Hayley Sharpe

We are interested in understanding how the cells that make up our tissues and organs communicate. Our cells are decorated with proteins, or receptors, that can sense alterations in their local environment and promote signalling pathways leading to changes in behaviour such as growth, movement or attachment. We focus on receptors that communicate to the cell interior through an enzyme known as a protein phosphatase. These receptor tyrosine phosphatases can change the function of other proteins by catalysing the removal of phosphate groups. The principles of how these receptors contribute to signalling remain poorly understood.

The receptor tyrosine phosphatases are linked to diverse areas of biology from immune cell signalling to blood vessel development to cell-cell adhesion, with some implicated in disease processes such as spinal cord injury, wound healing and cancer. Importantly, protein tyrosine phosphatases are targets of reactive oxygen species, which serve as critical signalling molecules that can be dysregulated in ageing and disease. To understand the normal and pathological functions of phosphatases we use biochemistry, proteomics, primary and cancer cell lines, as well as mouse models.


Latest Publications

The receptor PTPRU is a redox sensitive pseudophosphatase.
Hay IM, Fearnley GW, Rios P, Köhn M, Sharpe HJ, Deane JE

The receptor-linked protein tyrosine phosphatases (RPTPs) are key regulators of cell-cell communication through the control of cellular phosphotyrosine levels. Most human RPTPs possess an extracellular receptor domain and tandem intracellular phosphatase domains: comprising an active membrane proximal (D1) domain and an inactive distal (D2) pseudophosphatase domain. Here we demonstrate that PTPRU is unique amongst the RPTPs in possessing two pseudophosphatase domains. The PTPRU-D1 displays no detectable catalytic activity against a range of phosphorylated substrates and we show that this is due to multiple structural rearrangements that destabilise the active site pocket and block the catalytic cysteine. Upon oxidation, this cysteine forms an intramolecular disulphide bond with a vicinal "backdoor" cysteine, a process thought to reversibly inactivate related phosphatases. Importantly, despite the absence of catalytic activity, PTPRU binds substrates of related phosphatases strongly suggesting that this pseudophosphatase functions in tyrosine phosphorylation by competing with active phosphatases for the binding of substrates.

+ View Abstract

Nature communications, 11, 1, 26 Jun 2020

PMID: 32591542

The dead phosphatases society: a review of the emerging roles of pseudophosphatases.
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H

Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.

+ View Abstract

The FEBS journal, 1, 1, 02 Jun 2020

DOI: 10.1111/febs.15431

PMID: 32484316

Vismodegib resistant mutations are not selected in multifocal relapses of locally advanced basal cell carcinoma after vismodegib discontinuation.
Ighilahriz M, Benfodda M, Sharpe H, Soufir N, Mourah S, Dumaz N, Battistella M, Savina A, Bouquet F, Nikolaev S, Basset-Seguin N

Hedgehog pathway inhibitors (HPI) inactivating SMO , have become first line treatment for patients with locally advanced BCC (laBCC). HPI safety and efficacy have been shown in clinical trials . Nevertheless, common adverse events lead to treatment discontinuation. This article is protected by copyright. All rights reserved.

+ View Abstract

Journal of the European Academy of Dermatology and Venereology : JEADV, , 1468-3083, 2019

PMID: 31187903