rac FRET

reporters measure the interaction between separate molecules

that must be expressed to comparable levels and subcellular

distributions (Kraynov et al., 2000), which can be technically diffi-

cult, and they are prone to interfere with endogenous GTPase

signaling (Aoki andMatsuda, 2009; Hodgson et al., 2010). The in-

tramolecular ‘‘Raichu’’ (Ras superfamily and interacting protein

chimeric unit) Rac-FRET probe contains RAC1 as the signal

sensor and Pak-CRIB as the effector, CRIB being the CDC42/

Rac interactive binding motif of Pak, a Rac target that binds to

GTP-bound, but not GDP-bound, Rac. In Raichu-Rac, RAC1-

GTP binding to Pak-CRIB causes FRET from CFP to YFP (Itoh

et al., 2002). The probe is anchored into the plasma membrane

via a KRAS CAAX motif and hence monitors the balance of

endogenous Rac-GEF and Rac-GAP activities at the physiolog-

ically relevant subcellular localization of active RAC1 (Itoh et al.,

2002).

Rac-FRET biosensors have largely been used in transfection-

based experiments in order to correlate the localization of

Rac activity with cellular function. Rac is required for cell motility,

and use of Rac-FRET probes showed that active Rac localizes to

extending cell protrusions during many fundamental processes,
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including the leading edge of migrating cells (Itoh et al., 2002;

Kraynov et al., 2000; Machacek et al., 2009; Ouyang et al.,

2008), forming phagosomal cups during phagocytosis of

apoptotic cells (Nakaya et al., 2008), distal poles of daughter

cells during cell division (Yoshizaki et al., 2003), or developing

neurites during neurogenesis (Aoki et al., 2004). Combining

Raichu-Rac expression with downregulation of Vav-family

Rac-GEFs showed that phosphatidylinositol 3-kinase-driven

GEFmembrane targeting localizes Rac activity during neurogen-

esis (Aoki et al., 2005). Expression of an intermolecular Rac-

FRET reporter combined with downregulation of the Rac-GEF

TIAM1 showed that TIAM1 association with distinct scaffolding

proteins directs localized Rac activity depending on extracellular

stimulus (Rajagopal et al., 2010). Similarly, overexpression of a

Raichu-Rac-like probe combined with membrane-targeting of

TIAM1 or the Rac-GAP chimaerin in Madin-Darby canine kidney

(MDCK) cell cysts showed mislocalization of Rac activity to suf-

fice for luminal invasion (Yagi et al., 2012a, 2012b). Finally, use of

Raichu-Rac demonstrated apicobasal Rac activity gradients

at epithelial cell junctions driven by differential regulation of

TIAM1 through b2-syntrophin and Par-3 (Mack et al., 2012).

Raichu-Rac-derived probes are also beginning to be used for

monitoring Rac activity in whole tissues. Reporter expression in

Xenopus and zebrafish embryos showed localized RAC1 activity

in migrating cells during organ development (Kardash et al.,

2010; Matthews et al., 2008; Xu et al., 2012). A limitation of these

studies was that biosensor expression was transient. The

first transgenic Rac-FRET biosensor organism was generated

recently, a fly that conditionally expresses modified Raichu-

Rac in border cells. This revealed Rac activity gradients not

only inside cells, but between cell clusters, being highest in cells

leading in the direction of migration (Wang et al., 2010). First use

of Raichu-Rac-like probes inmammals was recently achieved by

transplantation of biosensor-expressing glioblastoma cells into

rat brain, thus enabling correlation of Rac activity with the

mode of tumor cell migration during invasion (Hirata et al.,

2012). Whereas this study was limited by biosensor expression

in cultured rather than primary cells, it clearly demonstrated

that the mammalian tissue microenvironment controls Rac

activity (Hirata et al., 2012).

There is therefore a need for measuring Rac activity in primary

mammalian cells and tissues for assessing its regulation by

physiologically and functionally relevant organ- or disease-spe-

cific environmental cues. Here, we report the development of a

Rac-FRET mouse strain, which ubiquitously expresses the orig-

inal intramolecular Raichu-Rac reporter to allow spatiotemporal

quantification of Rac activity in living primary mammalian cells

and tissues.

RESULTS

Generation of the Rac-FRET Mouse
We generated a Rac activity reporter mouse strain by intro-

ducing the extensively validated intramolecular Raichu-Rac

FRET biosensor (Itoh et al., 2002) into the ROSA26 locus to

confer ubiquitous expression from the endogenous promoter.

To this end, we first generated Rac-FRETfl/fl, a strain in which

Raichu-Rac expression was conditionally prevented by a tran-
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scriptional stop and crossed this with ‘‘deleter,’’ a strain with

X-chromosomalCre recombinase, to excise the stop and enable

constitutive Raichu-Rac expression before breeding out Cre

again (Figure S1). Homozygous knockin mice of the resulting

Rac-FRET strain were born at expected Mendelian ratio,

appeared healthy and fertile, lived normal life-spans, and ex-

hibited no untoward behaviors.

Raichu-Rac Expression Levels in Rac-FRETMouse Cells
and Tissues
Raichu-Rac expression was detected in all tissues tested, at

approximately 20–25 ng/mg of tissue, although expression in

muscle tissue (heart, stomach, and skeletal muscle) was some-

what lower, at 2–10 ng/mg (Figure 1A). In primary Rac-FRET neu-

trophils, which express equal amounts of ubiquitous RAC1 and

hematopoietic RAC2, expression of the biosensor was 0.6% of

endogenous RAC1 and RAC2 (Figure 1B), and in primary E13.5

Rac-FRET mouse embryonic fibroblasts (MEFs), it was 8% of

endogenous RAC1 (Figure 1C). Therefore, Raichu-Rac protein

levels are low compared to endogenous Rac, as we had aimed

for, in order to prevent possible dominant-negative effects. As

Raichu-Rac expression did not cause obvious defects and

Rac-FRET mice appeared healthy, we continued to characterize

properties and responses of primary Rac-FRET MEFs and neu-

trophils in detail to determine if it affected cell function.

Primary Rac-FRET MEFs Function Normally and Show
Highly Localized Rac Activity upon PDGF or Insulin
Stimulation
We investigated proliferation, lifespan, and morphology of pri-

mary Rac-FRET MEFs. They showed normal proliferation rates,

low cell death (2%–4%) in culture, and normal cell morphologies

upon serum starvation and platelet-derived growth factor

(PDGF) stimulation (Figures S2A–S2C). Pak-CRIB pull-down

assays showed that endogenous RAC1 activity was normal in

serum-starved and PDGF-stimulated Rac-FRET MEFs, as was

the activity of the Rac target p38MAPK (Figures S2D and S2E).

Rac-FRET MEFs were assessed by ratiometric FRET imaging,

where increases in YFP/CFP fluorescence ratio induced by FRET

reflect increased Rac activity. Treatment with 50 ng/ml PDGF

stimulated the formation of lamellipodial protrusions and periph-

eral membrane ruffles, which showed significantly higher Rac

activity (FRET ratio of 1.25) than cell edges without protrusions

(FRET ratio of 1.1), and Rac activity remained high throughout

lamellipodia formation and ruffling (Figures 2A and 2B; Movie

S1). Therefore, Rac activity correlated spatially and temporally

with lamellipodia and ruffles, as expected from studies in

fibroblast-like cell lines (Itoh et al., 2002). Stimulation with

100 mg/ml insulin, which caused larger lamellipodia but fewer

dorsal ruffles, gave similar results (Figure 2C; Movie S2).

Rac-FRETNeutrophils FunctionNormally andShowHigh
Rac Activity during Spreading and Polarization
We and others have previously shown that Rac and its upstream

regulators play crucial roles in ROS formation, adhesion,

spreading, and chemotaxis of neutrophils (Deng et al., 2011;

Gu et al., 2003; Lawson et al., 2011; Roberts et al., 1999; Welch

et al., 2002, 2005), but analysis of Rac activity in these cells has



Figure 1. Raichu-Rac Expression Level in

Tissues and Primary Cells of the Rac-FRET

Mouse Strain

(A) Whole-tissue lysates were prepared from adult

Rac-FRET mice and blotted with anti-GFP anti-

body alongside recombinant CFP standards to

reveal the CFP portion of Raichu-Rac. a.u., arbi-

trary units; WT, wild-type.

(B) Raichu-Rac expression levels in total lysates

of the indicated numbers of diisopropyl fluo-

rophosphate-treated Rac-FRET neutrophils were

determined by western blotting alongside recom-

binant RAC1 and CFP standards using anti-RAC1

AB (green) and anti-GFP AB (red) to compare

biosensor expression with endogenous RAC1.

(C) Raichu-Rac expression levels in total lysates of

the indicated numbers of Rac-FRET MEFs were

determined by western blotting alongside recom-

binant RAC1 and CFP standards with antibodies

as in (B).
been hampered by the facts that they are short-lived and cannot

easily be transfected. Here, we determined if Rac-dependent

neutrophil responses are affected by Raichu-Rac expression.

Rac-FRET neutrophils developed normally in the bone marrow

(not shown), mounted normal ROS responses to the G protein

coupled receptor ligand N-formyl-methionyl-leucyl-phenylala-

nine (fMLP) and to phorbol myristate acetate (PMA), adhered

normally to glass or the integrin ligand poly-Arg-Gly-Asp, spread

normally, and underwent normal basal migration and fMLP-

stimulated chemotaxis in transwell assays, whereas Rac2�/�

cells showed the expected defects (Figures S3A–S3D; Lawson

et al., 2011; Roberts et al., 1999). Furthermore, the basal and

fMLP-stimulated activities of endogenous RAC1 and RAC2 (by

Pak-CRIB pull-down assays) and of the Rac target p38MAPK

were normal (Figures S3E–S3G). Therefore, Rac-FRET neutro-

phil responses were normal by all measures tested.

Rac is required for neutrophil spreading and polarization (Gu

et al., 2003; Roberts et al., 1999). We assessed Rac activity

during these responses in Rac-FRET neutrophils in the presence

or absence of the Rac inhibitor NSC23766. Upon first contact
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with the coverslip (time 0), Rac activity

(normalized FRET ratio) was lower in

NSC23766-treated than control cells,

but increased initially in both upon adhe-

sion, reaching a maximal value of 1.23

within 8 min in control cells compared to

1.04 in NSC23766-treated cells, and

remained high throughout in control

cells whereas decreasing to 0.87 with

NSC23766 (Figures 3A and 3B). Control

cells spread from 90 to 130 mm2 within

8 min and remained spread, whereas

spreading was significantly dampened

by NSC23766 (Figure 3C). Rac activity re-

mained high in control cells, correlating

with their ability to start polarizing twice

as fast as NSC23766-treated cells, to

fully polarize and to maintain polarity (Fig-
ure 3D). Hence, combined use of NSC23766 and ratiometric

FRET imaging showed that Rac activity is required for Rac-

FRET neutrophil spreading and polarization, that it increases

globally throughout the cell during spreading, and that it remains

elevated during polarization.

Rac Activity in Chemotaxing Rac-FRET Neutrophils
Chemotaxing primary murine neutrophils are fast-migrating cells

(up to 20 mm/min) that extend transient probing lamellipodial pro-

trusions at their front and sides that typically last for 1 s and

longer-lived protrusions (several seconds), mostly at the leading

edge, that result in translocation. Here, we assayed Rac activity

during chemotaxis of Rac-FRET neutrophils in fMLP gradients

(Figure 4A; Movie S3). Ratiometric FRET imaging at 1 s frame

intervals showed that high Rac activity correlated spatially with

lamellipodial protrusions and low Rac activity with membrane re-

tractions. Temporally, Rac activity was as transient as the protru-

sions (Figures 4A and 4B). We used polar plots to visualize the

localization of Rac activity over time. Comparison with rubber

band plots (which depict cell outlines over time) and cell path
, March 27, 2014 ª2014 The Authors 1155



Figure 2. High Rac Activity in Lamellipodial Protrusions and Membrane Ruffles of PDGF-Stimulated Primary Rac-FRET MEFs

(A) Rac activity in PDGF-stimulated (50 ng/ml) Rac-FRET MEFs determined by ratiometric FRET live imaging. Frames were taken every 10 s (left: generation of

ratiometric image) and analyzed at protruding (top) and nonprotruding sections (bottom) along the cell edge (magnifications of boxes in the FRET image on the

left). Note that, for ratiometric FRET measurements, increase in FRET ratio equals increase in Rac activity.

(B) Quantification of mean Rac activity (FRET ratio ± SEM) in 88 basal and protruding sections along the cell edge of PDGF-stimulated Rac-FRET MEFs as in (A)

from 20 cells and three independent experiments. **p < 0.01 by paired Student’s t test.

(C) Rac activity in insulin-stimulated (100 mg/ml) Rac-FRETMEFs determined by ratiometric FRET imaging. Consecutive frames taken every 10 s, shown from 80 s

after addition of insulin (left: YFP/FRET and CFP images used to generate first ratiometric image). Arrow shows Rac activity at membrane ruffles.
plots showed that Rac activity is highest at the leading edge and

that bursts of high Rac activity typically last for 3–5 s (Figures 4C,

S4A, and S4B). In addition to the leading edge, average polar

plots showed bursts of Rac activity at the periphery and trailing

edge (Figures S4C and S4D). Detailed analysis of the time

dependence of Rac activity and the speed of movement of the

cell edge by Pearson’s correlation showed a direct correlation

(height of peak) between the extent of Rac activity (FRET ratio)

and speed of protrusion formation, without any time lag in the

order of seconds (alignment of peak with lag = 0 s; Figures 4D

and S4E). Therefore, high Rac activity is spatially, temporally,

and inmagnitude tightly correlated with lamellipodial protrusions

at the leading edge of chemotaxing neutrophils.

Oscillations of Rac Activity between the Front and Back
of Chemotaxing Rac-FRET Neutrophils
To investigate the bursts of Rac activity at the front versus back

of chemotaxing neutrophils further, we line-scanned Rac activ-

ity along the central longitudinal axis at 1 s intervals and dis-

played it as a function of time in kymographs (Figure 4E). This

revealed that Rac activity (normalized FRET ratio) is higher at

the front of chemotaxing cells than at the back, as expected,

but furthermore that the bulk of Rac activity shifts by 1.6 mm

toward the posterior of the cell during stalling phases (Figures

4F and S4F). Plotting the location of peak Rac activity on the

longitudinal axis against time revealed unexpected oscillations
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of Rac activity between the front and back of chemotaxing neu-

trophils, and albeit these oscillations being noisy, they tended

toward periodicity. Oscillations of peak Rac activity occurred

in all cells analyzed and ranged from 6 to 12 s (mean ± SEM =

8.7 ± 0.4 s), with R2 values (fit of oscillations to periodicity)

ranging from 0.4 to 0.9 (mean = 0.7; Figure 4G). The oscillating

peak Rac activity was significantly greater than mean whether

localized at the front or the back (Figure S4G). To assess

whether the oscillations of Rac activity are characteristic of

chemotaxis, we compared control and NSC23766-treated

neutrophils. As expected, NSC23766 inhibited chemotaxis (Fig-

ure S4Hi), and both mean and peak Rac activity along the cen-

tral longitudinal axis were lower in NSC23766-treated cells than

in control cells (Figure S4Hii). We categorized NSC23766-

treated cells that retained some form of movement into those

migrating directionally (toward the chemoattractant) and those

which had lost directionality (moving nondirectionally, antidirec-

tionally, or without translocation). Oscillations of Rac activity

were significantly perturbed in both categories compared to

control cells but more so in cells that had lost directionality,

as seen by the significant decreases in R2 value from 0.71 to

0.51 and 0.36, respectively (Figure S4Hiii). These results

confirmed that oscillations of Rac activity along the central lon-

gitudinal axis of the cell are a hallmark of directional migration in

primary mouse neutrophils. Therefore, the use of ratiometric

FRET imaging in primary Rac-FRET neutrophils has allowed
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Figure 3. High Rac Activity during Spreading and Polarization of Rac-FRET Neutrophils

(A) Spatiotemporal distribution of Rac activity in Rac-FRET neutrophils during spreading and polarization on glass coverslips was determined by ratiometric FRET

live imaging in the presence or absence of 75 mM NSC23766 (without preincubation), starting from the first point of contact of the cells with the coverslip.

Representative FRET ratio images are shown.

(B) Quantification of Rac activity (average cellular FRET ratio, normalized to control cells) in 69 control and 59 NSC23766-treated cells as in (A) from six inde-

pendent experiments ± SEM p < 0.0001 by ANOVA.

(C) Surface area of the cells in (B).

(D) Polarization of the cells in (B) was analyzed as: time to start polarizing (i), % of fully polarized cells (as defined by their ability to locomote) (ii), and % of cells

reverting to nonpolarized morphology over the 30 min of imaging (iii). *p < 0.05 by unpaired Student’s t test.
us to reveal unexpected insights into the complexities of Rac

signaling during chemotaxis.

Spatiotemporal Regulation of Rac Activity in Mouse
Intestinal Crypt Cultures
To examine the spatiotemporal control of Rac activity in a multi-

cellular environment, we generated primary three-dimensional

(3D)-intestinal crypt cultures (Myant et al., 2013; Sato et al.,

2009) from the Rac-FRET mouse and analyzed them by fluores-

cence-lifetime imaging microscopy (FLIM)-FRET imaging, where

a decrease in CFP fluorescence lifetime due to FRET reflects

increased Rac activity. We could readily detect Raichu-Rac

expression and image Rac activity in these cultures, which re-

sponded to stimulation with 200 nM PMAwith a time-dependent

increase that peaked after 30min and subsided after 90min (Fig-

ures 5A and 5B). Rac activity was also spatially regulated. Basal

Rac activity was higher in cells at the base of the crypts than in

distal cells, and cells at the base of the crypts also responded

more strongly to PMA treatment than distal cells (Figures 5A

and 5B). This demonstrates reversible and spatial regulation of

Rac activity within multicellular mammalian environments, as

previously observed in Drosophila (Wang et al., 2010).
Ce
Effects of Drug Treatment, Genetic Manipulation, and
Disease Development on Rac Activity In Vivo
We recently demonstrated that multiphoton microscopy can be

used for ex vivo and in vivo FLIM-FRET imaging of murine tumors

formed by implanted Raichu-RhoA-expressing pancreatic carci-

noma cells (Timpson et al., 2011) and that RHOA activity at the tip

of invading tumors correlates with invasion efficiency (McGhee

et al., 2011; Timpson et al., 2011). Here, we used similar imaging

techniques with the Rac-FRET mouse to examine Rac activity in

native host tissue.

Our recent work suggested that increased Rac activity

following loss of the tumor suppressor adenomatous polyposis

coli (APC) facilitates stem cell hyperproliferation at the base of in-

testinal crypts and colorectal cancer initiation via enhanced ROS

and nuclear factor (NF)-kB production (Myant et al., 2013). To

investigate this here, we first evaluated ex vivo multiphoton

FLIM-FRET imaging of Rac activity in normal intestinal tissue of

the Rac-FRET mouse. Rac activity could be measured within a

range of 0–150 mm from the base of crypts toward the villi and

was stimulated at the crypt base upon treatment with 200 nM

PMA (Figures 5C and 5D; Movie S4). We crossed the Rac-

FRET mouse to Vil-Cre-ERT2 APCfl/fl mice and induced intestinal
ll Reports 6, 1153–1164, March 27, 2014 ª2014 The Authors 1157
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Figure 4. High Rac Activity Correlates with Protrusion Formation at the Leading Edge and Oscillates between the Front and Back of

Chemotaxing Rac-FRET Neutrophils
(A) Ratiometric FRET live imaging of a representative Rac-FRET neutrophil chemotaxing toward 3 mM fMLP in an Ibidi chamber; images taken at 1 s intervals over

20 s (chemoattractant source is due south). For comparison of Rac activity with cell protrusions and retractions, cell perimeters at consecutive time points T (blue)

and T+1 s (red) were plotted using ImageJ plugin QuimP.

(legend continued on next page)
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APC loss by tamoxifen treatment (Myant et al., 2013) to assess

the APC dependence of Rac activity in crypts by in vivo FLIM-

FRET imaging. APC loss led to increased Rac activity at the

base of crypts in Vil-Cre-ERT2 APCfl/fl Rac-FRET mice (Figures

5E and 5F), thus demonstrating the utility of the Rac-FRET

mouse as a tool for examining the regulation of Rac during dis-

ease initiation.

Next, we examined Rac activity in the pancreas in the context

of the stromal extracellular matrix (ECM) at depth. Upon stimula-

tion of Rac-FRET mouse pancreas with 200 nM PMA ex vivo,

increased Rac activity was observed (Figures 6A and 6B; Movie

S5). We crossed the Rac-FRET mouse to the Kras+/G12D

Trp53+/R172HPdx1-Cre (KPC) model of pancreatic ductal adeno-

carcinoma, in which gain-of-function p53R172H drives metastasis

on a KRASG12D background (Morton et al., 2010; Muller et al.,

2009). In vivo FLIM-FRET imaging of pancreatic tumors in KPC

Rac-FRET mice compared to normal pancreas in Rac-FRET

mice revealed that Rac activity was significantly upregulated in

tumors (Figures 6C and 6D). Such deregulated Rac activity

may partially explain the disruption of cell-cell and cell-matrix

adhesion and tumor dissociation, which characterize this inva-

sive and highly metastatic model (Morton et al., 2010; Muller

et al., 2009, 2013).

We also crossed the Rac-FRET mouse to the locally invasive

Polyoma-middle T (PyMT) breast cancer model. Rac activity

could readily be detected in isolated primary mammary tumors

of PyMT Rac-FRET mice and inhibited by NSC23766 treatment

(Figures 7A and 7B; Movie S6). In vivo FLIM-FRET imaging of

exposed tumor tissue of PyMT Rac-FRET mice injected with

NSC23766 showed that Rac was inactivated within 60 min of

NSC23766 administration and began to revert to control level

after 90 min (Figures 7C and 7D). This highlights the utility of

the Rac-FRET mouse for monitoring drug target activity and

clearance rates, which could be applied to guide the scheduling

and dosing of therapeutic intervention.

Finally, we have recently shown that the Rac-GEF PREX1 is

deregulated in melanoma and drives Rac-dependent invasion

(Li et al., 2011; Lindsay et al., 2011). To assess whether the

Rac-FRET mouse is useful for examining Rac activity in the

skin, while at the same time trialling tissue-specific expression,
(B) Enlargement of boxed sections shown in (A). The green-framed box shows

trailing edge.

(C) Polar plot of Rac activity (FRET ratio) around the perimeter of the cell shown i

starting in the center (1 s) and growing eccentrically outward over time.

(D) Pearson’s correlation between Rac activity (FRET ratio) at nodes around the ce

and cell edge velocity. FRET intensities were evaluated against edge speeds be

membrane protrusion/retraction speed. Red line shows average correlation from

3 mM fMLP over 100–120 s with images acquired every 1 s; gray traces show m

(E) Rac-FRET neutrophils chemotaxing toward 3 mM fMLP in an Ibidi chamber w

gitudinal axis, and Rac activity (FRET ratio) over time plotted as kymographs. Pro

achieved by averaging line scans for each segment (as detailed in Supplemental E

4.2 mm/min during stalling phases of migration.

(F) Average Rac activity (FRET ratio) in central longitudinal line scans of 25 cells fro

of the peak Rac activity from the front edge during protruding and stalling phases o

(mean of 25 cells; five experiments; paired t test p = 0.02).

(G) Rac activity oscillates between the front and the back of chemotaxing neu

representative chemotaxing neutrophil was plotted for each 1 s time frame in ord

activity over time, and best fit periodicity curves (purple) were applied to evaluate t

green, that of the back in red. Data shown are from one cell representative of 19

Ce
we crossed Rac-FRETfl/fl to K14-Cre mice to induce selective

Raichu-Rac expression in keratinocytes. Rac activity could

readily be detected by FLIM-FRET imaging of E15.5 K14-Cre

Rac-FRETfl/fl embryonic skin explants and stimulated by PMA

treatment (Figure S5; Movie S7). Combined with PREX1 defi-

ciency, this may be useful for examining PREX1 in melanoma

metastasis. Collectively, the assessment of Rac activity within

these and other organs, such as the liver (Figure S6; Movie

S8), emphasizes the general utility and scope of the Rac-FRET

mouse as a tool for monitoring the intricate mechanisms of regu-

lation of Rac signaling in amyriad of physiological processes and

disease states.

DISCUSSION

Here, we report the development of a Rac-FRET mouse that

ubiquitously expresses Raichu-Rac. We examined Rac activity

in primary MEFs, neutrophils, and intestinal crypts, as well as in

intact tissues (intestine, liver, mammary, pancreas, and skin), in

response to genetic or drug intervention. This revealed unex-

pected insights into Rac signaling during neutrophil chemotaxis,

tissue homeostasis, disease initiation, and disease progression.

We chose the Raichu-Rac reporter over other Rac-FRET bio-

sensors as the probe most likely to provide best signal-to-noise

ratio without affecting cell survival. A similar Raichu-Rac probe

with a RAC1 instead of a KRAS membrane-targeting cassette

gives higher background (Yoshizaki et al., 2003); another probe

that uses CRIB between CFP and YFP, measuring FRET inhibi-

tion upon binding of endogenous Rac (Graham et al., 2001), is

neither as sensitive as Raichu-Rac nor specific for Rac, as it

also binds CDC42-GTP; and finally a Raichu-like probe in which

YFP is replaced with more sensitive YPet (Ouyang et al., 2008)

suggested nonnegligible cytotoxicity in our hands. Recently,

progress in the development of Raichu sensors involving longer

linkers in the reporter molecule has been made, reducing basal

FRET further and thus increasing signal-to-noise (Komatsu

et al., 2011). A next step in reporter mouse development could

be the use of such an improved construct.

The ROSA26 locus was chosen for its ubiquitous expression,

and the endogenous ROSA26 promoter, rather than stronger
a protrusion at the leading edge of the cell, the red box a retraction at the

n (A) over time; perimeters depicted as perfect circles, 1 circle/1 s time frame,

ll perimeter and 0.4 mm from the cell edge (schematic example shown in insert)

tween T�5 s and T+5 s to test for time dependence between Rac activity and

seven independent experiments with a total of 133 cells chemotaxing toward

eans of individual experiments.

ere live imaged at 1 s intervals, line scans performed through the central lon-

filing of steep (protruding) versus flat (stalling) sections of the kymograph was

xperimental Procedures). Average speedwas 15 mm/min during protruding and

m five independent experiments. Gray and black dotted lines show the distance

f migration. The extent of the retrograde shift was 1.6 mmduring stalling phases

trophils. Maximum Rac activity (blue) along the central longitudinal axis of a

er to allow an assessment of the spatial localization of the point of highest Rac

he oscillations. The position of the front of the cell at each time point is traced in

cells analyzed.
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Figure 5. Spatiotemporal Distribution of Rac Activity in Intestinal Tissue

(A) PMA stimulation of Rac activity at the base is stronger than in distal cells of Rac-FRET duodenal crypt cultures. Representative fluorescence image of an

intestinal crypt culture (left) with Raichu-Rac (blue) and corresponding FLIM-FRET fluorescence lifetimemaps of Rac activity before (middle) or after (right) 200 nM

PMA treatment. In the FLIM-FRET images, arrows highlight the crypt base and insets show enlarged boxed sections. Note that, for FLIM-FRET measurements,

decrease in fluorescence lifetime equals increase in Rac activity.

(B) Quantification of Rac activity in intestinal crypt cultures as in (A) upon stimulation with 200 nM PMA for 0–90 min. Mean fluorescence lifetime ± SEM of 21–31

cells at varying positions in the base (black) or the distal section of the crypt (gray), as indicated by the schematics, for each time point and location. *p < 0.05,

***p < 0.001, and ****p < 0.0001 by unpaired Student’s t test between indicated time and 0-time control.

(C) Rac activity at the base of Rac-FRET intestinal crypts is stimulated by PMA ex vivo. Representative FLIM-FRET images before (left) and after (right) stimulation

of freshly isolated intestinal crypt tissue with 200 nM PMA for 15 min. For each pair of images, the left-hand panel shows a representative fluorescence image of

intestinal crypts expressing Raichu-Rac (blue), the right-hand one a corresponding fluorescence lifetime map.

(D) Quantification of Rac activity (fluorescence lifetime; mean ± SEM) at the base of 20 intestinal Rac-FRET mouse intestinal crypts before and after PMA

stimulation ex vivo as in (C).

(E) Rac activity at the base of intestinal crypts is increased upon tissue-specific APC loss in vivo. Representative FLIM-FRET images at the base of intestinal crypts

of live Vil-Cre-ERT2 Rac-FRET control mice (left) and Vil-Cre-ERT2 APCfl/fl Rac-FRET mice with intestinal tissue-specific APC deletion (right). For each pair of

images, the left-hand panel shows a representative fluorescence image of intestinal crypts expressing Raichu-Rac (blue) and the second harmonic generation

(SHG) signal from host ECM components (white), the right-hand one a corresponding fluorescence lifetime map.

(F) Quantification of Rac activity (fluorescence lifetime; mean ± SEM) from 206 cells at the base of intestinal crypts in control mice and 197 cells in APC-deleted

mice as in (E); three independent regions each. **p < 0.05 by unpaired Student’s t test.
exogenous promoters, to deliberately aim for low expression

levels to prevent conceivable dominant-negative effects. We

introduced Raichu-Rac with a floxed stop cassette for either

ubiquitous or conditional expression, depending on the choice

of Cre-recombinase strain. The Rac-FRET mouse expresses

Raichu-Rac constitutively and ubiquitously. Our assessment

of MEFs and neutrophils showed that we gauged expression

level well, high enough for detection, but not affecting cell
1160 Cell Reports 6, 1153–1164, March 27, 2014 ª2014 The Authors
properties or responses. However, particularly in neutrophils,

signal strength is limiting, so development of a strain with

stronger inducible expression may be useful. Crossing of Rac-

FRETfl/fl to K14-Cre mice demonstrated that the conditional

Rac-FRETfl/fl strain is useful for tissue-specific expression of

Raichu-Rac. Such targeted expression of the reporter will allow

the assessment of Rac activity in specific cell types within het-

erogeneous tissues. For example, Lgr5-Cre mice (Barker et al.,
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Figure 6. High Rac Activity in Pancreatic Tumors

(A) Rac activity is stimulated by PMA in Rac-FRETmouse pancreas ex vivo. From the left, panels show a fluorescence image of freshly isolated pancreatic tissue,

an enlargement of the region analyzed, with Raichu-Rac expression in blue and SHG signal from host ECM in white, a corresponding Rac activity (fluorescence

lifetime) map, and images of Rac activity before (top) and after (bottom) treatment with 200 nM PMA for 15 min.

(B) Quantification of pancreatic Rac activity (fluorescence lifetime;mean ±SE) as in (A) from 30 cells in three regions before and after stimulation with 200 nMPMA

for 15 min. *p < 0.05 by unpaired Student’s t test. ns, not significant.

(C) Increased Rac activity in pancreatic tumors in vivo. Representative FLIM-FRET images comparing normal pancreas in live Rac-FRET mice and pancreatic

tumors in live KPC Rac-FRETmice. For each pair of images, the left-hand panel shows a representative fluorescence image of Raichu-Rac (blue) and SHG signal

from host ECM (white), the right-hand one a corresponding FLIM-FRET fluorescence lifetime map.

(D) Quantification of Rac activity in Rac-FRET and KPC Rac-FRET pancreas in vivo as in (C). Mean fluorescence lifetime ± SEM of 222 Rac-FRET and 461 KPC

Rac-FRET cells from three to four regions/mouse, three mice/genotype. ***p < 0.001 by unpaired Student’s t test.
2007) could be used in the future to express Raichu-Rac specif-

ically in stem cells of the small intestine to investigate further the

increased Rac activity we observed upon deletion of the tumor

suppressor APC. Alternatively, the Rac-FRET mouse could be

crossed to a strain expressing a red fluorescent protein specif-

ically in a cell type of interest, for in vivo colabeling and

comparing Rac activity between specific cell types within com-

plex tissues. We also crossed Rac-FRETfl/fl with Cre-ERT2 mice

for drug-inducible expression (Feil et al., 1996). Cre-ER+/T2

Rac-FRET+/fl neutrophils expressed similar levels of Raichu-

Rac upon tamoxifen treatment than Rac-FRET neutrophils and

showed normal cell responses. Thus, inducible Raichu-Rac

expression is another useful feature of the Rac-FRETfl/fl strain.

Crossing the Rac-FRET mouse to various models of disease

has demonstrated its utility for assessing the effects ofmutations

that recapitulate human disease etiology on Rac activity in a

time- and tissue-specific manner, even in organs and tissues

that contain complex mixtures of cell types, without affecting tis-

sue homeostasis. For example, in colorectal cancer, APC loss

often leads to hyperproliferation of intestinal stem cells, and

RAC1 is a critical mediator of this process through its roles in

ROS production and NF-kB signaling (Myant et al., 2013). There-

fore, it is unsurprising that we found the Rac pathway to be active

upon APC loss. We suspect that, in normal intestinal tissue, the

basal and PMA-stimulated Rac activities were also higher in cells

at the base of crypts than in distal cells because the highly pro-

liferative intestinal stem cells are located there. As another
Ce
example for possible future applications, crossing the Rac-

FRET mouse with Tyr-Cre strain for melanoblast-specific

expression (Delmas et al., 2003), with Prex1�/� mice or with mu-

rine models of melanoma, could provide insights into the cell-

type- and stage-specific roles of Rac deregulation during mela-

noma progression (Li et al., 2011; Lindsay et al., 2011).

Ratiometric FRET microscopy was useful for measurement of

Rac activity in isolated primary Rac-FRET neutrophils andMEFs.

Similarly, ratiometric FRET was chosen in Rac-FRET reporter-

expressing zebrafish embryos, because of their optical transpar-

ency (Kardash et al., 2010; Xu et al., 2012). In thick tissue or

organ sections, multiphoton FLIM-FRET imaging allowed us to

monitor tissues at depth and with high resolution, both ex vivo

and in vivo, in the context of the host tissue and environmental

cues. Considering recent advances in imaging and image

analysis, which allow millisecond resolution of spatiotemporal

dynamics (Hinde et al., 2013), it should be possible to adapt

imaging systems to analyze Rac activity alongside Rac-depen-

dent cell responses in any type of tissue.

Use of the Rac-FRET mouse allowed us to observe the exqui-

site spatiotemporal regulation of Rac activity in primary neutro-

phils, which are very different from even their closest model

cell lines, e.g., in their formation of more-transient and probing

lamellipodial protrusions during chemotaxis, which we show

here to be accompanied by equally transient and locally

restricted bursts of Rac activity. During the initial phase of

neutrophil spreading, we observed some increase in Rac
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Figure 7. Rac Activity in Mammary Tumors Is Inhibited by NSC23766

(A) Rac activity in PyMT Rac-FRET mouse mammary tumors is inhibited by NSC23766 ex vivo. Representative FLIM-FRET images of freshly isolated mammary

tumors of PyMTRac-FRETmice without (left) or with (right) treatment with 50 mMNSC23766 for 60min ex vivo. For each pair of images, the left-hand panel shows

a representative fluorescence image of tissue expressing Raichu-Rac (blue) and SHG signal from host ECM (white), the right-hand one a corresponding Rac

activity (fluorescence lifetime) map.

(B) Quantification of Rac activity in PyMT mammary tumors as in (A). Mean fluorescence lifetime ± SEM of 144 control cells and 74 NSC23766-treated cells from

two to three different regions/group. ***p < 0.001 by unpaired Student’s t test.

(C) Rac activity inmammary tumors is inhibited by treatment with NSC23766 in vivo. Representative FLIM-FRET images of Rac activity in mammary tumors of live

PyMT Rac-FRET mice before (left) and 60 min after (right) intraperitoneal (i.p.) injection of NSC23766 (4 mg/kg). Order of images as in (A).

(D) Quantification of Rac activity (fluorescence lifetime; mean ± SEM) in 210 cells within mammary tumors of PyMT Rac-FRET mice in vivo 0–90 min after i.p.

injection of NSC23766. **p < 0.01 and ***p < 0.001 by unpaired Student’s t test.
activity, even in NSC23766-treated cells (though lower than in

controls). This could simply be due to incomplete inhibition, but

it is also possible that NSC23766-insensitive Rac-GEFs might

contribute to this phase. Rac-GEFs from the Vav family, for

example, are nonresponsive to NSC23766 (Gao et al., 2004)

and known to be required for neutrophil spreading (Lawson

et al., 2011). This possibility could be investigated in the future

by analysis of Rac-FRET neutrophils with added Rac-GEF

deficiencies. During neutrophil chemotaxis, we observed unex-

pectedbehaviors ofRacactivity in addition to theexpected accu-

mulation at the leading edge, including a retrograde shift during

stalling phases and a yo-yoing between the front and back of

the cell. It is unsurprising that these phenomena have not been

observed previously, as only a combination of FRET technology

and the use of primary cells affords sufficient spatiotemporal res-

olution. Wider and slower waves of Rac activity had previously

been observed in HL60 cells (Weiner et al., 2007), and it seems

possible that the oscillations in primary cells are mechanistically

related. It will be interesting to determine if specific upstream reg-

ulators mediate these oscillations and if these Rac-GEFs are

required for the fast migration mode of neutrophils.

Different types of small G proteins of the Rho family are

activated dependently of each other. Combined use of Rac,

CDC42, or RHOA activity probes and high-resolution imaging

of single-membrane protrusions showed that RhoA is activated

at the tip of forming cell protrusions whereas Rac and CDC42
1162 Cell Reports 6, 1153–1164, March 27, 2014 ª2014 The Authors
activity patterns are wider (Machacek et al., 2009). Furthermore,

transplantation of glioblastoma cells expressing Rac, CDC42, or

RHOA reporters into rat brain suggested that the balance of Rac,

CDC42, and RHOA activities dictates modes of cancer cell inva-

sion (Hirata et al., 2012). Transgenic biosensormice for a number

of different types of small G proteins are currently being gener-

ated (Goto et al., 2013), although not as conditional alleles and

at much higher expression levels. Such GTPase reporter mice

will facilitate future comparisons between different small G pro-

teins tremendously, and different strains will doubtless prove

appropriate for different applications.

In conclusion, the Rac-FRET mouse strain has enabled us to

monitor the intricate and dynamic regulation of the small G pro-

tein Rac, an essential controller of distinct biological responses

depending on timing, location, and signaling context. Future

use of the Rac-FRET mouse as a tool, alone or in combination

with deficiencies in Rac-GEFs, Rac-GAPs, or other upstream

regulators, should fundamentally advance our insight into the

signaling networks that drive Rac-dependent cell responses

and enable us to expand our knowledge of Rac signaling in pri-

mary cells and complex multicellular physiological and disease

states.
EXPERIMENTAL PROCEDURES

Detailed protocols can be found in Supplemental Experimental Procedures.



Generation of the Rac-FRET Reporter Mouse Strain

Modified Raichu-1011X plasmid (Itoh et al., 2002) was introduced into stop-

eGFP-ROSA26TV (Addgene 11739) to generate the Rac-FRET targeting

vector. Upon germline transmission, Rac-FRETfl/fl strain was crossed with

deleter to induce ubiquitous expression of Raichu-Rac. The resulting homozy-

gous Rac-FRETKi/Ki knockin mouse strain was called Rac-FRET for brevity.

Raichu-Rac expression in cells and tissues of the Rac-FRETmousewas deter-

mined by western blotting.

Rac-FRET MEF and Neutrophil Isolation and Responses

Primary E13.5 MEFs were isolated upon timed mating of Rac-FRETKi/fl mice

and cultured for up to 15 days. Proliferation assays were done by cell counting,

cell cycle assays by propidium iodide staining, and morphology assays by

image analysis of tetramethylrhodamine isothiocyanate-phalloidin-stained

cells. Primary neutrophils were freshly isolated from bone marrow for each

experiment. Adhesion and spreading were assayed on glass or integrin-ligand

surfaces, ROS formation by luminol assay, and chemotaxis by transwell

assays using 3 mm pore filters (Lawson et al., 2011; Welch et al., 2005) or Ibidi

chamber assays using Ibidi sticky slide IV0.4. Endogenous Rac activity was

determined in Rac-FRET MEF and neutrophil lysates by Pak-CRIB pull-

down and p38MAPK phosphorylation by western blotting.

Tissues and Mouse Strains for Analysis of Rac Activity in Live

Tissues and Organs

Intestinal crypt cultures (Sato et al., 2009) and skin explants (Mort et al., 2010)

were prepared as described. Vil-Cre-ERT2 APCfl/fl Rac-FRET mice for imaging

of Rac activity in intestinal crypts following APC loss, KPC Rac-FRET mice for

imaging of Rac activity in pancreatic tumors, PyMT Rac-FRET mice for

imaging of Rac activity in mammary tumors, and K14-Cre Rac-FRETfl/fl mice

for tissue-specific expression of Raichu-Rac and imaging of Rac activity in

embryonic skin were generated as detailed in Supplemental Experimental

Procedures.

Imaging

Rac activity was assessed in Rac-FRET MEFs and neutrophils by ratiometric

FRET imaging using an Olympus Cell̂ R imaging system. Pairs of images

were acquired sequentially every 15 s for spreading neutrophils and every

10 s for MEFs. For chemotaxing neutrophils, both channels were acquired

simultaneously at 1 frame/s and cells tracked using ImageJ plugin QuimP11.

Pearson’s correlation was used to analyze the time dependence between

Rac activity and speed of cell edge movement and polar plots (Ferguson

et al., 2007) for the spatiotemporal representation of Rac activity at the cell

perimeter. In addition, line scans of Rac activity were performed along the

central longitudinal axis.

Imaging of Rac activity in various intact tissues and organs was done using

multiphoton FLIM-FRET imaging. Crypt cultures were imaged at depths of

0–100 mm and freshly isolated ex vivo crypts (Myant et al., 2013) at

0–150 mm. For in vivo imaging of intestinal, pancreas, or mammary tissue,

mice were terminally anesthetized. Multiphoton FLIM-FRET imaging was car-

ried out on a Nikon Eclipse TE2000-U inverted microscope with an Olympus

long working distance 20 3 0.95 numerical aperture water immersion lens

using a scan head specifically designed for multiphoton excitation. Data

were analyzed using the time-correlated single-photon counting fluorescence

lifetime analysis functionality of ImSpectorPro (LaVison Biotec).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and eight movies and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.02.024.

ACKNOWLEDGMENTS

We are extremely grateful to Miki Matsuda for allowing us to generate the Rac-

FRET mouse with the Raichu-Rac construct and for constructively discussing

the choice of construct with us at the beginning of the project. We acknowl-
Ce
edge the great skill of the people from the Babraham and Beatson animal

facilities and the passionate care they take in looking after our mice. We also

thank James Conway for critical reading of the manuscript. The project was

funded by BBSRC core funding, BBSRC grant BB/I02154X/1, CRUK core

funding, and NHMRC and ARC funding. Work in the O.J.S. lab was funded

through European Union PRIMES project grant FP7-HEALTH-2011-278568.

Received: November 20, 2013

Revised: February 5, 2014

Accepted: February 15, 2014

Published: March 13, 2014

REFERENCES

Aoki, K., and Matsuda, M. (2009). Visualization of small GTPase activity with

fluorescence resonance energy transfer-based biosensors. Nat. Protoc. 4,

1623–1631.

Aoki, K., Nakamura, T., and Matsuda, M. (2004). Spatio-temporal regulation of

Rac1 and Cdc42 activity during nerve growth factor-induced neurite

outgrowth in PC12 cells. J. Biol. Chem. 279, 713–719.

Aoki, K., Nakamura, T., Fujikawa, K., and Matsuda, M. (2005). Local phospha-

tidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to

activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-

stimulated PC12 cells. Mol. Biol. Cell 16, 2207–2217.

Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen,

M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., and Clevers, H.

(2007). Identification of stem cells in small intestine and colon by marker

gene Lgr5. Nature 449, 1003–1007.

Delmas, V., Martinozzi, S., Bourgeois, Y., Holzenberger, M., and Larue, L.

(2003). Cre-mediated recombination in the skin melanocyte lineage. Genesis

36, 73–80.

Deng, Q., Yoo, S.K., Cavnar, P.J., Green, J.M., and Huttenlocher, A. (2011).

Dual roles for Rac2 in neutrophil motility and active retention in zebrafish he-

matopoietic tissue. Dev. Cell 21, 735–745.

Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P.

(1996). Ligand-activated site-specific recombination in mice. Proc. Natl. Acad.

Sci. USA 93, 10887–10890.

Ferguson, G.J., Milne, L., Kulkarni, S., Sasaki, T., Walker, S., Andrews, S.,

Crabbe, T., Finan, P., Jones, G., Jackson, S., et al. (2007). PI(3)Kgamma has

an important context-dependent role in neutrophil chemokinesis. Nat. Cell

Biol. 9, 86–91.

Gao, Y., Dickerson, J.B., Guo, F., Zheng, J., and Zheng, Y. (2004). Rational

design and characterization of a RacGTPase-specific small molecule inhibitor.

Proc. Natl. Acad. Sci. USA 101, 7618–7623.

Goto, A., Sumiyama, K., Kamioka, Y., Nakasyo, E., Ito, K., Iwasaki, M., Eno-

moto, H., and Matsuda, M. (2013). GDNF and endothelin 3 regulate migration

of enteric neural crest-derived cells via protein kinase A and Rac1. J. Neurosci.

33, 4901–4912.

Graham, D.L., Lowe, P.N., and Chalk, P.A. (2001). A method to measure the

interaction of Rac/Cdc42 with their binding partners using fluorescence reso-

nance energy transfer between mutants of green fluorescent protein. Anal.

Biochem. 296, 208–217.

Gu, Y., Filippi, M.D., Cancelas, J.A., Siefring, J.E., Williams, E.P., Jasti, A.C.,

Harris, C.E., Lee, A.W., Prabhakar, R., Atkinson, S.J., et al. (2003). Hematopoi-

etic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science

302, 445–449.

Heasman, S.J., and Ridley, A.J. (2008). Mammalian Rho GTPases: new in-

sights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9,

690–701.

Hinde, E., Digman, M.A., Hahn, K.M., and Gratton, E. (2013). Millisecond

spatiotemporal dynamics of FRET biosensors by the pair correlation function

and the phasor approach to FLIM. Proc. Natl. Acad. Sci. USA 110, 135–140.

Hirata, E., Yukinaga, H., Kamioka, Y., Arakawa, Y., Miyamoto, S., Okada, T.,

Sahai, E., and Matsuda, M. (2012). In vivo fluorescence resonance energy
ll Reports 6, 1153–1164, March 27, 2014 ª2014 The Authors 1163

http://dx.doi.org/10.1016/j.celrep.2014.02.024


transfer imaging reveals differential activation of Rho-family GTPases in glio-

blastoma cell invasion. J. Cell Sci. 125, 858–868.

Hodgson, L., Shen, F., and Hahn, K. (2010). Biosensors for characterizing the

dynamics of rho family GTPases in living cells. In Current Protocols in Cell

Biology, Chapter 14, J.S. Bonifacino, M. Dasso, J.B. Harford, J. Lippincott-

Schwartz, and K.M. Yamada, eds. (New York: John Wiley & Sons), pp. 11–26.

Itoh, R.E., Kurokawa, K., Ohba, Y., Yoshizaki, H., Mochizuki, N., and Matsuda,

M. (2002). Activation of rac and cdc42 video imaged by fluorescent resonance

energy transfer-based single-molecule probes in the membrane of living cells.

Mol. Cell. Biol. 22, 6582–6591.

Kardash, E., Reichman-Fried, M., Maı̂tre, J.L., Boldajipour, B., Papusheva, E.,

Messerschmidt, E.M., Heisenberg, C.P., and Raz, E. (2010). A role for Rho

GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell Biol.

12, 47–53, 1–11.

Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita, Y., Kamioka, Y., and

Matsuda, M. (2011). Development of an optimized backbone of FRET biosen-

sors for kinases and GTPases. Mol. Biol. Cell 22, 4647–4656.

Kraynov, V.S., Chamberlain, C., Bokoch, G.M., Schwartz, M.A., Slabaugh, S.,

and Hahn, K.M. (2000). Localized Rac activation dynamics visualized in living

cells. Science 290, 333–337.

Lawson, C.D., Donald, S., Anderson, K.E., Patton, D.T., and Welch, H.C.

(2011). P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-

leucyl-phenylalanine-dependent neutrophil responses. J. Immunol. 186,

1467–1476.

Li, A., Ma, Y., Yu, X., Mort, R.L., Lindsay, C.R., Stevenson, D., Strathdee, D.,

Insall, R.H., Chernoff, J., Snapper, S.B., et al. (2011). Rac1 drives melanoblast

organization during mouse development by orchestrating pseudopod- driven

motility and cell-cycle progression. Dev. Cell 21, 722–734.

Lindsay, C.R., Lawn, S., Campbell, A.D., Faller, W.J., Rambow, F., Mort, R.L.,

Timpson, P., Li, A., Cammareri, P., Ridgway, R.A., et al. (2011). P-Rex1 is

required for efficient melanoblast migration and melanoma metastasis. Nat.

Commun. 2, 555.

Machacek, M., Hodgson, L., Welch, C., Elliott, H., Pertz, O., Nalbant, P., Abell,

A., Johnson, G.L., Hahn, K.M., and Danuser, G. (2009). Coordination of Rho

GTPase activities during cell protrusion. Nature 461, 99–103.

Mack, N.A., Porter, A.P., Whalley, H.J., Schwarz, J.P., Jones, R.C., Khaja,

A.S., Bjartell, A., Anderson, K.I., and Malliri, A. (2012). b2-syntrophin and

Par-3 promote an apicobasal Rac activity gradient at cell-cell junctions by

differentially regulating Tiam1 activity. Nat. Cell Biol. 14, 1169–1180.

Matthews, H.K., Marchant, L., Carmona-Fontaine, C., Kuriyama, S., Larraı́n, J.,

Holt, M.R., Parsons, M., and Mayor, R. (2008). Directional migration of neural

crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt

signaling/RhoA. Development 135, 1771–1780.

McGhee, E.J., Morton, J.P., Von Kriegsheim, A., Schwarz, J.P., Karim, S.A.,

Carragher, N.O., Sansom, O.J., Anderson, K.I., and Timpson, P. (2011).

FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates

RhoGTPase activity during cancer cell invasion. Small GTPases 2, 239–244.

Mort, R.L., Hay, L., and Jackson, I.J. (2010). Ex vivo live imaging of melano-

blast migration in embryonic mouse skin. Pigment Cell Melanoma Res. 23,

299–301.

Morton, J.P., Timpson, P., Karim, S.A., Ridgway, R.A., Athineos, D., Doyle, B.,

Jamieson, N.B., Oien, K.A., Lowy, A.M., Brunton, V.G., et al. (2010). Mutant

p53 drivesmetastasis and overcomes growth arrest/senescence in pancreatic

cancer. Proc. Natl. Acad. Sci. USA 107, 246–251.

Muller, P.A., Caswell, P.T., Doyle, B., Iwanicki, M.P., Tan, E.H., Karim, S., Lu-

kashchuk, N., Gillespie, D.A., Ludwig, R.L., Gosselin, P., et al. (2009). Mutant

p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341.

Muller, P.A., Trinidad, A.G., Timpson, P., Morton, J.P., Zanivan, S., van den

Berghe, P.V., Nixon, C., Karim, S.A., Caswell, P.T., Noll, J.E., et al. (2013).
1164 Cell Reports 6, 1153–1164, March 27, 2014 ª2014 The Authors
Mutant p53 enhances MET trafficking and signalling to drive cell scattering

and invasion. Oncogene 32, 1252–1265.

Myant, K.B., Cammareri, P., McGhee, E.J., Ridgway, R.A., Huels, D.J., Cor-

dero, J.B., Schwitalla, S., Kalna, G., Ogg, E.L., Athineos, D., et al. (2013).

ROS production and NF-kB activation triggered by RAC1 facilitate WNT-

driven intestinal stem cell proliferation and colorectal cancer initiation. Cell

Stem Cell 12, 761–773.

Nakaya, M., Kitano, M., Matsuda, M., and Nagata, S. (2008). Spatiotemporal

activation of Rac1 for engulfment of apoptotic cells. Proc. Natl. Acad. Sci.

USA 105, 9198–9203.

Ouyang, M., Sun, J., Chien, S., and Wang, Y. (2008). Determination of hierar-

chical relationship of Src and Rac at subcellular locations with FRET biosen-

sors. Proc. Natl. Acad. Sci. USA 105, 14353–14358.

Rajagopal, S., Ji, Y., Xu, K., Li, Y., Wicks, K., Liu, J., Wong, K.W., Herman, I.M.,

Isberg, R.R., and Buchsbaum, R.J. (2010). Scaffold proteins IRSp53 and

spinophilin regulate localized Rac activation by T-lymphocyte invasion and

metastasis protein 1 (TIAM1). J. Biol. Chem. 285, 18060–18071.

Roberts, A.W., Kim, C., Zhen, L., Lowe, J.B., Kapur, R., Petryniak, B., Spaetti,

A., Pollock, J.D., Borneo, J.B., Bradford, G.B., et al. (1999). Deficiency of the

hematopoietic cell-specific Rho family GTPase Rac2 is characterized by ab-

normalities in neutrophil function and host defense. Immunity 10, 183–196.

Rossman, K.L., Der, C.J., and Sondek, J. (2005). GEF means go: turning on

RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol.

Cell Biol. 6, 167–180.

Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange,

D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., and Clevers, H. (2009).

Single Lgr5 stem cells build crypt-villus structures in vitro without a mesen-

chymal niche. Nature 459, 262–265.

Timpson, P., McGhee, E.J., Morton, J.P., von Kriegsheim, A., Schwarz, J.P.,

Karim, S.A., Doyle, B., Quinn, J.A., Carragher, N.O., Edward, M., et al.

(2011). Spatial regulation of RhoA activity during pancreatic cancer cell inva-

sion driven by mutant p53. Cancer Res. 71, 747–757.

Wang, X., He, L., Wu, Y.I., Hahn, K.M., and Montell, D.J. (2010). Light-medi-

ated activation reveals a key role for Rac in collective guidance of cell move-

ment in vivo. Nat. Cell Biol. 12, 591–597.

Weiner, O.D., Marganski, W.A., Wu, L.F., Altschuler, S.J., and Kirschner, M.W.

(2007). An actin-based wave generator organizes cell motility. PLoS Biol. 5,

e221.

Welch, H.C., Coadwell, W.J., Ellson, C.D., Ferguson, G.J., Andrews, S.R.,

Erdjument-Bromage, H., Tempst, P., Hawkins, P.T., and Stephens, L.R.

(2002). P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-

nucleotide exchange factor for Rac. Cell 108, 809–821.

Welch, H.C., Condliffe, A.M., Milne, L.J., Ferguson, G.J., Hill, K., Webb, L.M.,

Okkenhaug, K., Coadwell, W.J., Andrews, S.R., Thelen, M., et al. (2005).

P-Rex1 regulates neutrophil function. Curr. Biol. 15, 1867–1873.

Wennerberg, K., Rossman, K.L., and Der, C.J. (2005). The Ras superfamily at a

glance. J. Cell Sci. 118, 843–846.

Xu, H., Kardash, E., Chen, S., Raz, E., and Lin, F. (2012). Gbg signaling controls

the polarization of zebrafish primordial germ cells by regulating Rac activity.

Development 139, 57–62.

Yagi, S., Matsuda, M., and Kiyokawa, E. (2012a). Chimaerin suppresses Rac1

activation at the apical membrane to maintain the cyst structure. PLoS ONE 7,

e52258.

Yagi, S., Matsuda, M., and Kiyokawa, E. (2012b). Suppression of Rac1 activity

at the apical membrane of MDCK cells is essential for cyst structure mainte-

nance. EMBO Rep. 13, 237–243.

Yoshizaki, H., Ohba, Y., Kurokawa, K., Itoh, R.E., Nakamura, T., Mochizuki, N.,

Nagashima, K., andMatsuda,M. (2003). Activity of Rho-family GTPases during

cell division as visualized with FRET-based probes. J. Cell Biol. 162, 223–232.


	The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues
	Introduction
	Results
	Generation of the Rac-FRET Mouse
	Raichu-Rac Expression Levels in Rac-FRET Mouse Cells and Tissues
	Primary Rac-FRET MEFs Function Normally and Show Highly Localized Rac Activity upon PDGF or Insulin Stimulation
	Rac-FRET Neutrophils Function Normally and Show High Rac Activity during Spreading and Polarization
	Rac Activity in Chemotaxing Rac-FRET Neutrophils
	Oscillations of Rac Activity between the Front and Back of Chemotaxing Rac-FRET Neutrophils
	Spatiotemporal Regulation of Rac Activity in Mouse Intestinal Crypt Cultures
	Effects of Drug Treatment, Genetic Manipulation, and Disease Development on Rac Activity In Vivo

	Discussion
	Experimental Procedures
	Generation of the Rac-FRET Reporter Mouse Strain
	Rac-FRET MEF and Neutrophil Isolation and Responses
	Tissues and Mouse Strains for Analysis of Rac Activity in Live Tissues and Organs
	Imaging

	Supplemental Information
	Acknowledgments
	References


