Herppich S, Hoenicke L, Kern F, Kruse F, Smout J, Greweling-Pils MC, Geffers R, Burton OT, Liston A, Keller A, Floess S, Huehn J Immunology

Mucosal barrier integrity and pathogen clearance is a complex process influenced by both Th17 and Treg cells. Previously, we had described the DNA methylation profile of Th17 cells and identified Zinc finger protein (Zfp)362 to be uniquely demethylated. Here, we generated Zfp362 mice to unravel the role of Zfp362 for Th17 cell biology. Zfp362 mice appeared clinically normal, showed no phenotypic alterations in the T-cell compartment, and upon colonization with segmented filamentous bacteria, no effect of Zfp362 deficiency on Th17 cell differentiation was observed. By contrast, Zfp362 deletion resulted in increased frequencies of colonic Foxp3 Treg cells and IL-10 and RORγt Treg cell subsets in mesenteric lymph nodes. Adoptive transfer of naïve CD4 T cells from Zfp362 mice into Rag2 mice resulted in a significantly lower weight loss when compared with controls receiving cells from Zfp362 littermates. However, this attenuated weight loss did not correlate with alterations of Th17 cells but instead was associated with an increase of effector Treg cells in mesenteric lymph nodes. Together, these results suggest that Zfp362 plays an important role in promoting colonic inflammation; however, this function is derived from constraining the effector function of Treg cells rather than directly promoting Th17 cell differentiation.

+view abstract European journal of immunology, PMID: 37366299 27 Jun 2023

Gerbaux M, Roos E, Willemsen M, Staels F, Neumann J, Bücken L, Haughton J, Yshii L, Dooley J, Schlenner S, Humblet-Baron S, Liston A Immunology

FOXP3 deficiency results in severe multisystem autoimmunity in both mice and humans, driven by the absence of functional regulatory T cells. Patients typically present with early and severe autoimmune polyendocrinopathy, dermatitis, and severe inflammation of the gut, leading to villous atrophy and ultimately malabsorption, wasting, and failure to thrive. In the absence of successful treatment, FOXP3-deficient patients usually die within the first 2 years of life. Hematopoietic stem cell transplantation provides a curative option but first requires adequate control over the inflammatory condition. Due to the rarity of the condition, no clinical trials have been conducted, with widely unstandardized therapeutic approaches. We sought to compare the efficacy of lead therapeutic candidates rapamycin, anti-CD4 antibody, and CTLA4-Ig in controlling the physiological and immunological manifestations of Foxp3 deficiency in mice.

+view abstract Journal of clinical immunology, PMID: 37156988 08 May 2023

Lemaitre P, Tareen SH, Pasciuto E, Mascali L, Martirosyan A, Callaerts-Vegh Z, Poovathingal S, Dooley J, Holt MG, Yshii L, Liston A Immunology

Cognitive decline is a common pathological outcome during aging, with an ill-defined molecular and cellular basis. In recent years, the concept of inflammaging, defined as a low-grade inflammation increasing with age, has emerged. Infiltrating T cells accumulate in the brain with age and may contribute to the amplification of inflammatory cascades and disruptions to the neurogenic niche observed with age. Recently, a small resident population of regulatory T cells has been identified in the brain, and the capacity of IL2-mediated expansion of this population to counter neuroinflammatory disease has been demonstrated. Here, we test a brain-specific IL2 delivery system for the prevention of neurological decline in aging mice. We identify the molecular hallmarks of aging in the brain glial compartments and identify partial restoration of this signature through IL2 treatment. At a behavioral level, brain IL2 delivery prevented the age-induced defect in spatial learning, without improving the general decline in motor skill or arousal. These results identify immune modulation as a potential path to preserving cognitive function for healthy aging.

+view abstract EMBO molecular medicine, PMID: 36975362 28 Mar 2023

Willemsen M, Barber JS, Van Nieuwenhove E, Staels F, Gerbaux M, Neumann J, Prezzemolo T, Pasciuto E, Lagou V, Boeckx N, Filtjens J, De Visscher A, Matthys P, Schrijvers R, Tousseyn T, O'Driscoll M, Bucciol G, Schlenner S, Meyts I, Humblet-Baron S, Liston A Immunology

Severe congenital neutropenia presents with recurrent infections early in life due to arrested granulopoiesis. Multiple genetic defects are known to block granulocyte differentiation, however a genetic cause remains unknown in approximately 40% of cases.

+view abstract The Journal of allergy and clinical immunology, PMID: 36841265 23 Feb 2023

Roca CP, Burton OT, Neumann J, Tareen S, Whyte CE, Gergelits V, Veiga RV, Humblet-Baron S, Liston A Immunology

The advent of high-dimensional single-cell data has necessitated the development of dimensionality-reduction tools. t-Distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are the two most frequently used approaches, allowing clear visualization of complex single-cell datasets. Despite the need for quantitative comparison, t-SNE and UMAP have largely remained visualization tools due to the lack of robust statistical approaches. Here, we have derived a statistical test for evaluating the difference between dimensionality-reduced datasets using the Kolmogorov-Smirnov test on the distributions of cross entropy of single cells within each dataset. As the approach uses the inter-relationship of single cells for comparison, the resulting statistic is robust and capable of identifying true biological variation. Further, the test provides a valid distance between single-cell datasets, allowing the organization of multiple samples into a dendrogram for quantitative comparison of complex datasets. These results demonstrate the largely untapped potential of dimensionality-reduction tools for biomedical data analysis beyond visualization.

+view abstract Cell reports methods, PMID: 36814837 23 Jan 2023

Hua Y, Vella G, Rambow F, Allen E, Martinez AA, Duhamel M, Takeda A, Jalkanen S, Junius S, Smeets A, Nittner D, Dimmeler S, Hehlgans T, Liston A, Bosisio FM, Floris G, Laoui D, Hollmén M, Lambrechts D, Merchiers P, Marine JC, Schlenner S, Bergers G Immunology


+view abstract Cancer cell, PMID: 36626867 09 Jan 2023

Liston A, Yshii L Immunology


+view abstract Nature immunology, PMID: 36596892 Jan 2023

Gardner JM, Liston A Immunology

Recent studies shed light on new populations and potential roles of Aire and RORγt antigen-presenting cells-including unique subsets with surprising properties-in immune homeostasis and host-microbe interactions.

+view abstract Science immunology, PMID: 36525506 23 Dec 2022

Terry LE, Arige V, Neumann J, Wahl AM, Knebel TR, Chaffer JW, Malik S, Liston A, Humblet-Baron S, Bultynck G, Yule DI Immunology

Mutations in all subtypes of the inositol 1,4,5-trisphosphate receptor Ca release channel are associated with human diseases. In this report, we investigated the functionality of three neuropathy-associated missense mutations in IPR3 (V615M, T1424M, and R2524C). The mutants only exhibited function when highly over-expressed compared to endogenous hIPR3. All variants resulted in elevated basal cytosolic Ca levels, decreased endoplasmic reticulum Ca store content, and constitutive store-operated Ca entry in the absence of any stimuli, consistent with a leaky IPR channel pore. These variants differed in channel function; when stably over-expressed the R2524C mutant was essentially dead, V615M was poorly functional, and T1424M exhibited activity greater than that of the corresponding wild-type following threshold stimulation. These results demonstrate that a common feature of these mutations is decreased IPR3 function. In addition, these mutations exhibit a novel phenotype manifested as a constitutively open channel, which inappropriately gates SOCE in the absence of stimulation.

+view abstract iScience, PMID: 36444295 22 Dec 2022

Hua Y, Vella G, Rambow F, Allen E, Antoranz Martinez A, Duhamel M, Takeda A, Jalkanen S, Junius S, Smeets A, Nittner D, Dimmeler S, Hehlgans T, Liston A, Bosisio FM, Floris G, Laoui D, Hollmén M, Lambrechts D, Merchiers P, Marine JC, Schlenner S, Bergers G Immunology

The lack of T cell infiltrates is a major obstacle to effective immunotherapy in cancer. Conversely, the formation of tumor-associated tertiary-lymphoid-like structures (TA-TLLSs), which are the local site of humoral and cellular immune responses against cancers, is associated with good prognosis, and they have recently been detected in immune checkpoint blockade (ICB)-responding patients. However, how these lymphoid aggregates develop remains poorly understood. By employing single-cell transcriptomics, endothelial fate mapping, and functional multiplex immune profiling, we demonstrate that antiangiogenic immune-modulating therapies evoke transdifferentiation of postcapillary venules into inflamed high-endothelial venules (HEVs) via lymphotoxin/lymphotoxin beta receptor (LT/LTβR) signaling. In turn, tumor HEVs boost intratumoral lymphocyte influx and foster permissive lymphocyte niches for PD1 and PD1TCF1 CD8 T cell progenitors that differentiate into GrzBPD1 CD8 T effector cells. Tumor-HEVs require continuous CD8 and NK cell-derived signals revealing that tumor HEV maintenance is actively sculpted by the adaptive immune system through a feed-forward loop.

+view abstract Cancer cell, PMID: 36423635 21 Nov 2022

Willemsen M, Staels F, Gerbaux M, Neumann J, Schrijvers R, Meyts I, Humblet-Baron S, Liston A Immunology

Inborn errors of immunity are a heterogenous group of monogenic immunological disorders caused by mutations in genes with critical roles in the development, maintenance or function of the immune system. The genetic basis is frequently a mutation in a gene with restricted expression and/or function in immune cells, leading to an immune disorder. Several classes of inborn errors of immunity, however, result from mutation in genes that are ubiquitously expressed. Despite the genes participating in cellular processes conserved between cell types, immune cells are disproportionally affected, leading to inborn errors of immunity. Mutations in DNA replication, DNA repair or DNA damage response factors can result in monogenic human disease, some of which are classified as inborn error of immunity. Genetic defects in the DNA repair machinery are a well-known cause of TBNK severe combined immunodeficiency. An emerging class of inborn errors of immunity is those caused by mutations in DNA replication factors. Considerable heterogeneity exists within the DNA replication-associated inborn errors of immunity, with diverse immunological defects and clinical manifestations observed. These differences are suggestive for differential sensitivity of certain leukocyte subsets to deficiencies in specific DNA replication factors. Here, we provide an overview of DNA replication-associated inborn errors of immunity and discuss the emerging mechanistic insights that can explain the observed immunological heterogeneity.

+view abstract The Journal of allergy and clinical immunology, PMID: 36395985 14 Nov 2022

Whyte CE, Tumes DJ, Liston A, Burton OT Immunology

Recent advances in flow cytometry have allowed high-dimensional characterization of biological phenomena, enabling breakthroughs in a multitude of fields. Despite the appreciation of the unique properties of antigens and fluorophores in high-parameter panel design, staining conditions are often standardized for short surface stains, regardless of antibody affinity or antigen accessibility. Here, we demonstrate how increasing antibody incubation times can lead to substantial improvements in sensitivity, maintaining specificity, and reducing background, while also significantly reducing the costs of high-parameter cytometry panels. Furthermore, overnight staining reduces the influence of interexperimental variability, assisting accurate pooling over experiments over extended time courses. We provide guidance on how to optimize staining conditions for diverse antigens, including how different fixation strategies can affect epitope accessibility. Overnight staining can thus substantially improve the resolution, repeatability, and cost-effectiveness of high-parameter cytometry. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.

+view abstract Current protocols, PMID: 36373983 Nov 2022

Liston A Immunology

No abstract available

+view abstract Immunology and cell biology, PMID: 36317807 01 Nov 2022

Neumann J, Van Nieuwenhove E, Terry LE, Staels F, Knebel TR, Welkenhuyzen K, Ahmadzadeh K, Baker MR, Gerbaux M, Willemsen M, Barber JS, Serysheva II, De Waele L, Vermeulen F, Schlenner S, Meyts I, Yule DI, Bultynck G, Schrijvers R, Humblet-Baron S, Liston A Immunology

Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IPR), a homo- or heterotetramer of the IPR1-3 isoforms, amplifies lymphocyte signaling by releasing Ca from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IPR isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IPR subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IPR3 in IPR knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca channels and immunodeficiency and identify IPRs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca-associated immunodeficiency from store-operated entry to impaired Ca mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca signaling.

+view abstract Cellular & molecular immunology, PMID: 36302985 27 Oct 2022

Singh K, Bricard O, Haughton J, Björkqvist M, Thorstensson M, Luo Z, Mascali L, Pasciuto E, Mathieu C, Dooley J, Liston A Immunology

In type 1 diabetes, dysfunctional glucose regulation occurs due to the death of insulin-producing beta-cells in the pancreatic islets. Initiation of this process is caused by the inheritance of an adaptive immune system that is predisposed to responding to beta-cell antigens, most notably to insulin itself, coupled with unknown environmental insults priming the autoimmune reaction. While autoimmunity is a primary driver in beta-cell death, there is growing evidence that cellular stress participates in the loss of beta-cells. In the beta-cell fragility model, partial loss of islet mass requires compensatory upregulation of insulin production in the remaining islets, driving a cellular stress capable of triggering apoptosis in the remaining cells. The Glis3-Manf axis has been identified as being pivotal to the relative fragility or robustness of stressed islets, potentially operating in both type 1 and type 2 diabetes. Here, we have used an AAV-based gene delivery system to enhance the expression of the anti-apoptotic protein Manf in the beta-cells of NOD mice. Gene delivery substantially lowered the rate of diabetes development in treated mice. Manf-treated mice demonstrated minimal insulitis and superior preservation of insulin production. Our results demonstrating the therapeutic potential of Manf delivery to enhance beta-cell robustness and avert clinical diabetes.

+view abstract Biomolecules, PMID: 36291702 16 Oct 2022

Liston A Immunology

Immunology Futures is a new articles series for Immunology & Cell Biology. Immunology Futures is designed as a forum to promote dialog with the immunology research community, in particular early-career researchers. The series aims to be a platform for career advice and to elevate the voices of diverse immunologists to provide multiple perspectives on a successful career in immunology.

+view abstract Immunology and cell biology, PMID: 36210059 Oct 2022

Staels F, De Keukeleere K, Kinnunen M, Keskitalo S, Lorenzetti F, Vanmeert M, Prezzemolo T, Pasciuto E, Lescrinier E, Bossuyt X, Gerbaux M, Willemsen M, Neumann J, Van Loo S, Corveleyn A, Willekens K, Stalmans I, Meyts I, Liston A, Humblet-Baron S, Seppänen M, Varjosalo M, Schrijvers R Immunology

NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in in two families with CVID characterized by variable and incomplete penetrance.

+view abstract Frontiers in immunology, PMID: 36203612 2022

Jonckheere AC, Steelant B, Seys SF, Cremer J, Dilissen E, Boon L, Liston A, Schrijvers R, Breynaert C, Vanoirbeek JAJ, Ceuppens JL, Bullens DMA Immunology

Regulatory T cells (Tregs) that express the transcription factor Foxp3 have a critical role in limiting inflammatory processes and tissue damage. Whether Tregs are functional in maintaining epithelial barriers and in control of tight junction expression has not yet been explored. In this study, we investigated the effect of Treg deficiency on the airway epithelial barrier in an experimental murine model in which diphtheria toxin was repeatedly injected in Foxp3-diphtheria toxin receptor (DTR) mice to deplete Tregs. This resulted in spontaneous peribronchial inflammation and led to a systemic and local increase of IL-4, IL-5, CCL3, IFN-γ, and IL-10 and a local (lung) increase of IL-6 and IL-33 and decreased amphiregulin levels. Moreover, Treg depletion increased airway permeability and decreased epithelial tight junction (protein and mRNA) expression. CTLA4-Ig treatment of Treg-depleted mice almost completely prevented barrier dysfunction together with suppression of lung inflammation and cytokine secretion. Treatment with anti-IL-4 partly reversed the effects of Treg depletion on tight junction expression, whereas neutralization of IL-6 of IFN-γ had either no effect or only a limited effect. We conclude that Tregs are essential to protect the epithelial barrier at the level of tight junctions by restricting spontaneous T cell activation and uncontrolled secretion of cytokines, in particular IL-4, in the bronchi.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 36165171 15 Oct 2022

Staels F, Lorenzetti F, De Keukeleere K, Willemsen M, Gerbaux M, Neumann J, Tousseyn T, Pasciuto E, De Munter P, Bossuyt X, Gijsbers R, Liston A, Humblet-Baron S, Schrijvers R Immunology

Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of IFN-γ immunity. The most frequent genetic defects are found in IL12 or a subunit of its receptor. IL23R deficiency in MSMD has only been reported once, in two pediatric patients from the same kindred with isolated disseminated Bacille Calmette-Guérin disease. We evaluated the impact of a homozygous stop mutation in IL23R (R381X), identified by whole exome sequencing, in an adult patient with disseminated non-tuberculous mycobacterial disease.

+view abstract Journal of clinical immunology, PMID: 35829840 13 Jul 2022

Whyte CE, Singh K, Burton OT, Aloulou M, Kouser L, Veiga RV, Dashwood A, Okkenhaug H, Benadda S, Moudra A, Bricard O, Lienart S, Bielefeld P, Roca CP, Naranjo-Galindo FJ, Lombard-Vadnais F, Junius S, Bending D, Hochepied T, Halim TYF, Schlenner S, Lesage S, Dooley J, Liston A Immunology

Interleukin 2 (IL-2) is a key homeostatic cytokine, with therapeutic applications in both immunogenic and tolerogenic immune modulation. Clinical use has been hampered by pleiotropic functionality and widespread receptor expression, with unexpected adverse events. Here, we developed a novel mouse strain to divert IL-2 production, allowing identification of contextual outcomes. Network analysis identified priority access for Tregs and a competitive fitness cost of IL-2 production among both Tregs and conventional CD4 T cells. CD8 T and NK cells, by contrast, exhibited a preference for autocrine IL-2 production. IL-2 sourced from dendritic cells amplified Tregs, whereas IL-2 produced by B cells induced two context-dependent circuits: dramatic expansion of CD8+ Tregs and ILC2 cells, the latter driving a downstream, IL-5-mediated, eosinophilic circuit. The source-specific effects demonstrate the contextual influence of IL-2 function and potentially explain adverse effects observed during clinical trials. Targeted IL-2 production therefore has the potential to amplify or quench particular circuits in the IL-2 network, based on clinical desirability.

+view abstract The Journal of experimental medicine, PMID: 35699942 04 Jul 2022

Liston A, Dooley J, Yshii L Immunology

Regulatory T cells (Tregs) control inflammation and maintain immune homeostasis. The well-characterised circulatory population of CD4Foxp3 Tregs is effective at preventing autoimmunity and constraining the immune response, through direct and indirect restraint of conventional T cell activation. Recent advances in Treg cell biology have identified tissue-resident Tregs, with tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. A population of brain-resident Tregs, characterised as CD69, has recently been identified in the healthy brain of mice and humans, with rapid population expansion observed under a number of neuroinflammatory conditions. During neuroinflammation, brain-resident Tregs have been proposed to control astrogliosis through the production of amphiregulin, polarize microglia into neuroprotective states, and restrain inflammatory responses by releasing IL-10. While protective effects for Tregs have been demonstrated in a number of neuroinflammatory pathologies, a clear demarcation between the role of circulatory and brain-resident Tregs has been difficult to achieve. Here we review the state-of-the-art for brain-resident Treg population, and describe their potential utilization as a therapeutic target across different neuroinflammatory conditions.

+view abstract Immunology letters, PMID: 35697195 10 Jun 2022

Yshii L, Pasciuto E, Bielefeld P, Mascali L, Lemaitre P, Marino M, Dooley J, Kouser L, Verschoren S, Lagou V, Kemps H, Gervois P, de Boer A, Burton OT, Wahis J, Verhaert J, Tareen SHK, Roca CP, Singh K, Whyte CE, Kerstens A, Callaerts-Vegh Z, Poovathingal S, Prezzemolo T, Wierda K, Dashwood A, Xie J, Van Wonterghem E, Creemers E, Aloulou M, Gsell W, Abiega O, Munck S, Vandenbroucke RE, Bronckaers A, Lemmens R, De Strooper B, Van Den Bosch L, Himmelreich U, Fitzsimons CP, Holt MG, Liston A Immunology

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (T) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident T cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.

+view abstract Nature immunology, PMID: 35618831 26 May 2022

Liston A, Aloulou M Immunology

CD4Foxp3 Regulatory T cells (Tregs) are essential for maintaining self-tolerance and are increasingly recognised to have important roles in tissue homeostasis and repair. In the CD8 compartment an analogous Foxp3 population is present, which shares phenotypic aspects with the more common CD4Foxp3 Treg population. While oft neglected for their low frequency, there is increasing evidence that these CD8Foxp3 cells are bona fide regulatory cells, with both shared and distinct characteristics from their CD4 analogue. Here we focus on the evidence for a regulatory function of CD8Foxp3 cells, and the potential unique role this neglected lineage may play in immune homeostasis and disease prevention.

+view abstract Immunology letters, PMID: 35609830 21 May 2022

Spaan AN, Neehus AL, Laplantine E, Staels F, Ogishi M, Seeleuthner Y, Rapaport F, Lacey KA, Van Nieuwenhove E, Chrabieh M, Hum D, Migaud M, Izmiryan A, Lorenzo L, Kochetkov T, Heesterbeek DAC, Bardoel BW, DuMont AL, Dobbs K, Chardonnet S, Heissel S, Baslan T, Zhang P, Yang R, Bogunovic D, Wunderink HF, Haas PA, Molina H, Van Buggenhout G, Lyonnet S, Notarangelo LD, Seppänen MRJ, Weil R, Seminario G, Gomez-Tello H, Wouters C, Mesdaghi M, Shahrooei M, Bossuyt X, Sag E, Topaloglu R, Ozen S, Leavis HL, van Eijk MMJ, Bezrodnik L, Blancas Galicia L, Hovnanian A, Nassif A, Bader-Meunier B, Neven B, Meyts I, Schrijvers R, Puel A, Bustamante J, Aksentijevich I, Kastner D, Torres VJ, Humblet-Baron S, Liston A, Abel L, Boisson B, Casanova JL Immunology

The molecular basis of interindividual clinical variability upon infection with is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients present episodes of life-threatening necrosis, typically triggered by infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but TNF-receptor NF-κB-signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts-but not leukocytes-facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in non-leukocytic cells.

+view abstract Science, PMID: 35587511 19 May 2022

Denton AE, Dooley J, Cinti I, Silva-Cayetano A, Fra-Bido S, Innocentin S, Hill DL, Carr EJ, McKenzie ANJ, Liston A, Linterman MA Immunology

The failure to generate enduring humoral immunity after vaccination is a hallmark of advancing age. This can be attributed to a reduction in the germinal center (GC) response, which generates long-lived antibody-secreting cells that protect against (re)infection. Despite intensive investigation, the primary cellular defect underlying impaired GCs in aging has not been identified. Here, we used heterochronic parabiosis to demonstrate that GC formation was dictated by the age of the lymph node (LN) microenvironment rather than the age of the immune cells. Lymphoid stromal cells are a key determinant of the LN microenvironment and are also an essential component underpinning GC structure and function. Using mouse models, we demonstrated that mucosal adressin cell adhesion molecule-1 (MAdCAM-1)-expressing lymphoid stromal cells were among the first cells to respond to NP-KLH + Alum immunization, proliferating and up-regulating cell surface proteins such as podoplanin and cell adhesion molecules. This response was essentially abrogated in aged mice. By targeting TLR4 using adjuvants, we improved the MAdCAM-1 stromal cell response to immunization. This correlated with improved GC responses in both younger adult and aged mice, suggesting a link between stromal cell responses to immunization and GC initiation. Using bone marrow chimeras, we also found that MAdCAM-1 stromal cells could respond directly to TLR4 ligands. Thus, the age-associated defect in GC and stromal cell responses to immunization can be targeted to improve vaccines in older people.

+view abstract Science immunology, PMID: 35522725 06 May 2022

Willemsen M, Van Nieuwenhove E, Seyed Tabib NS, Staels F, Schrijvers R, De Somer L, Liston A, Humblet-Baron S, Wouters C Immunology

No abstract available

+view abstract Rheumatology advances in practice, PMID: 35368972 2022

Marino M, Zhou L, Rincon MY, Callaerts-Vegh Z, Verhaert J, Wahis J, Creemers E, Yshii L, Wierda K, Saito T, Marneffe C, Voytyuk I, Wouters Y, Dewilde M, Duqué SI, Vincke C, Levites Y, Golde TE, Saido TC, Muyldermans S, Liston A, De Strooper B, Holt MG Immunology

Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the App Alzheimer's mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets.

+view abstract EMBO molecular medicine, PMID: 35352880 07 04 2022

Malengier-Devlies B, Bernaerts E, Ahmadzadeh K, Filtjens J, Vandenhaute J, Boeckx B, Burton O, De Visscher A, Mitera T, Berghmans N, Verbeke G, Liston A, Lambrechts D, Proost P, Wouters C, Matthys P Immunology

Systemic juvenile idiopathic arthritis (sJIA) is a systemic inflammatory disease of childhood-onset. sJIA is associated with neutrophilia, including immature granulocytes, potentially driven by the growth factor granulocyte-colony stimulating factor (G-CSF). This study aimed to unravel the role of G-CSF in the pathology of sJIA.

+view abstract Arthritis & Rheumatology, PMID: 35243819 03 Mar 2022

Ronsmans S, Sørig Hougaard K, Nawrot TS, Plusquin M, Huaux F, Jesús Cruz M, Moldovan H, Verpaele S, Jayapala M, Tunney M, Humblet-Baron S, Dirven H, Cecilie Nygaard U, Lindeman B, Duale N, Liston A, Meulengracht Flachs E, Kastaniegaard K, Ketzel M, Goetz J, Vanoirbeek J, Ghosh M, Hoet PHM Immunology

Immune-mediated, noncommunicable diseases-such as autoimmune and inflammatory diseases-are chronic disorders, in which the interaction between environmental exposures and the immune system plays an important role. The prevalence and societal costs of these diseases are rising in the European Union. The EXIMIOUS consortium-gathering experts in immunology, toxicology, occupational health, clinical medicine, exposure science, epidemiology, bioinformatics, and sensor development-will study eleven European study populations, covering the entire lifespan, including prenatal life. Innovative ways of characterizing and quantifying the exposome will be combined with high-dimensional immunophenotyping and -profiling platforms to map the immune effects (immunome) induced by the exposome. We will use two main approaches that "meet in the middle"-one starting from the exposome, the other starting from health effects. Novel bioinformatics tools, based on systems immunology and machine learning, will be used to integrate and analyze these large datasets to identify immune fingerprints that reflect a person's lifetime exposome or that are early predictors of disease. This will allow researchers, policymakers, and clinicians to grasp the impact of the exposome on the immune system at the level of individuals and populations.

+view abstract Environmental Epidemiology, PMID: 35169671 Feb 2022

Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R Immunology

Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.

+view abstract Frontiers in immunology, PMID: 34867986 2021

Liston A, Humblet-Baron S, Duffy D, Goris A Immunology

The extreme diversity of the human immune system, forged and maintained throughout evolutionary history, provides a potent defense against opportunistic pathogens. At the same time, this immune variation is the substrate upon which a plethora of immune-associated diseases develop. Genetic analysis suggests that thousands of individually weak loci together drive up to half of the observed immune variation. Intense selection maintains this genetic diversity, even selecting for the introgressed Neanderthal or Denisovan alleles that have reintroduced variation lost during the out-of-Africa migration. Variations in age, sex, diet, environmental exposure, and microbiome each potentially explain the residual variation, with proof-of-concept studies demonstrating both plausible mechanisms and correlative associations. The confounding interaction of many of these variables currently makes it difficult to assign definitive contributions. Here, we review the current state of play in the field, identify the key unknowns in the causality of immune variation, and identify the multidisciplinary pathways toward an improved understanding.

+view abstract Nature immunology, PMID: 34795445 18 Nov 2021

MacKenzie G, Subramaniam S, Caldwell LJ, Fitzgerald D, Harrison NA, Hong S, Irani SR, Khandaker GM, Liston A, Miron VE, Mondelli V, Morgan BP, Pariante C, Shah DK, Taams LS, Teeling JL, Upthegrove R Immunology

Neuroimmunology in the broadest sense is the study of interactions between the nervous and the immune systems. These interactions play important roles in health from supporting neural development, homeostasis and plasticity to modifying behaviour. Neuroimmunology is increasingly recognised as a field with the potential to deliver a significant positive impact on human health and treatment for neurological and psychiatric disorders. Yet, translation to the clinic is hindered by fundamental knowledge gaps on the underlying mechanisms of action or the optimal timing of an intervention, and a lack of appropriate tools to visualise and modulate both systems. Here we propose ten key disease-agnostic research questions that, if addressed, could lead to significant progress within neuroimmunology in the short to medium term. We also discuss four cross-cutting themes to be considered when addressing each question: i) bi-directionality of neuroimmune interactions; ii) the biological context in which the questions are addressed (e.g. health vs disease vs across the lifespan); iii) tools and technologies required to fully answer the questions; and iv) translation into the clinic. We acknowledge that these ten questions cannot represent the full breadth of gaps in our understanding; rather they focus on areas which, if addressed, may have the most broad and immediate impacts. By defining these neuroimmunology priorities, we hope to unite existing and future research teams, who can make meaningful progress through a collaborative and cross-disciplinary effort.

+view abstract Wellcome open research, PMID: 34778569 2021

Jacobs L, Yshii L, Junius S, Geukens N, Liston A, Hollevoet K, Declerck P Immunology

To improve the anti-tumor efficacy of immune checkpoint inhibitors, numerous combination therapies are under clinical evaluation, including with IL-12 gene therapy. The current study evaluated the simultaneous delivery of the cytokine and checkpoint-inhibiting antibodies by intratumoral DNA electroporation in mice. In the MC38 tumor model, combined administration of plasmids encoding IL-12 and an anti-PD-1 antibody induced significant anti-tumor responses, yet similar to the monotherapies. When treatment was expanded with a DNA-based anti-CTLA-4 antibody, this triple combination significantly delayed tumor growth compared to IL-12 alone and the combination of anti-PD-1 and anti-CTLA-4 antibodies. Despite low drug plasma concentrations, the triple combination enabled significant abscopal effects in contralateral tumors, which was not the case for the other treatments. The DNA-based immunotherapies increased T cell infiltration in electroporated tumors, especially of CD8 T cells, and upregulated the expression of CD8 effector markers. No general immune activation was detected in spleens following either intratumoral treatment. In B16F10 tumors, evaluation of the triple combination was hampered by a high sensitivity to control plasmids. In conclusion, intratumoral gene electrotransfer allowed effective combined delivery of multiple immunotherapeutics. This approach induced responses in treated and contralateral tumors, while limiting systemic drug exposure and potentially detrimental systemic immunological effects.

+view abstract Cancer gene therapy, PMID: 34754076 09 Nov 2021

Hill DL, Whyte CE, Innocentin S, Lee JL, Dooley J, Wang J, James EA, Lee JC, Kwok WW, Zand MS, Liston A, Carr EJ, Linterman MA Immunology

Antibody production following vaccination can provide protective immunity to subsequent infection by pathogens such as influenza viruses. However, circumstances where antibody formation is impaired after vaccination, such as in older people, require us to better understand the cellular and molecular mechanisms that underpin successful vaccination in order to improve vaccine design for at-risk groups. Here, by studying the breadth of anti-haemagglutinin (HA) IgG, serum cytokines, and B and T cell responses by flow cytometry before and after influenza vaccination, we show that formation of circulating T follicular helper (cTfh) cells was associated with high-titre antibody responses. Using Major Histocompatability Complex (MHC) class II tetramers, we demonstrate that HA-specific cTfh cells can derive from pre-existing memory CD4 T cells and have a diverse T cell receptor (TCR) repertoire. In older people, the differentiation of HA-specific cells into cTfh cells was impaired. This age-dependent defect in cTfh cell formation was not due to a contraction of the TCR repertoire, but rather was linked with an increased inflammatory gene signature in cTfh cells. Together, this suggests that strategies that temporarily dampen inflammation at the time of vaccination may be a viable strategy to boost optimal antibody generation upon immunisation of older people.

+view abstract eLife, PMID: 34726156 02 11 2021

Canti L, Humblet-Baron S, Desombere I, Neumann J, Pannus P, Heyndrickx L, Henry A, Servais S, Willems E, Ehx G, Goriely S, Seidel L, Michiels J, Willems B, Liston A, Ariën KK, Beguin Y, Goossens ME, Marchant A, Baron F Immunology

Factors affecting response to SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem cell transplantation (allo-HCT) recipients remain to be elucidated.

+view abstract Journal of hematology & oncology, PMID: 34689821 24 10 2021

Calderón L, Schindler K, Malin SG, Schebesta A, Sun Q, Schwickert T, Alberti C, Fischer M, Jaritz M, Tagoh H, Ebert A, Minnich M, Liston A, Cochella L, Busslinger M Immunology

The transcription factor Pax5 controls B cell development, but its role in mature B cells is largely enigmatic. Here, we demonstrated that the loss of Pax5 by conditional mutagenesis in peripheral B lymphocytes led to the strong reduction of B-1a, marginal zone (MZ), and germinal center (GC) B cells as well as plasma cells. Follicular (FO) B cells tolerated the loss of Pax5 but had a shortened half-life. The Pax5-deficient FO B cells failed to proliferate upon B cell receptor or Toll-like receptor stimulation due to impaired PI3K-AKT signaling, which was caused by increased expression of PTEN, a negative regulator of the PI3K pathway. Pax5 restrained PTEN protein expression at the posttranscriptional level, likely involving -targeting microRNAs. Additional PTEN loss in double-mutant mice rescued FO B cell numbers and the development of MZ B cells but did not restore GC B cell formation. Hence, the posttranscriptional down-regulation of PTEN expression is an important function of Pax5 that facilitates the differentiation and survival of mature B cells, thereby promoting humoral immunity.

+view abstract Science immunology, PMID: 34301800 23 Jul 2021

Junius S, Mavrogiannis AV, Lemaitre P, Gerbaux M, Staels F, Malviya V, Burton O, Gergelits V, Singh K, Tito Tadeo RY, Raes J, Humblet-Baron S, Liston A, Schlenner SM Immunology

Regulatory T cells (T) are indispensable for the control of immune homeostasis and have clinical potential as a cell therapy for treating autoimmunity. T can lose expression of the lineage-defining Foxp3 transcription factor and acquire effector T cell (T) characteristics, a process referred to as T plasticity. The extent and reversibility of such plasticity during immune responses remain unknown. Here, using a murine genetic fate-mapping system, we show that T stability is maintained even during exposure to a complex microbial/antigenic environment. Furthermore, we demonstrate that the observed plasticity of T after adoptive transfer into a lymphopenic environment is a property limited to only a subset of the T population, with the nonconverting majority of T being resistant to plasticity upon secondary stability challenge. The unstable T fraction is a complex mixture of phenotypically distinct T, enriched for naïve and neuropilin-1-negative T, and includes peripherally induced T and recent thymic emigrant T These results suggest that a "purging" process can be used to purify stable T that are capable of robust fate retention, with potential implications for improving cell transfer therapy.

+view abstract Science immunology, PMID: 34301799 23 Jul 2021

Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M, Nambiar M, Balaji KN, Liston A, Choudhary B, Raghavan SC Immunology

Recombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1. Modulation of miR-29c levels leads to change in V(D)J recombination efficiency in pre-B cells. The miR-29c expression is inversely proportional to RAG1 in a B cell developmental stage-specific manner, and miR-29c null mice exhibit a reduction in mature B cells. A negative correlation of miR-29c and RAG1 levels is also observed in leukemia patients, suggesting the potential use of miR-29c as a biomarker and a therapeutic target. Thus, our results reveal the role of miRNA in the regulation of RAG1 and its relevance in cancer.

+view abstract Cell reports, PMID: 34260911 13 Jul 2021

Vanderbeke L, Van Mol P, Van Herck Y, De Smet F, Humblet-Baron S, Martinod K, Antoranz A, Arijs I, Boeckx B, Bosisio FM, Casaer M, Dauwe D, De Wever W, Dooms C, Dreesen E, Emmaneel A, Filtjens J, Gouwy M, Gunst J, Hermans G, Jansen S, Lagrou K, Liston A, Lorent N, Meersseman P, Mercier T, Neyts J, Odent J, Panovska D, Penttila PA, Pollet E, Proost P, Qian J, Quintelier K, Raes J, Rex S, Saeys Y, Sprooten J, Tejpar S, Testelmans D, Thevissen K, Van Buyten T, Vandenhaute J, Van Gassen S, Velásquez Pereira LC, Vos R, Weynand B, Wilmer A, Yserbyt J, Garg AD, Matthys P, Wouters C, Lambrechts D, Wauters E, Wauters J Immunology

Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.

+view abstract Nature communications, PMID: 34226537 05 07 2021

Smets I, Prezzemolo T, Imbrechts M, Mallants K, Mitera T, Humblet-Baron S, Dubois B, Matthys P, Liston A, Goris A Immunology

Although fingolimod and interferon-β are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-β, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-β treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-β and fingolimod induced BAFF protein and mRNA expression (P ≤ 3.15 x 10) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10), decrease in switched B cells (P = 3.29 x 10), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.

+view abstract Frontiers in immunology, PMID: 34122439 2021

Liston A, Lesage S Immunology


+view abstract Stroke, PMID: 34107733 10 Jun 2021

Roca CP, Burton OT, Gergelits V, Prezzemolo T, Whyte CE, Halpert R, Kreft Ł, Collier J, Botzki A, Spidlen J, Humblet-Baron S, Liston A Immunology

Compensating in flow cytometry is an unavoidable challenge in the data analysis of fluorescence-based flow cytometry. Even the advent of spectral cytometry cannot circumvent the spillover problem, with spectral unmixing an intrinsic part of such systems. The calculation of spillover coefficients from single-color controls has remained essentially unchanged since its inception, and is increasingly limited in its ability to deal with high-parameter flow cytometry. Here, we present AutoSpill, an alternative method for calculating spillover coefficients. The approach combines automated gating of cells, calculation of an initial spillover matrix based on robust linear regression, and iterative refinement to reduce error. Moreover, autofluorescence can be compensated out, by processing it as an endogenous dye in an unstained control. AutoSpill uses single-color controls and is compatible with common flow cytometry software. AutoSpill allows simpler and more robust workflows, while reducing the magnitude of compensation errors in high-parameter flow cytometry.

+view abstract Nature communications, PMID: 34001872 17 05 2021

Whiteside SK, Grant FM, Gyori DS, Conti AG, Imianowski CJ, Kuo P, Nasrallah R, Sadiyah F, Lira SA, Tacke F, Eil RL, Burton OT, Dooley J, Liston A, Okkenhaug K, Yang J, Roychoudhuri R Immunology

CD4 regulatory T (Treg) cells, dependent upon the transcription factor Foxp3, contribute to tumour immunosuppression but are also required for immune homeostasis. There is interest in developing therapies that selectively target the immunosuppressive function of Treg cells within tumours without disrupting their systemic anti-inflammatory function. High levels of expression of Chemokine (C-C motif) receptor 8 (CCR8) discriminate Treg cells within tumours from those found in systemic lymphoid tissues. It has recently been proposed that disruption of CCR8 function using blocking anti-CCR8 antibodies results in reduced accumulation of Treg cells within tumours and disruption of their immunosuppressive function. Here, using Ccr8 mice, we show that CCR8 function is not required for Treg cell accumulation or immunosuppression in the context of syngeneic MC38 colorectal adenocarcinoma and B16 melanoma tumours. We observed high levels of CCR8 expression on tumour-infiltrating Treg cells which was abolished in Ccr8 mice. High levels of CCR8 marked cells with high levels of suppressive function. However, whereas systemic ablation of Treg cells resulted in strikingly diminished tumour burden, growth of subcutaneously implanted tumours was unaffected by systemic CCR8 loss. Consistently, we observed minimal impact of systemic CCR8 ablation on the frequency, phenotype and function of tumour-infiltrating Treg cells and conventional T (Tconv) function. These findings suggest that CCR8 is not required for Treg cell accumulation and immunosuppressive function within tumours and that depletion of CCR8 Treg cells rather than blockade of CCR8 function is a more promising avenue for selective immunotherapy.

+view abstract Immunology, PMID: 33838058 10 Apr 2021

Van Nieuwenhove E, De Langhe E, Dooley J, Van Den Oord J, Shahrooei M, Parvaneh N, Ziaee V, Savic S, Kacar M, Bossuyt X, Humblet-Baron S, Liston A, Wouters C Immunology

In 2016 specific heterozygous gain-of-function mutations in MEFV were reported causal for a distinct autoinflammatory disease coined pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). We sought to provide an extended report on clinical manifestations in PAAND patients to date and evaluate the efficacy and safety of treatment with the IL-1-blocking agent anakinra.

+view abstract Rheumatology, PMID: 33693560 08 Mar 2021

Betrains A, Staels F, Moens L, Delafontaine S, Hershfield MS, Blockmans D, Liston A, Humblet-Baron S, Meyts I, Schrijvers R, Vanderschueren S Immunology


+view abstract Scandinavian journal of rheumatology, PMID: 33627040 25 Feb 2021

Silva-Cayetano A, Foster WS, Innocentin S, Belij-Rammerstorfer S, Spencer AJ, Burton OT, Fra-Bidó S, Le Lee J, Thakur N, Conceicao C, Wright D, Barrett J, Evans-Bailey N, Noble C, Bailey D, Liston A, Gilbert SC, Lambe T, Linterman MA Immunology

The spread of SARS-CoV-2 has caused a worldwide pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection and may enable the relaxation of social-distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection; therefore, it is desirable that any new vaccine candidates elicit a robust immune response in older adults.

+view abstract Med, PMID: 33521747 16 Dec 2020

Neumann J, Prezzemolo T, Vanderbeke L, Roca CP, Gerbaux M, Janssens S, Willemsen M, Burton O, Van Mol P, Van Herck Y, , Wauters J, Wauters E, Liston A, Humblet-Baron S

The pandemic spread of the coronavirus SARS-CoV-2 is due, in part, to the immunological properties of the host-virus interaction. The clinical presentation varies from individual to individual, with asymptomatic carriers, mild-to-moderate-presenting patients and severely affected patients. Variation in immune response to SARS-CoV-2 may underlie this clinical variation.

+view abstract Clinical & translational immunology, PMID: 33209300 2020

Staels F, Betrains A, Doubel P, Willemsen M, Cleemput V, Vanderschueren S, Corveleyn A, Meyts I, Sprangers B, Crow YJ, Humblet-Baron S, Liston A, Schrijvers R Immunology

STING-associated vasculopathy with onset in infancy (SAVI) is an autosomal dominant disorder due to gain-of-function mutations in , also known as , encoding for STING. It was reported as a vasculopathy of infancy. However, since its description a wider spectrum of associated manifestations and disease-onset has been observed. We report a kindred with a heterozygous STING mutation (p.V155M) in which the 19-year-old proband suffered from isolated adult-onset ANCA-associated vasculitis. His father suffered from childhood-onset pulmonary fibrosis and renal failure attributed to ANCA-associated vasculitis, and died at the age of 30 years due to respiratory failure. In addition, an overview of the phenotypic spectrum of SAVI is provided highlighting (a) a high phenotypic variability with in some cases isolated manifestations, (b) the potential of adult-onset disease, and (c) a novel manifestation with ANCA-associated vasculitis.

+view abstract Frontiers in immunology, PMID: 33133092 2020

Cron MA, Payet CA, Fayet OM, Maillard S, Truffault F, Fadel E, Guihaire J, Berrih-Aknin S, Liston A, Le Panse R Immunology

Myasthenia gravis (MG) is a rare autoimmune disease mainly mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. The thymus is the effector organ, and its removal alleviates the symptoms of the disease. In the early-onset form of MG, the thymus displays functional and morphological abnormalities such as B cell infiltration leading to follicular hyperplasia, and the production of AChR antibodies. Type-I interferon (IFN-I), especially IFN-β, is the orchestrator of thymic changes observed in MG. As Dicer and miR-29 subtypes play a role in modulating the IFN-I signalization in mouse thymus, we investigated their expression in MG thymus.

+view abstract Journal of neuroinflammation, PMID: 33032631 08 Oct 2020

Rönkkö J, Molchanova S, Revah-Politi A, Pereira EM, Auranen M, Toppila J, Kvist J, Ludwig A, Neumann J, Bultynck G, Humblet-Baron S, Liston A, Paetau A, Rivera C, Harms MB, Tyynismaa H, Ylikallio E Immunology

ITPR3, encoding inositol 1,4,5-trisphosphate receptor type 3, was previously reported as a potential candidate disease gene for Charcot-Marie-Tooth neuropathy. Here, we present genetic and functional evidence that ITPR3 is a Charcot-Marie-Tooth disease gene.

+view abstract Annals of clinical and translational neurology, PMID: 32949214 19 Sep 2020

Staels F, Betrains A, Willemsen M, Corvelyn A, Tousseyn T, Dierickx D, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R Immunology


+view abstract Rheumatology, PMID: 32940674 17 Sep 2020

Wauters E, Thevissen K, Wouters C, Bosisio FM, De Smet F, Gunst J, Humblet-Baron S, Lambrechts D, Liston A, Matthys P, Neyts J, Proost P, Weynand B, Wauters J, Tejpar S, Garg AD Immunology

No abstract available

+view abstract Frontiers in immunology, PMID: 32719686 2020

Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD, Theys T, Mancuso R, Tito RY, Kouser L, Callaerts-Vegh Z, de la Fuente AG, Prezzemolo T, Mascali LG, Brajic A, Whyte CE, Yshii L, Martinez-Muriana A, Naughton M, Young A, Moudra A, Lemaitre P, Poovathingal S, Raes J, De Strooper B, Fitzgerald DC, Dooley J, Liston A Immunology

The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69 CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. VIDEO ABSTRACT.

+view abstract Cell, PMID: 32702313 20 Jul 2020

Dooley J, Lagou V, Goveia J, Ulrich A, Rohlenova K, Heirman N, Karakach T, Lampi Y, Khan S, Wang J, Dresselaers T, Himmelreich U, Gunter MJ, Prokopenko I, Carmeliet P, Liston A Immunology

Pancreatic cancer is a rare but fatal form of cancer, the fourth highest in absolute mortality. Known risk factors include obesity, diet, and type 2 diabetes; however, the low incidence rate and interconnection of these factors confound the isolation of individual effects. Here, we use epidemiological analysis of prospective human cohorts and parallel tracking of pancreatic cancer in mice to dissect the effects of obesity, diet, and diabetes on pancreatic cancer. Through longitudinal monitoring and multi-omics analysis in mice, we found distinct effects of protein, sugar, and fat dietary components, with dietary sugars increasing Mad2l1 expression and tumor proliferation. Using epidemiological approaches in humans, we find that dietary sugars give a MAD2L1 genotype-dependent increased susceptibility to pancreatic cancer. The translation of these results to a clinical setting could aid in the identification of the at-risk population for screening and potentially harness dietary modification as a therapeutic measure.

+view abstract Cell reports, PMID: 32668252 14 Jul 2020

Nasrallah R, Imianowski CJ, Bossini-Castillo L, Grant FM, Dogan M, Placek L, Kozhaya L, Kuo P, Sadiyah F, Whiteside SK, Mumbach MR, Glinos D, Vardaka P, Whyte CE, Lozano T, Fujita T, Fujii H, Liston A, Andrews S, Cozzani A, Yang J, Mitra S, Lugli E, Chang HY, Unutmaz D, Trynka G, Roychoudhuri R Immunology, Bioinformatics

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5 contains a distal enhancer that is functional in CD4 regulatory T (T) cells and required for T-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3 T cells, which are unable to control colitis in a cell-transfer model of the disease. In human T cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.

+view abstract Nature, PMID: 32499651 13 May 2020

Liston A, Whyte CE Immunology

The microbiome is increasingly recognized for its ability to modulate human health. Colonization with gut symbionts induces Foxp3‐expressing regulatory T cells (Tregs) and expands their local numbers, a critical step in the suppression of intestinal inflammation and maintaining gut homeostasis. The molecular mechanism by which the microbiome interacts with peripherally induced Treg (pTreg) is likely complex and multifactorial; however, part of the effect is mediated via the release of microbial fermentation products, such as butyrate and other short‐chain fatty acids.

+view abstract Immunology and cell biology, PMID: 32329090 24 Apr 2020

Van Nieuwenhove E, Barber JS, Neumann J, Smeets E, Willemsen M, Pasciuto E, Prezzemolo T, Lagou V, Seldeslachts L, Malengier-Devlies B, Metzemaekers M, Haßdenteufel S, Kerstens A, van der Kant R, Rousseau F, Schymkowitz J, Di Marino D, Lang S, Zimmermann R, Schlenner S, Munck S, Proost P, Matthys P, Devalck C, Boeckx N, Claessens F, Wouters C, Humblet-Baron S, Meyts I, Liston A Immunology

The molecular cause of severe congenital neutropenia (SCN) is unknown in 30-50% of patients. SEC61A1 encodes the α subunit of the SEC61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease.

+view abstract The Journal of allergy and clinical immunology, PMID: 32325141 20 Apr 2020

Stebegg M, Bignon A, Hill DL, Silva-Cayetano A, Krueger C, Vanderleyden I, Innocentin S, Boon L, Wang J, Zand MS, Dooley J, Clark J, Liston A, Carr E, Linterman MA Immunology, Bioinformatics

Germinal centres (GCs) are T follicular helper cell (Tfh)-dependent structures that form in response to vaccination, producing long-lived antibody secreting plasma cells and memory B cells that protect against subsequent infection. With advancing age the GC and Tfh cell response declines, resulting in impaired humoral immunity. We sought to discover what underpins the poor Tfh cell response in ageing and whether it is possible to correct it. Here, we demonstrate that older people and aged mice have impaired Tfh cell differentiation upon vaccination. This deficit is preceded by poor activation of conventional dendritic cells type 2 (cDC2) due to reduced type 1 interferon signalling. Importantly, the Tfh and cDC2 cell response can be boosted in aged mice by treatment with a TLR7 agonist. This demonstrates that age-associated defects in the cDC2 and Tfh cell response are not irreversible and can be enhanced to improve vaccine responses in older individuals.

+view abstract eLife, PMID: 32204792 24 Mar 2020

Mancuso R, Van Den Daele J, Fattorelli N, Wolfs L, Balusu S, Burton O, Liston A, Sierksma A, Fourne Y, Poovathingal S, Arranz-Mendiguren A, Sala Frigerio C, Claes C, Serneels L, Theys T, Perry VH, Verfaillie C, Fiers M, De Strooper B ,

Although genetics highlights the role of microglia in Alzheimer's disease, one-third of putative Alzheimer's disease risk genes lack adequate mouse orthologs. Here we successfully engraft human microglia derived from embryonic stem cells in the mouse brain. The cells recapitulate transcriptionally human primary microglia ex vivo and show expression of human-specific Alzheimer's disease risk genes. Oligomeric amyloid-β induces a divergent response in human versus mouse microglia. This model can be used to study the role of microglia in neurological diseases.

+view abstract Nature neuroscience, PMID: 31659342 2019

Saini S, Poelmans J, Korf H, Dooley JL, Liang S, Manshian BB, Verbeke R, Soenen SJ, Vande Velde G, Lentacker I, Lagrou K, Liston A, Gysemans C, De Smedt SC, Himmelreich U Immunology,

The fungus Aspergillus fumigatus is ubiquitous in nature and the most common cause of invasive pulmonary aspergillosis (IPA) in patients with a compromised immune system. The development of IPA in patients under immunosuppressive treatment or in patients with primary immunodeficiency demonstrates the importance of the host immune response in controlling aspergillosis. However, study of the host-microbe interaction has been hampered by the lack of tools for their non-invasive assessment. We developed a methodology to study the response of the host's immune system against IPA longitudinally in vivo by using fluorine-19 magnetic resonance imaging (F MRI). We showed the advantage of a perfluorocarbon-based contrast agent for the in vivo labeling of macrophages and dendritic cells, permitting quantification of pulmonary inflammation in different murine IPA models. Our findings reveal the potential of F MRI for the assessment of rapid kinetics of innate immune response against IPA and the permissive niche generated through immunosuppression.

+view abstract iScience, PMID: 31581067 2019

Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, Taghon T, Cools J, de Strooper B Immunology,

Given the high frequency of activating mutations in T cell acute lymphoblastic leukemia (T-ALL), inhibition of the γ-secretase complex remains an attractive target to prevent ligand-independent release of the cytoplasmic tail and oncogenic NOTCH1 signaling. However, four different γ-secretase complexes exist, and available inhibitors block all complexes equally. As a result, these cause severe "on-target" gastrointestinal tract, skin, and thymus toxicity, limiting their therapeutic application. Here, we demonstrate that genetic deletion or pharmacologic inhibition of the presenilin-1 (PSEN1) subclass of γ-secretase complexes is highly effective in decreasing leukemia while avoiding dose-limiting toxicities. Clinically, T-ALL samples were found to selectively express only PSEN1-containing γ-secretase complexes. The conditional knockout of in developing T cells attenuated the development of a mutant NOTCH1-driven leukemia in mice in vivo but did not abrogate normal T cell development. Treatment of T-ALL cell lines with the selective PSEN1 inhibitor MRK-560 effectively decreased mutant NOTCH1 processing and led to cell cycle arrest. These observations were extended to T-ALL patient-derived xenografts in vivo, demonstrating that MRK-560 treatment decreases leukemia burden and increased overall survival without any associated gut toxicity. Therefore, PSEN1-selective compounds provide a potential therapeutic strategy for safe and effective targeting of T-ALL and possibly also for other diseases in which NOTCH signaling plays a role.

+view abstract Science translational medicine, PMID: 31142678 2019

Liston A, Humblet-Baron S Immunology,

+view abstract Immunology and cell biology, PMID: 30942931 2019

Liston A, Dooley J Immunology

T cell tolerance depends upon Aire-expressing cells to purge the T cell repertoire of autoreactive clones. Once thought to be the exclusive domain of thymic epithelial cells, a new study by Yamano et al. ( in this issue of identifies ILC3-like cells in the lymph nodes with similar properties.

+view abstract The Journal of experimental medicine, PMID: 30923044 2019

Van Nieuwenhove E, Lagou V, Van Eyck L, Dooley J, Bodenhofer U, Roca C, Vandebergh M, Goris A, Humblet-Baron S, Wouters C, Liston A Immunology,

Juvenile idiopathic arthritis (JIA) is the most common class of childhood rheumatic diseases, with distinct disease subsets that may have diverging pathophysiological origins. Both adaptive and innate immune processes have been proposed as primary drivers, which may account for the observed clinical heterogeneity, but few high-depth studies have been performed.

+view abstract Annals of the rheumatic diseases, PMID: 30862608 2019

Florens MV, Van Wanrooy S, Dooley J, Aguilera-Lizarraga J, Vanbrabant W, Wouters MM, Van Oudenhove L, Peetermans WE, Liston A, Boeckxstaens GE Immunology,

The role of persistent immune activation in postinfectious irritable bowel syndrome (PI-IBS) remains controversial. Here, we prospectively studied healthy subjects traveling to destinations with a high-risk to develop infectious gastroenteritis (IGE) in order to identify immune-mediated mechanisms and risk factors of PI-IBS.

+view abstract Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society, PMID: 30657233 2019

Humblet-Baron S, Franckaert D, Dooley J, Ailal F, Bousfiha A, Deswarte C, Oleaga-Quintas C, Casanova JL, Bustamante J, Liston A Immunology,

Inflammatory activation of CD8 T cells can, when left unchecked, drive severe immunopathology. Hyperstimulation of CD8 T cells through a broad set of triggering signals can precipitate hemophagocytic lymphohistiocytosis (HLH), a life-threatening systemic inflammatory disorder.

+view abstract The Journal of allergy and clinical immunology, PMID: 30578871 2018

Schlenner S, Pasciuto E, Lagou V, Burton O, Prezzemolo T, Junius S, Roca CP, Seillet C, Louis C, Dooley J, Luong K, Van Nieuwenhove E, Wicks IP, Belz G, Humblet-Baron S, Wouters C, Liston A Immunology,

is a key immunological transcription factor, with knockout mice studies identifying functional roles in multiple immune cell types. Despite the importance of NFIL3, little is known about its function in humans.

+view abstract Annals of the rheumatic diseases, PMID: 30552177 2019

Van Horebeek L, Hilven K, Mallants K, Van Nieuwenhuijze A, Kelkka T, Savola P, Mustjoki S, Schlenner SM, Liston A, Dubois B, Goris A Immunology,

The role of somatic variants in diseases beyond cancer is increasingly being recognized, with potential roles in autoinflammatory and autoimmune diseases. However, as mutation rates and allele fractions are lower, studies in these diseases are substantially less tolerant of false positives and bio-informatics algorithms require high replication rates. We developed a pipeline combining two variant callers, MuTect2 and VarScan2, with technical filtering and prioritization. Our pipeline detects somatic variants with allele fractions as low as 0.5% and achieves a replication rate >55%. Validation in an independent dataset demonstrates excellent performance (sensitivity >57%, specificity >98%, replication rate >80%). We applied this pipeline to the autoimmune disease multiple sclerosis (MS) as a proof-of-principle. We demonstrate that 60% of MS patients carry 2-10 exonic somatic variants in their peripheral blood T and B cells, with the vast majority (80%) occurring in T cells and variants persisting over time. Synonymous variants significantly co-occur with nonsynonymous variants. Systematic characterization indicates somatic variants are enriched for being novel or very rare in public databases of germline variants and trend towards being more damaging and conserved, as reflected by higher CADD and GERP scores. Our pipeline and proof-of-principle now warrant further investigation of common somatic genetic variation on top of inherited genetic variation in the context of autoimmune disease, where it may offer subtle survival advantages to immune cells and contribute to the capacity of these cells to participate in the autoimmune reaction.

+view abstract Human molecular genetics, PMID: 30541027 2018

Humblet-Baron S, Barber JS, Roca CP, Lenaerts A, Koni PA, Liston A Immunology,

Dendritic cells (DCs) are a key cell type in the initiation of the adaptive immune response. Recently, an additional role for DCs in suppressing myeloproliferation was discovered. Myeloproliferative disorder (MPD) was observed in murine studies with constitutive depletion of DCs, as well as in patients with congenital deficiency in DCs caused by mutations in or The mechanistic link between DC deficiency and MPD was not predicted through the known biology and has remained an enigma. Prevailing models suggest numerical DC deficiency leads to MPD through compensatory myeloid differentiation. Here, we formally tested whether MPD can also arise through a loss of DC function without numerical deficiency. Using mice whose DCs are deficient in antigen presentation, we find spontaneous MPD that is characterized by splenomegaly, neutrophilia, and extramedullary hematopoiesis, despite normal numbers of DCs. Disease development was dependent on loss of the MHC class II (MHCII) antigen-presenting complex on DCs and was eliminated in mice deficient in total lymphocytes. Mice lacking MHCII and CD4 T cells did not develop disease. Thus, MPD was paradoxically contingent on the presence of CD4 T cells and on a failure of DCs to activate CD4 T cells, trapping the cells in a naive Flt3 ligand-expressing state. These results identify a novel requirement for intercellular collaboration between DCs and CD4 T cells to regulate myeloid differentiation. Our findings support a new conceptual framework of DC biology in preventing MPD in mice and humans.

+view abstract Blood, PMID: 30333120 2019

Lagou V, Garcia-Perez JE, Smets I, Van Horebeek L, Vandebergh M, Chen L, Mallants K, Prezzemolo T, Hilven K, Humblet-Baron S, Moisse M, Van Damme P, Boeckxstaens G, Bowness P, Dubois B, Dooley J, Liston A, Goris A Immunology,

The immune system is highly diverse, but characterization of its genetic architecture has lagged behind the vast progress made by genome-wide association studies (GWASs) of emergent diseases. Our GWAS for 54 functionally relevant phenotypes of the adaptive immune system in 489 healthy individuals identifies eight genome-wide significant associations explaining 6%-20% of variance. Coding and splicing variants in PTPRC and COMMD10 are involved in memory T cell differentiation. Genetic variation controlling disease-relevant T helper cell subsets includes RICTOR and STON2 associated with Th2 and Th17, respectively, and the interferon-lambda locus controlling regulatory T cell proliferation. Early and memory B cell differentiation stages are associated with variation in LARP1B and SP4. Finally, the latrophilin family member ADGRL2 correlates with baseline pro-inflammatory interleukin-6 levels. Suggestive associations reveal mechanisms of autoimmune disease associations, in particular related to pro-inflammatory cytokine production. Pinpointing these key human immune regulators offers attractive therapeutic perspectives.

+view abstract Cell reports, PMID: 30332657 2018

van Nieuwenhuijze A, Burton O, Lemaitre P, Denton AE, Cascalho A, Goodchild RE, Malengier-Devlies B, Cauwe B, Linterman MA, Humblet-Baron S, Liston A Immunology,

The nucleopore is an essential structure of the eukaryotic cell, regulating passage between the nucleus and cytoplasm. While individual functions of core nucleopore proteins have been identified, the role of other components, such as Nup210, are poorly defined. Here, through the use of an unbiased ENU mutagenesis screen for mutations effecting the peripheral T cell compartment, we identified a Nup210 mutation in a mouse strain with altered CD4/CD8 T cell ratios. Through the generation of Nup210 knockout mice we identified Nup210 as having a T cell-intrinsic function in the peripheral homeostasis of T cells. Remarkably, despite the deep evolutionary conservation of this key nucleopore complex member, no other major phenotypes developed, with viable and healthy knockout mice. These results identify Nup210 as an important nucleopore complex component for peripheral T cells, and raise further questions of why this nucleopore component shows deep evolutionary conservation despite seemingly redundant functions in most cell types.

+view abstract Frontiers in immunology, PMID: 30323813 2018

Brajic A, Franckaert D, Burton O, Bornschein S, Calvanese AL, Demeyer S, Cools J, Dooley J, Schlenner S, Liston A Immunology,

Mammalian genomes encode a plethora of long non-coding RNA (lncRNA). These transcripts are thought to regulate gene expression, influencing biological processes from development to pathology. Results from the few lncRNA that have been studied in the context of the immune system have highlighted potentially critical functions as network regulators. Here we explored the nature of the lncRNA transcriptome in regulatory T cells (Tregs), a subset of CD4 T cells required to establish and maintain immunological self-tolerance. The identified Treg lncRNA transcriptome showed distinct differences from that of non-regulatory CD4 T cells, with evidence of direct shaping of the lncRNA transcriptome by Foxp3, the master transcription factor driving the distinct mRNA profile of Tregs. Treg lncRNA changes were disproportionally reversed in the absence of Foxp3, with an enrichment for colocalisation with Foxp3 DNA binding sites, indicating a direct coordination of transcription by Foxp3 independent of the mRNA coordination function. We further identified a novel lncRNA , as a member of the core Treg lncRNA transcriptome. expression anticipates Foxp3 expression during Treg conversion, and -deficient mice show a mild delay in and peripheral Treg induction. These results implicate as part of the upstream cascade leading to Treg conversion, and may provide clues as to the nature of this process.

+view abstract Frontiers in immunology, PMID: 30319599 2018

Imbrechts M, Avau A, Vandenhaute J, Malengier-Devlies B, Put K, Mitera T, Berghmans N, Burton O, Junius S, Liston A, de Somer L, Wouters C, Matthys P Immunology,

Systemic juvenile idiopathic arthritis (sJIA) is a childhood-onset immune disorder of unknown cause. One of the concepts is that the disease results from an inappropriate control of immune responses to an initially harmless trigger. In the current study, we investigated whether sJIA may be caused by defects in IL-10, a key cytokine in controlling inflammation. We used a translational approach, with an sJIA-like mouse model and sJIA patient samples. The sJIA mouse model relies on injection of CFA in IFN-γ-deficient BALB/c mice; corresponding wild type (WT) mice only develop a subtle and transient inflammatory reaction. Diseased IFN-γ-deficient mice showed a defective IL-10 production in CD4 regulatory T cells, CD19 B cells, and CD3CD122CD49b NK cells, with B cells as the major source of IL-10. In addition, neutralization of IL-10 in WT mice resulted in a chronic immune inflammatory disorder clinically and hematologically reminiscent of sJIA. In sJIA patients, IL-10 plasma levels were strikingly low as compared with proinflammatory mediators. Furthermore, CD19 B cells from sJIA patients showed a decreased IL-10 production, both ex vivo and after in vitro stimulation. In conclusion, IL-10 neutralization in CFA-challenged WT mice converts a transient inflammatory reaction into a chronic disease and represents an alternative model for sJIA in IFN-γ-competent mice. Cell-specific IL-10 defects were observed in sJIA mice and patients, together with an insufficient IL-10 production to counterbalance their proinflammatory cytokines. Our data indicate that a defective IL-10 production contributes to the pathogenesis of sJIA.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 30266771 2018

Van Nieuwenhove E, Humblet-Baron S, Van Eyck L, De Somer L, Dooley J, Tousseyn T, Hershfield M, Liston A, Wouters C Immunology,

Multicentric Castleman disease (MCD) is a rare entity that, unlike unicentric Castleman disease, involves generalized polyclonal lymphoproliferation, systemic inflammation, and multiple-organ system failure resulting from proinflammatory hypercytokinemia, including, in particular, interleukin-6. A subset of MCD is caused by human herpesvirus-8 (HHV-8), although the etiology for HHV-8-negative, idiopathic MCD (iMCD) cases is unknown at present. Recently, a consensus was reached on the diagnostic criteria for iMCD to aid in diagnosis, recognize mimics, and initiate prompt treatment. Pediatric iMCD remains particularly rare, and differentiation from MCD mimics in children presenting with systemic inflammation and lymphoproliferation is a challenge. We report on a young boy who presented with a HHV-8-negative, iMCD-like phenotype and was found to suffer from the monogenic disorder deficiency of adenosine deaminase 2 (DADA2), which is caused by loss-of-function mutations in DADA2 prototypic features include early-onset ischemic and hemorrhagic strokes, livedoid rash, systemic inflammation, and polyarteritis nodosa vasculopathy, but marked clinical heterogeneity has been observed. Our patient's presentation remains unique, with predominant systemic inflammation, lymphoproliferation, and polyclonal hypergammaglobulinemia but without apparent immunodeficiency. On the basis of the iMCD-like phenotype with elevated interleukin-6 expression, treatment with tocilizumab was initiated, resulting in immediate normalization of clinical and biochemical parameters. In conclusion, iMCD and DADA2 should be considered in the differential diagnosis of children presenting with systemic inflammation and lymphoproliferation. We describe the first case of DADA2 that mimics the clinicopathologic features of iMCD, and our report extends the clinical spectrum of DADA2 to include predominant immune activation and lymphoproliferation.

+view abstract Pediatrics, PMID: 30139808 2018

Liston A Immunology,

+view abstract Nature reviews. Immunology, PMID: 30097638 2018

Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, Weynand B, Verbeken E, De Leyn P, Liston A, Vansteenkiste J, Carmeliet P, Aerts S, Thienpont B Immunology,

Cancer cells are embedded in the tumor microenvironment (TME), a complex ecosystem of stromal cells. Here, we present a 52,698-cell catalog of the TME transcriptome in human lung tumors at single-cell resolution, validated in independent samples where 40,250 additional cells were sequenced. By comparing with matching non-malignant lung samples, we reveal a highly complex TME that profoundly molds stromal cells. We identify 52 stromal cell subtypes, including novel subpopulations in cell types hitherto considered to be homogeneous, as well as transcription factors underlying their heterogeneity. For instance, we discover fibroblasts expressing different collagen sets, endothelial cells downregulating immune cell homing and genes coregulated with established immune checkpoint transcripts and correlating with T-cell activity. By assessing marker genes for these cell subtypes in bulk RNA-sequencing data from 1,572 patients, we illustrate how these correlate with survival, while immunohistochemistry for selected markers validates them as separate cellular entities in an independent series of lung tumors. Hence, in providing a comprehensive catalog of stromal cells types and by characterizing their phenotype and co-optive behavior, this resource provides deeper insights into lung cancer biology that will be helpful in advancing lung cancer diagnosis and therapy.

+view abstract Nature medicine, PMID: 29988129 2018

Van Nieuwenhove E, Garcia-Perez JE, Helsen C, Rodriguez PD, van Schouwenburg PA, Dooley J, Schlenner S, van der Burg M, Verhoeyen E, Gijsbers R, Frietze S, Schjerven H, Meyts I, Claessens F, Humblet-Baron S, Wouters C, Liston A Immunology,

+view abstract The Journal of allergy and clinical immunology, PMID: 29705243 2018

Garcia-Perez JE, Mathé L, Humblet-Baron S, Braem A, Lagrou K, Van Dijck P, Liston A Immunology,

biofilms are a major cause of nosocomial morbidity and mortality. The mechanism by which biofilms evade the immune system remains unknown. In this perspective, we develop a theoretical framework of the three, not mutually exclusive, models, which could explain biofilm evasion of host immunity. First, biofilms may exhibit properties of immunological silence, preventing immune activation. Second, biofilms may produce immune-deviating factors, converting effective immunity into ineffective immunity. Third, biofilms may resist host immunity, which would otherwise be effective. Using a murine subcutaneous biofilm model, we found that mice infected with biofilms developed sterilizing immunity effective when challenged with yeast form . Despite the induction of effective anti- immunity, no spontaneous clearance of the biofilm was observed. These results support the immune resistance model of biofilm immune evasion and demonstrate an asymmetric relationship between the host and biofilms, with biofilms eliciting effective immune responses yet being resistant to immunological clearance.

+view abstract Frontiers in immunology, PMID: 29616035 2018

Liston A, Goris A Immunology,

+view abstract Nature immunology, PMID: 29476185 2018

Heremans J, Garcia-Perez JE, Turro E, Schlenner SM, Casteels I, Collin R, de Zegher F, Greene D, Humblet-Baron S, Lesage S, Matthys P, Penkett CJ, Put K, Stirrups K, , Thys C, Van Geet C, Van Nieuwenhove E, Wouters C, Meyts I, Freson K, Liston A Immunology,

Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome.

+view abstract The Journal of allergy and clinical immunology, PMID: 29391254 2018

Smets I, Fiddes B, Garcia-Perez JE, He D, Mallants K, Liao W, Dooley J, Wang G, Humblet-Baron S, Dubois B, Compston A, Jones J, Coles A, Liston A, Ban M, Goris A, Sawcer S Immunology,

The increasing evidence supporting a role for B cells in the pathogenesis of multiple sclerosis prompted us to investigate the influence of known susceptibility variants on the surface expression of co-stimulatory molecules in these cells. Using flow cytometry we measured surface expression of CD40 and CD86 in B cells from 68 patients and 162 healthy controls that were genotyped for the multiple sclerosis associated single nucleotide polymorphisms (SNPs) rs4810485, which maps within the CD40 gene, and rs9282641, which maps within the CD86 gene. We found that carrying the risk allele rs4810485*T lowered the cell-surface expression of CD40 in all tested B cell subtypes (in total B cells P ≤ 5.10 × 10-5 in patients and ≤4.09 × 10-6 in controls), while carrying the risk allele rs9282641*G increased the expression of CD86, with this effect primarily seen in the naïve B cell subset (P = 0.048 in patients and 5.38 × 10-5 in controls). In concordance with these results, analysis of RNA expression demonstrated that the risk allele rs4810485*T resulted in lower total CD40 [removed]P = 0.057) but with an increased proportion of alternative splice-forms leading to decoy receptors (P = 4.00 × 10-7). Finally, we also observed that the risk allele rs4810485*T was associated with decreased levels of interleukin-10 (P = 0.020), which is considered to have an immunoregulatory function downstream of CD40. Given the importance of these co-stimulatory molecules in determining the immune reaction that appears in response to antigen our data suggest that B cells might have an important antigen presentation and immunoregulatory role in the pathogenesis of multiple sclerosis.

+view abstract Brain : a journal of neurology, PMID: 29361022 2018

Dooley J, Pasciuto E, Lagou V, Lampi Y, Dresselaers T, Himmelreich U, Liston A ,

Pancreatic cancer is a high mortality form of cancer, with a median survival only six months. There are multiple associated risk factors associated, most importantly type 2 diabetes, obesity, pancreatitis and smoking. The relative rarity of the disease, however, has made it difficult to dissect causative risk factors, especially with related risk factors. A major unanswered question with important therapeutic implications is the effect of immunological responses on pancreatic cancer formation, with data from other cancers suggesting the potential for local immunological responses to either increase cancer development or increase cancer elimination. Due to the rarity and late diagnosis of pancreatic cancer direct epidemiological evidence is lacking, thus necessitating a reliance on animal models. Here we investigated the relationship between pancreatic autoimmunity and cancer by backcrossing the well characterised Ela1-Tag transgenic model of pancreatic cancer onto the pancreatic autoimmune susceptible NOD mouse strain. Through longitudinal magnetic resonance imaging we found that the NOD genetic background delayed the onset of pancreatic tumours and substantially slowed the growth rate of tumours after development. These results suggest that elevated autoimmune surveillance of the pancreas limits tumour formation and growth, identifying pancreatic cancer as a promising target for immune checkpoint blockade therapies that unleash latent autoimmunity.

+view abstract Oncotarget, PMID: 29113292 2017

Hu Z, Li Y, Van Nieuwenhuijze A, Selden HJ, Jarrett AM, Sorace AG, Yankeelov TE, Liston A, Ehrlich LIR Immunology,

Upon recognition of auto-antigens, thymocytes are negatively selected or diverted to a regulatory T cell (Treg) fate. CCR7 is required for negative selection of auto-reactive thymocytes in the thymic medulla. Here, we describe an unanticipated contribution of CCR7 to intrathymic Treg generation. Ccr7 mice have increased Treg cellularity because of a hematopoietic but non-T cell autonomous CCR7 function. CCR7 expression by thymic dendritic cells (DCs) promotes survival of mature Sirpα DCs. Thus, CCR7 deficiency results in apoptosis of Sirpα DCs, which is counterbalanced by expansion of immature Sirpα DCs that efficiently induce Treg generation. CCR7 deficiency results in enhanced intrathymic generation of Tregs at the neonatal stage and in lymphopenic adults, when Treg differentiation is critical for establishing self-tolerance. Together, these results reveal a complex function for CCR7 in thymic tolerance induction, where CCR7 not only promotes negative selection but also governs intrathymic Treg generation via non-thymocyte intrinsic mechanisms.

+view abstract Cell reports, PMID: 28978470 2017

Dooley J, Lagou V, Heirman N, Dresselaers T, Himmelreich U, Liston A Immunology,

Vitamin D has been proposed as a therapeutic strategy in pancreatic cancer, yet evidence for an effect of dietary vitamin D on pancreatic cancer is ambiguous, with conflicting data from human epidemiological and intervention studies. Here, we tested the role of dietary vitamin D in the context of the well-characterized Ela1-TAg transgenic mouse model of pancreatic acinar cell carcinoma. Through longitudinal magnetic resonance imaging of mice under conditions of either dietary vitamin D deficiency (<5 IU/kg vitamin D) or excess (76,500 IU/kg vitamin D), compared to control diet (1,500 IU/kg vitamin D), we measured the effect of variation of dietary vitamin D on tumor kinetics. No measurable impact of dietary vitamin D was found on pancreatic acinar cell carcinoma development, growth or mortality, casting further doubt on the already equivocal data supporting potential therapeutic use in humans. The lack of any detectable effect of vitamin D, within the physiological range of dietary deficiency or supplementation, in this model further erodes confidence in vitamin D as an effective antitumor therapeutic in pancreatic acinar cell carcinoma.

+view abstract Frontiers in oncology, PMID: 28702373 2017

Dooley J, Lagou V, Pasciuto E, Linterman MA, Prosser HM, Himmelreich U, Liston A Immunology,

The intronic microRNA (miR)-342 has been proposed as a potent tumor-suppressor gene. miR-342 is found to be downregulated or epigenetically silenced in multiple different tumor sites, and this loss of expression permits the upregulation of several key oncogenic pathways. In several different cell lines, lower miR-342 expression results in enhanced proliferation and metastasis potential, both in vitro and in xenogenic transplant conditions. Here, we sought to determine the function of miR-342 in an in vivo spontaneous cancer model, using the Ela1-TAg transgenic model of pancreatic acinar carcinoma. Through longitudinal magnetic resonance imaging monitoring of Ela1-TAg transgenic mice, either wild-type or knockout for miR-342, we found no role for miR-342 in the development, growth rate, or pathogenicity of pancreatic acinar carcinoma. These results indicate the importance of assessing miR function in the complex physiology of in vivo model systems and indicate that further functional testing of miR-342 is required before concluding it is a bona fide tumor-suppressor-miR.

+view abstract Frontiers in oncology, PMID: 28573106 2017

Dooley J, Lagou V, Garcia-Perez JE, Himmelreich U, Liston A Immunology,

The development of cancers involves the complex dysregulation of multiple cellular processes. With key functions in simultaneous regulation of multiple pathways, microRNA (miR) are thought to have important roles in the oncogenic formation process. miR-29a is among the most abundantly expressed miR in the pancreas. Together with altered expression in pancreatic cancer cell lines and biopsies, and known oncogenic functions in leukemia, this expression data has identified miR-29a as a key candidate for miR involvement in pancreatic cancer biology. Here we used miR-29a-deficient mice and the TAg model of pancreatic acinar carcinoma to functionally test the role of miR-29a in vivo. We found no impact of miR-29a loss on the development or growth of pancreatic tumours, nor on the survival of tumour-bearing mice. These results suggest that, despite differential expression, miR-29a is oncogenically neutral in the pancreatic acinar carcinoma context. If these results are extended to other models of pancreatic cancer, they would reduce the attractiveness of miR-29a as a potential therapeutic target in pancreatic cancer.

+view abstract Oncotarget, PMID: 28460473 2017

Broos K, Keyaerts M, Lecocq Q, Renmans D, Nguyen T, Escors D, Liston A, Raes G, Breckpot K, Devoogdt N Immunology,

Blockade of the inhibitory PD-1/PD-L1 immune checkpoint axis is a promising cancer treatment. Nonetheless, a significant number of patients and malignancies do not respond to this therapy. To develop a screen for response to PD-1/PD-L1 inhibition, it is critical to develop a non-invasive tool to accurately assess dynamic immune checkpoint expression. Here we evaluated non-invasive SPECT/CT imaging of PD-L1 expression, in murine tumor models with varying PD-L1 expression, using high affinity PD-L1-specific nanobodies (Nbs). We generated and characterized 37 Nbs recognizing mouse PD-L1. Among those, four Nbs C3, C7, E2 and E4 were selected and evaluated for preclinical imaging of PD-L1 in syngeneic mice. We performed SPECT/CT imaging in wild type versus PD-L1 knock-out mice, using Technetium-99m (99mTc) labeled Nbs. Nb C3 and E2 showed specific antigen binding and beneficial biodistribution. Through the use of CRISPR/Cas9 PD-L1 knock-out TC-1 lung epithelial cell lines, we demonstrate that SPECT/CT imaging using Nb C3 and E2 identifies PD-L1 expressing tumors, but not PD-L1 non-expressing tumors, thereby confirming the diagnostic potential of the selected Nbs. In conclusion, these data show that Nbs C3 and E2 can be used to non-invasively image PD-L1 levels in the tumor, with the strength of the signal correlating with PD-L1 levels. These findings warrant further research into the use of Nbs as a tool to image inhibitory signals in the tumor environment.

+view abstract Oncotarget, PMID: 28410210 2017

Moens L, Picard C, Shahrooei M, Wuyts G, Liston A, Fischer A, Bossuyt X Immunology,

+view abstract Journal of clinical immunology, PMID: 28303442 2017

Dooley J, Lagou V, Dresselaers T, van Dongen KA, Himmelreich U, Liston A Immunology,

Pancreatic cancer has an extremely poor prognosis, largely due to a poor record for early detection. Known risk factors for pancreatic cancer include obesity, diet, and diabetes, implicating glucose consumption and regulation as a key player. The role of artificial sweeteners may therefore be pertinent to disease kinetics. The oncogenic impact of artificial sweeteners is a highly controversial area. Aspartame, one of the most studied food additives, is widely recognized as being generally safe, although there are still specific areas where research is incomplete due to study limitations. Stevia, by contrast, has been the subject of relatively few studies, and the potential health benefits are based on extrapolation rather than direct testing. Here, we used longitudinal tracking of pancreatic acinar carcinoma development, growth, and lethality in a sensitized mouse model. Despite exposure to aspartame and stevia from the stage onward, we found no disease modification activity, in either direction. These results contribute to the data on aspartame and stevia safety, while also reducing confidence in several of the purported health benefits.

+view abstract Frontiers in oncology, PMID: 28232906 2017

Humblet-Baron S, Schönefeldt S, Garcia-Perez JE, Baron F, Pasciuto E, Liston A Immunology,

Severe combined immunodeficiency can be caused by loss-of-function mutations in genes involved in the DNA recombination machinery, such as recombination-activating gene 1 (RAG1), RAG2, or DNA cross-link repair 1C (DCLRE1C). Defective DNA recombination causes a developmental block in T and B cells, resulting in high susceptibility to infections. Hypomorphic mutations in the same genes can also give rise to a partial loss of T cells in a spectrum including leaky severe combined immunodeficiency (LS) and Omenn syndrome (OS). These patients not only experience life-threatening infections because of immunodeficiency but also experience inflammatory/autoimmune conditions caused by the presence of autoreactive T cells.

+view abstract The Journal of allergy and clinical immunology, PMID: 28185879 2017

Liston A, Masters SL ,

The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.

+view abstract Nature reviews. Immunology, PMID: 28163301 2017

van Nieuwenhuijze A, Dooley J, Humblet-Baron S, Sreenivasan J, Koenders M, Schlenner SM, Linterman M, Liston A Immunology,

MicroRNA (miR) are short non-coding RNA sequences of 19-24 nucleotides that regulate gene expression by binding to mRNA target sequences. The miR-29 family of miR (miR-29a, b-1, b-2 and c) is a key player in T-cell differentiation and effector function, with deficiency causing thymic involution and a more inflammatory T-cell profile. However, the relative roles of different miR-29 family members in these processes have not been dissected. We studied the immunological role of the individual members of the miR-29 family using mice deficient for miR-29a/b-1 or miR-29b-2/c in homeostasis and during collagen-induced arthritis. We found a definitive hierarchy of immunological function, with the strong phenotype of miR-29a-deficiency in thymic involution and T-cell activation being reduced or absent in miR-29c-deficient mice. Strikingly, despite elevating the Th1 and Th17 responses, loss of miR-29a conferred near-complete protection from collagen-induced arthritis (CIA), with profound defects in B-cell proliferation and antibody production. Our results identify the hierarchical structure of the miR-29 family in T-cell biology, and identify miR-29a in B cells as a potential therapeutic target in arthritis.

+view abstract Cellular and molecular life sciences : CMLS, PMID: 28124096 2017

Liston A, Todd JA, Lagou V Immunology,

Type 1 and type 2 diabetes are distinct clinical entities primarily driven by autoimmunity and metabolic dysfunction, respectively. However, there is a growing appreciation that they may share an etiopathological factor, namely the role of variation in beta-cell sensitivity to stress factors. Increased sensitivity increases the risk of beta-cell death or insulin secretion dysfunction. The beta-cell fragility model proposes that this variation contributes to the risk of developing either type 1 or type 2 diabetes, in the presence of immunological and/or metabolic stress factors. Therapeutics that increase the resistance of beta cells to these factors and decreasing fragility may constitute a new class of anti-diabetogenics, with potential use across both diseases.

+view abstract Trends in molecular medicine, PMID: 28117227 2017

Haljasorg U, Dooley J, Laan M, Kisand K, Bichele R, Liston A, Peterson P Immunology,

The thymus is a primary lymphoid organ required for the induction and maintenance of central tolerance. The main function of the thymus is to generate an immunocompetent set of T cells not reactive to self. During negative selection in the thymus, thymocytes with autoreactive potential are either deleted or differentiated into regulatory T cells (Tregs). The molecular basis by which the thymus allows high-efficiency Treg induction remains largely unknown. In this study, we report that IFN regulatory factor 4 (Irf4) is highly expressed in murine thymic epithelium and is required to prime thymic epithelial cells (TEC) for effective Treg induction. TEC-specific Irf4 deficiency resulted in a significantly reduced thymic Treg compartment and increased susceptibility to mononuclear infiltrations in the salivary gland. We propose that Irf4 is imperative for thymic Treg homeostasis because it regulates TEC-specific expression of several chemokines and costimulatory molecules indicated in thymocyte development and Treg induction.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 28108558 2017

Moens L, Van Eyck L, Jochmans D, Mitera T, Frans G, Bossuyt X, Matthys P, Neyts J, Ciancanelli M, Zhang SY, Gijsbers R, Casanova JL, Boisson-Dupuis S, Meyts I, Liston A Immunology,

+view abstract The Journal of allergy and clinical immunology, PMID: 28087227 2017

Fedeli M, Riba M, Garcia Manteiga JM, Tian L, Viganò V, Rossetti G, Pagani M, Xiao C, Liston A, Stupka E, Cittaro D, Abrignani S, Provero P, Dellabona P, Casorati G Immunology,

Invariant natural killer T cells (iNKT) cells are T lymphocytes displaying innate effector functions, acquired through a distinct thymic developmental program regulated by microRNAs (miRNAs). Deleting miRNAs by Dicer ablation (Dicer KO) in thymocytes selectively impairs iNKT cell survival and functional differentiation. To unravel this miRNA-dependent program, we systemically identified transcripts that were differentially expressed between WT and Dicer KO iNKT cells at different differentiation stages and predicted to be targeted by the iNKT cell-specific miRNAs. TGF-β receptor II (TGF-βRII), critically implicated in iNKT cell differentiation, was found up-regulated in iNKT Dicer KO cells together with enhanced TGF-β signaling. miRNA members of the miR-17∼92 family clusters were predicted to target Tgfbr2 mRNA upon iNKT cell development. iNKT cells lacking all three miR-17∼92 family clusters (miR-17∼92, miR-106a∼363, miR-106b∼25) phenocopied both increased TGF-βRII expression and signaling, and defective effector differentiation, displayed by iNKT Dicer KO cells. Consistently, genetic ablation of TGF-β signaling in the absence of miRNAs rescued iNKT cell differentiation. These results elucidate the global impact of miRNAs on the iNKT cell developmental program and uncover the targeting of a lineage-specific cytokine signaling by miRNAs as a mechanism regulating innate-like T-cell development and effector differentiation.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 27930306 2016

Franckaert D, Liston A Immunology,

Variation in protein expression is a feature of all cell populations. Using T cell subsets as a proof-of-concept, Lu et al. (2016) develop a framework for dissecting out the contributors to this cell-to-cell expression variation from high-parameter flow cytometry studies.

+view abstract Immunity, PMID: 27851924 2016

Put K, Vandenhaute J, Avau A, van Nieuwenhuijze A, Brisse E, Dierckx T, Rutgeerts O, Garcia-Perez JE, Toelen J, Waer M, Leclercq G, Goris A, Van Weyenbergh J, Liston A, De Somer L, Wouters CH, Matthys P Immunology,

Systemic juvenile idiopathic arthritis (JIA) is an immunoinflammatory disease characterized by arthritis and systemic manifestations. The role of natural killer (NK) cells in the pathogenesis of systemic JIA remains unclear. The purpose of this study was to perform a comprehensive analysis of NK cell phenotype and functionality in patients with systemic JIA.

+view abstract Arthritis & rheumatology (Hoboken, N.J.), PMID: 27696741 2017

Liston A, Carr EJ, Linterman MA Immunology,

Immune responses demonstrate a high level of intra-species variation, compensating for the specialization capacity of pathogens. The recent advent of in-depth immune phenotyping projects in large-scale cohorts has allowed a first look into the factors that shape the inter-individual diversity of the human immune system. Genetic approaches have identified genetic diversity as drivers of 20-40% of the variation between the immune systems of individuals. The remaining 60-80% is shaped by intrinsic factors, with age being the predominant factor, as well as by environmental influences, where cohabitation and chronic viral infections were identified as key mediators. We review and integrate the recent in-depth large-scale studies on human immune diversity and its potential impact on health. VIDEO ABSTRACT.

+view abstract Trends in immunology, PMID: 27693120 2016

Liston A, Carr EJ, Linterman MA Immunology,

Immune responses demonstrate a high level of intra-species variation, compensating for the specialization capacity of pathogens. The recent advent of in-depth immune phenotyping projects in large-scale cohorts has allowed a first look into the factors that shape the inter-individual diversity of the human immune system. Genetic approaches have identified genetic diversity as drivers of 20-40% of the variation between the immune systems of individuals. The remaining 60-80% is shaped by intrinsic factors, with age being the predominant factor, as well as by environmental influences, where cohabitation and chronic viral infections were identified as key mediators. We review and integrate the recent in-depth large-scale studies on human immune diversity and its potential impact on health. VIDEO ABSTRACT.

+view abstract Trends in immunology, PMID: 27692231 2016

Frans G, Moens L, Schaballie H, Wuyts G, Liston A, Poesen K, Janssens A, Rice GI, Crow YJ, Meyts I, Bossuyt X Immunology,

+view abstract The Journal of allergy and clinical immunology, PMID: 27531075 2017

Staats KA, Humblet-Baron S, Bento-Abreu A, Scheveneels W, Nikolaou A, Deckers K, Lemmens R, Goris A, Van Ginderachter JA, Van Damme P, Hisatsune C, Mikoshiba K, Liston A, Robberecht W, Van Den Bosch L Immunology,

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease characterized by the selective death of motor neurons. Disease pathophysiology is complex and not yet fully understood. Higher gene expression of the inositol 1,4,5-trisphosphate receptor 2 gene (ITPR2), encoding the IP receptor 2 (IPR2), was detected in sporadic ALS patients. Here, we demonstrate that IPR2 gene expression was also increased in spinal cords of ALS mice. Moreover, an increase of IPR2 expression was observed in other models of chronic and acute neurodegeneration. Upregulation of IPR2 gene expression could be induced by lipopolysaccharide (LPS) in murine astrocytes, murine macrophages and human fibroblasts indicating that it may be a compensatory response to inflammation. Preventing this response by genetic deletion of ITPR2 from SOD1 mice had a dose-dependent effect on disease duration, resulting in a significantly shorter lifespan of these mice. In addition, the absence of IPR2 led to increased innate immunity, which may contribute to the decreased survival of the SOD1 mice. Besides systemic inflammation, IPR2 knockout mice also had increased IFNγ, IL-6 and IL1α expression. Altogether, our data indicate that IPR2 protects against the negative effects of inflammation, suggesting that the increase in IPR2 expression in ALS patients is a protective response.

+view abstract Human molecular genetics, PMID: 27378687 2016

Dooley J, Pauwels I, Franckaert D, Smets I, Garcia-Perez JE, Hilven K, Danso-Abeam D, Terbeek J, Nguyen AT, De Muynck L, Decallonne B, Dubois B, Liston A, Goris A Immunology,

We undertook a systems immunology approach of the adaptive immune system in multiple sclerosis (MS), overcoming tradeoffs between scale and level of detail, in order to identify the immunologic signature of MS and the changes wrought by current immunomodulatory treatments.

+view abstract Neurology(R) neuroimmunology & neuroinflammation, PMID: 27231713 2016

Devos FC, Boonen B, Alpizar YA, Maes T, Hox V, Seys S, Pollaris L, Liston A, Nemery B, Talavera K, Hoet PH, Vanoirbeek JA Immunology,

Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR.

+view abstract The European respiratory journal, PMID: 27126687 2016

Hillhouse EE, Liston A, Collin R, Desautels E, Goodnow CC, Lesage S Immunology,

Linkage analysis studies for autoimmune diabetes have revealed multiple non-major histocompatibility complex (MHC) chromosomal regions linked to disease susceptibility. To date, more than 20 insulin-dependent diabetes (Idd) loci linked to diabetes susceptibility have been identified in NOD mice and validated via congenic breeding. Importantly, evidence suggests that Idd loci may regulate at least two pathological steps during autoimmune diabetes development, namely the onset of insulitis and the transition from insulitis to overt diabetes. Here we assess the role of various non-MHC Idd diabetes-resistance loci, which have been validated in the non-transgenic setting, on autoimmune diabetes progression in the transgenic setting. Specifically, we generated multiple Idd congenic strains in the 3A9-TCR:insHEL NOD.H2(k) transgenic model and monitored their diabetes incidence. We show that 3A9-TCR:insHEL NOD.H2(k) mice congenic for Idd3 or Idd5 display a reduction in diabetes development, whereas mice congenic for Idd9 or Idd13 exhibit an increase, in comparison with 3A9-TCR:insHEL NOD.H2(k) mice. These results suggest that the presence of the 3A9-TCR and hen egg lysosyme transgenes can offset the regulatory function of certain diabetes-resistance genetic variants contained within the Idd loci, including Idd9 and Idd13. We propose the antigen-specific 3A9-TCR:insHEL transgenic model as a useful tool for the study of the genetics of autoimmune diabetes development.

+view abstract Immunology and cell biology, PMID: 27046082 2016

Masters SL, Lagou V, Jéru I, Baker PJ, Van Eyck L, Parry DA, Lawless D, De Nardo D, Garcia-Perez JE, Dagley LF, Holley CL, Dooley J, Moghaddas F, Pasciuto E, Jeandel PY, Sciot R, Lyras D, Webb AI, Nicholson SE, De Somer L, van Nieuwenhove E, Ruuth-Praz J, Copin B, Cochet E, Medlej-Hashim M, Megarbane A, Schroder K, Savic S, Goris A, Amselem S, Wouters C, Liston A Immunology,

Pyrin responds to pathogen signals and loss of cellular homeostasis by forming an inflammasome complex that drives the cleavage and secretion of interleukin-1β (IL-1β). Mutations in the B30.2/SPRY domain cause pathogen-independent activation of pyrin and are responsible for the autoinflammatory disease familial Mediterranean fever (FMF). We studied a family with a dominantly inherited autoinflammatory disease, distinct from FMF, characterized by childhood-onset recurrent episodes of neutrophilic dermatosis, fever, elevated acute-phase reactants, arthralgia, and myalgia/myositis. The disease was caused by a mutation in MEFV, the gene encoding pyrin (S242R). The mutation results in the loss of a 14-3-3 binding motif at phosphorylated S242, which was not perturbed by FMF mutations in the B30.2/SPRY domain. However, loss of both S242 phosphorylation and 14-3-3 binding was observed for bacterial effectors that activate the pyrin inflammasome, such as Clostridium difficile toxin B (TcdB). The S242R mutation thus recapitulated the effect of pathogen sensing, triggering inflammasome activation and IL-1β production. Successful therapy targeting IL-1β has been initiated in one patient, resolving pyrin-associated autoinflammation with neutrophilic dermatosis. This disease provides evidence that a guard-like mechanism of pyrin regulation, originally identified for Nod-like receptors in plant innate immunity, also exists in humans.

+view abstract Science translational medicine, PMID: 27030597 2016

Dooley J, Tian L, Schonefeldt S, Delghingaro-Augusto V, Garcia-Perez JE, Pasciuto E, Di Marino D, Carr EJ, Oskolkov N, Lyssenko V, Franckaert D, Lagou V, Overbergh L, Vandenbussche J, Allemeersch J, Chabot-Roy G, Dahlstrom JE, Laybutt DR, Petrovsky N, Socha L, Gevaert K, Jetten AM, Lambrechts D, Linterman MA, Goodnow CC, Nolan CJ, Lesage S, Schlenner SM, Liston A ,

Type 1 (T1D) and type 2 (T2D) diabetes share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, whereas beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alters the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role of beta cell fragility in genetic predisposition to diabetes.

+view abstract Nature genetics, PMID: 26998692 2016

Humblet-Baron S, Franckaert D, Dooley J, Bornschein S, Cauwe B, Schönefeldt S, Bossuyt X, Matthys P, Baron F, Wouters C, Liston A Immunology,

Hemophagocytic lymphohistiocytosis (HLH) is a severe inflammatory condition driven by excessive CD8(+) T-cell activation. HLH occurs as both acquired and familial hemophagocytic lymphohistiocytosis (FHL) forms. In both conditions, a sterile or infectious trigger is required for disease initiation, which then becomes self-sustaining and life-threatening. Recent studies have attributed the key distal event to excessive IFN-γ production; however, the proximal events driving immune dysregulation have remained undefined.

+view abstract The Journal of allergy and clinical immunology, PMID: 26947179 2016

Carr EJ, Dooley J, Garcia-Perez JE, Lagou V, Lee JC, Wouters C, Meyts I, Goris A, Boeckxstaens G, Linterman MA, Liston A Immunology,

Detailed population-level description of the human immune system has recently become achievable. We used a 'systems-level' approach to establish a resource of cellular immune profiles of 670 healthy individuals. We report a high level of interindividual variation, with low longitudinal variation, at the level of cellular subset composition of the immune system. Despite the profound effects of antigen exposure on individual antigen-specific clones, the cellular subset structure proved highly elastic, with transient vaccination-induced changes followed by a return to the individual's unique baseline. Notably, the largest influence on immunological variation identified was cohabitation, with 50% less immunological variation between individuals who share an environment (as parents) than between people in the wider population. These results identify local environmental conditions as a key factor in shaping the human immune system.

+view abstract Nature immunology, PMID: 26878114 2016

Van Montfrans JM, Hartman EA, Braun KP, Hennekam EA, Hak EA, Nederkoorn PJ, Westendorp WF, Bredius RG, Kollen WJ, Schölvinck EH, Legger GE, Meyts I, Liston A, Lichtenbelt KD, Giltay JC, Van Haaften G, De Vries Simons GM, Leavis H, Sanders CJ, Bierings MB, Nierkens S, Van Gijn ME Immunology,

To determine the genotype-phenotype association in patients with adenosine deaminase-2 (ADA2) deficiency due to identical homozygous R169Q mutations inCECR1 METHODS: We present a case series of nine ADA2-deficient patients with an identical homozygous R169Q mutation. Clinical and diagnostic data were collected and available MRI studies were reviewed. We performed genealogy and haplotype analyses and measured serum ADA2 activity. ADA2 activity values were correlated to clinical symptoms.

+view abstract Rheumatology (Oxford, England), PMID: 26867732 2016

Wouters MM, Balemans D, Van Wanrooy S, Dooley J, Cibert-Goton V, Alpizar YA, Valdez-Morales EE, Nasser Y, Van Veldhoven PP, Vanbrabant W, Van der Merwe S, Mols R, Ghesquière B, Cirillo C, Kortekaas I, Carmeliet P, Peetermans WE, Vermeire S, Rutgeerts P, Augustijns P, Hellings PW, Belmans A, Vanner S, Bulmer DC, Talavera K, Vanden Berghe P, Liston A, Boeckxstaens GE Immunology,

Histamine sensitizes the nociceptor transient reporter potential channel V1 (TRPV1) and has been shown to contribute to visceral hypersensitivity in animals. We investigated the role of TRPV1 in irritable bowel syndrome (IBS) and evaluated if an antagonist of histamine receptor H1 (HRH1) could reduce symptoms of patients in a randomized placebo-controlled trial.

+view abstract Gastroenterology, PMID: 26752109 2016

Frans G, Meyts I, Devriendt K, Liston A, Vermeulen F, Bossuyt X Immunology,

+view abstract American journal of medical genetics. Part A, PMID: 26701671 2016

Dooley J, Garcia-Perez JE, Sreenivasan J, Schlenner SM, Vangoitsenhoven R, Papadopoulou AS, Tian L, Schonefeldt S, Serneels L, Deroose C, Staats KA, Van der Schueren B, De Strooper B, McGuinness OP, Mathieu C, Liston A Immunology,

The microRNA-29 (miR-29) family is among the most abundantly expressed microRNA in the pancreas and liver. Here, we investigated the function of miR-29 in glucose regulation using miR-29a/b-1 (miR-29a)-deficient mice and newly generated miR-29b-2/c (miR-29c)-deficient mice. We observed multiple independent functions of the miR-29 family, which can be segregated into a hierarchical physiologic regulation of glucose handling. miR-29a, and not miR-29c, was observed to be a positive regulator of insulin secretion in vivo, with dysregulation of the exocytotic machinery sensitizing β-cells to overt diabetes after unfolded protein stress. By contrast, in the liver both miR-29a and miR-29c were important negative regulators of insulin signaling via phosphatidylinositol 3-kinase regulation. Global or hepatic insufficiency of miR-29 potently inhibited obesity and prevented the onset of diet-induced insulin resistance. These results demonstrate strong regulatory functions for the miR-29 family in obesity and diabetes, culminating in a hierarchical and dose-dependent effect on premature lethality.

+view abstract Diabetes, PMID: 26696639 2016

van Nieuwenhuijze A, Liston A Immunology,

Regulatory T cells (Tregs) are characterized by the expression of the master transcription factor forkhead box P3 (Foxp3). Although Foxp3 expression is widely used as a marker of the Treg lineage, recent data show that the Treg fate is determined by a multifactorial signaling pathway, involving cytokines, nuclear factors, and epigenetic modifications. Foxp3 expression and the Treg phenotype can be acquired by T cells in the periphery, illustrating that the Treg fate is not necessarily conferred during thymic development. The two main Treg populations in vivo, thymic Tregs and peripheral Tregs, differ in the pathways followed for their maturation. This chapter discusses the molecular control of Treg induction, in the thymus as well as the periphery.

+view abstract Progress in molecular biology and translational science, PMID: 26615093 2015

Vidović D, Gijsbers R, Quiles-Jimenez A, Dooley J, Van den Haute C, Van der Perren A, Liston A, Baekelandt V, Debyser Z, Carlon MS Immunology,

Gene therapy holds promise to cure a wide range of genetic and acquired diseases. Recent successes in recombinant adeno-associated viral vector (rAAV)-based gene therapy in the clinic for hereditary disorders such as Leber's congenital amaurosis and hemophilia B encouraged us to reexplore an rAAV approach for pulmonary gene transfer. Only limited clinical successes have been achieved for airway gene transfer so far, underscoring the need for further preclinical development of rAAV-based gene therapy for pulmonary disorders. We sought to determine the preclinical potential of an airway-tropic serotype, rAAV2/5, encoding reporter genes when delivered to mouse airways. Although several groups have assessed the stability of gene transfer using a nonintegrating rAAV in mouse airways, long-term stability for more than a year has not been reported. Additionally, an extensive quantitative analysis of the specific cell types targeted by rAAV2/5 using cell-specific markers is lacking. We obtained sustained gene expression in upper and lower airways up to 15 months after vector administration, a substantial proportion of the lifespan of a laboratory mouse. In addition, we demonstrated that readministration of rAAV2/5 to the airways is feasible and increases gene expression 14 months after primary vector administration, despite the presence of circulating neutralizing antibodies. Finally, identification of transduced cell types revealed different subpopulations being targeted by rAAV2/5, with 64% of β-galactosidase-positive cells being ciliated cells, 34% club cells in the conducting airways, and 75% alveolar type II cells in the alveoli at 1 month postinjection. This underscores the therapeutic potential of a nonintegrating rAAV vector to develop a gene therapeutic drug for a variety of pulmonary disorders, such as cystic fibrosis, primary ciliary dyskinesia, and surfactant deficiencies.

+view abstract Human gene therapy, PMID: 26567984 2016

Kara EE, McKenzie DR, Bastow CR, Gregor CE, Fenix KA, Ogunniyi AD, Paton JC, Mack M, Pombal DR, Seillet C, Dubois B, Liston A, MacDonald KP, Belz GT, Smyth MJ, Hill GR, Comerford I, McColl SR Immunology,

IL-17-producing helper T (Th17) cells are critical for host defense against extracellular pathogens but also drive numerous autoimmune diseases. Th17 cells that differ in their inflammatory potential have been described including IL-10-producing Th17 cells that are weak inducers of inflammation and highly inflammatory, IL-23-driven, GM-CSF/IFNγ-producing Th17 cells. However, their distinct developmental requirements, functions and trafficking mechanisms in vivo remain poorly understood. Here we identify a temporally regulated IL-23-dependent switch from CCR6 to CCR2 usage by developing Th17 cells that is critical for pathogenic Th17 cell-driven inflammation in experimental autoimmune encephalomyelitis (EAE). This switch defines a unique in vivo cell surface signature (CCR6(-)CCR2(+)) of GM-CSF/IFNγ-producing Th17 cells in EAE and experimental persistent extracellular bacterial infection, and in humans. Using this signature, we identify an IL-23/IL-1/IFNγ/TNFα/T-bet/Eomesodermin-driven circuit driving GM-CSF/IFNγ-producing Th17 cell formation in vivo. Thus, our data identify a unique cell surface signature, trafficking mechanism and T-cell intrinsic regulators of GM-CSF/IFNγ-producing Th17 cells.

+view abstract Nature communications, PMID: 26511769 2015

Wauters E, Janssens W, Vansteenkiste J, Decaluwé H, Heulens N, Thienpont B, Zhao H, Smeets D, Sagaert X, Coolen J, Decramer M, Liston A, De Leyn P, Moisse M, Lambrechts D Immunology,

Non-small cell lung cancer (NSCLC) is a heterogeneous disorder consisting of distinct molecular subtypes each characterised by specific genetic and epigenetic profiles. Here, we aimed to identify novel NSCLC subtypes based on genome-wide methylation data, assess their relationship with smoking behaviour, age, COPD, emphysema and tumour histopathology, and identify the molecular pathways underlying each subtype.

+view abstract Thorax, PMID: 26349763 2015

Wouters MM, Van Wanrooy S, Nguyen A, Dooley J, Aguilera-Lizarraga J, Van Brabant W, Garcia-Perez JE, Van Oudenhove L, Van Ranst M, Verhaegen J, Liston A, Boeckxstaens G Immunology,

Psychological factors increase the risk to develop postinfectious IBS (PI-IBS), but the mechanisms involved are unclear. As stress affects the immune system, we investigated the potential interaction between psychological factors, the immune response against infectious gastroenteritis (IGE) and the development of IGE and PI-IBS in a large cohort exposed to contaminated drinking water.

+view abstract Gut, PMID: 26071133 2016

Sreenivasan J, Schlenner S, Franckaert D, Dooley J, Liston A Immunology,

Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus.

+view abstract Immunology, PMID: 26059465 2015

Dhaeze T, Stinissen P, Liston A, Hellings N Immunology,

Regulatory T cells (Tregs) are essential in maintaining tolerance to self. Several lines of evidence indicate that Tregs are functionally impaired in a variety of autoimmune diseases, leading to inefficient regulation of autoimmune T cells. Recent findings also suggest that Tregs are essential in controlling autoreactive B cells. The recently identified follicular regulatory T cell subset (TFR) is thought to regulate the production of autoantibodies in the germinal center (GC) response. Here we provide an update on the role of Tregs in controlling the GC response, and whether defective control over B cell tolerance contributes to autoimmunity.

+view abstract Autoimmunity reviews, PMID: 25913138 2015

van Nieuwenhuijze AE, Cauwe B, Klatt D, Humblet-Baron S, Liston A Immunology,

The function of mast cells in allergic and organ-specific autoimmune responses is highly controversial. In the current study, we aimed to dissect the role of mast cells in systemic autoimmunity in the B6(lpr/lpr) mouse, a spontaneous model of systemic lupus erythematosus. B6(lpr/lpr) mice were interbred with C57Bl/6-Kit(W-sh/W-sh) (Wsh) mice, resulting in mast cell deficiency. The offspring from this cross (Lpr/Wsh mice) developed symptoms of lupus of the same severity as B6(lpr/lpr) mice. Loss of mast cells on the Lpr background did not alter autoantibody production, proteinuria, the composition of T and B cell populations or autoimmune pathology. Reduced c-Kit expression did drive expanded splenomegaly and impeded interleukin-4 production by CD4(+) cells, suggesting minor functions for mast cells. In general, we conclude that mast cell deficiency and c-Kit deficiency do not play a role in the pathogenesis of lupus in B6(lpr/lpr) mice.

+view abstract Immunology and cell biology, PMID: 25849740 2015

Van Eyck L, De Somer L, Pombal D, Bornschein S, Frans G, Humblet-Baron S, Moens L, de Zegher F, Bossuyt X, Wouters C, Liston A Immunology,

To identify the underlying genetic defect in a 16-year-old girl with severe early-onset and refractory systemic lupus erythematosus (SLE), IgA deficiency, and mild lower limb spasticity without neuroradiologic manifestations.

+view abstract Arthritis & rheumatology (Hoboken, N.J.), PMID: 25777993 2015

Liston A, Schlenner SM Immunology,

+view abstract The EMBO journal, PMID: 25712479 2015

Staats KA, Pombal D, Schönefeldt S, Van Helleputte L, Maurin H, Dresselaers T, Govaerts K, Himmelreich U, Van Leuven F, Van Den Bosch L, Dooley J, Humblet-Baron S, Liston A Immunology,

Myelin is essential for efficient signal transduction in the nervous system comprising of multiple proteins. The intricacies of the regulation of the formation of myelin, and its components, are not fully understood. Here, we describe the characterization of a novel myelin basic protein (Mbp) mutant mouse, mbp(jive), which spontaneously occurred in our mouse colony. These mice displayed the onset of a shaking gait before 3 weeks of age and seizure onset before 2 months of age. Due to a progressive increase of seizure intensity, mbp(jive) mice experienced premature lethality at around 3 months of age. Mbp mRNA transcript or protein was undetectable and, accordingly, genetic analysis demonstrated a homozygous loss of exons 3 to 6 of Mbp. Peripheral nerve conductance was mostly unimpaired. Additionally, we observed grave structural changes in white matter predominant structures were detected by T1, T2 and diffusion weighted magnetic resonance imaging. We additionally observed that Mbp-deficiency results in an upregulation of Qkl, Mag and Cnp, suggestive of a regulatory feedback mechanism whereby compensatory increases in Qkl have downstream effects on Mag and Cnp. Further research will clarify the role and specifications of this myelin feedback loop, as well as determine its potential role in therapeutic strategies for demyelinating disorders.

+view abstract Brain research, PMID: 25708149 2015

Siggs OM, Miosge LA, Daley SR, Asquith K, Foster PS, Liston A, Goodnow CC Immunology,

Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 25662996 2015

Hu W, Dooley J, Chung SS, Chandramohan D, Cimmino L, Mukherjee S, Mason CE, de Strooper B, Liston A, Park CY Immunology,

Hematopoietic stem cells (HSCs) possess the ability to generate all hematopoietic cell types and to self-renew over long periods, but the mechanisms that regulate their unique properties are incompletely understood. Herein, we show that homozygous deletion of the miR-29a/b-1 bicistron results in decreased numbers of hematopoietic stem and progenitor cells (HSPCs), decreased HSC self-renewal, and increased HSC cell cycling and apoptosis. The HSPC phenotype is specifically due to loss of miR-29a, because miR-29b expression is unaltered in miR-29a/b-1-null HSCs, and only ectopic expression of miR-29a restores HSPC function both in vitro and in vivo. HSCs lacking miR-29a/b-1 exhibit widespread transcriptional dysregulation and adopt gene expression patterns similar to normal committed progenitors. A number of predicted miR-29 target genes, including Dnmt3a, are significantly upregulated in miR-29a/b-1-null HSCs. The loss of negative regulation of Dnmt3a by miR-29a is a major contributor to the miR-29a/b-1-null HSPC phenotype, as both in vitro Dnmt3a short hairpin RNA knockdown assays and a genetic haploinsufficiency model of Dnmt3a restored the frequency and long-term reconstitution capacity of HSCs from miR-29a/b-1-deficient mice. Overall, these data demonstrate that miR-29a is critical for maintaining HSC function through its negative regulation of Dnmt3a.

+view abstract Blood, PMID: 25634742 2015

Franckaert D, Schlenner SM, Heirman N, Gill J, Skogberg G, Ekwall O, Put K, Linterman MA, Dooley J, Liston A Immunology,

The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we have investigated the FVB/N mouse strain, which displays premature thymic involution. We find multiple architectural and cellular features that precede thymic involution, including disruption of the epithelial-endothelial relationship and a progressive loss of pro-T cells. The architectural features, reminiscent of the human thymus, are intrinsic to the non-hematopoietic compartment and are neither necessary nor sufficient for thymic involution. By contrast, the loss of pro-T cells is intrinsic to the hematopoietic compartment, and is sufficient to drive premature involution. These results identify pro-T-cell loss as the main driver of premature thymic involution, and highlight the plasticity of the thymic stroma, capable of maintaining function across diverse inter-strain architectures. This article is protected by copyright. All rights reserved.

+view abstract European journal of immunology, PMID: 25627671 2015

Nguyen TL, Vieira-Silva S, Liston A, Raes J Immunology,

The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.

+view abstract Disease models & mechanisms, PMID: 25561744 2015

Franckaert D, Dooley J, Roos E, Floess S, Huehn J, Luche H, Fehling HJ, Liston A, Linterman MA, Schlenner SM Immunology,

Costimulatory signals by CD28 are critical for thymic regulatory T-cell (Treg) development. To determine the functional relevance of CD28 for peripheral Treg post thymic selection, we crossed the widely used Forkhead box protein 3 (Foxp3)-CreYFP mice to mice bearing a conditional Cd28 allele. Treg-specific CD28 deficiency provoked a severe autoimmune syndrome as a result of a strong disadvantage in competitive fitness and proliferation of CD28-deficient Tregs. By contrast, Treg survival and lineage integrity were not affected by the lack of CD28. This data demonstrate that, even after the initial induction requirement, Treg maintain a higher dependency on CD28 signalling than conventional T cells for homeostasis. In addition, we found the Foxp3-CreYFP allele to be a hypomorph, with reduced Foxp3 protein levels. Furthermore, we report here the stochastic activity of the Foxp3-CreYFP allele in non-Tregs, sufficient to recombine some conditional alleles (including Cd28) but not others (including R26-RFP). This hypomorphism and 'leaky' expression of the Foxp3-CreYFP allele should be considered when analysing the conditionally mutated Treg.Immunology and Cell Biology advance online publication, 23 December 2014; doi:10.1038/icb.2014.108.

+view abstract Immunology and cell biology, PMID: 25533288 2014

Belz G, Tangye SG, Liston A Immunology,

+view abstract Clinical & translational immunology, PMID: 25505946 2012

Van Eyck L, Hershfield MS, Pombal D, Kelly SJ, Ganson NJ, Moens L, Frans G, Schaballie H, De Hertogh G, Dooley J, Bossuyt X, Wouters C, Liston A, Meyts I Immunology,

+view abstract The Journal of allergy and clinical immunology, PMID: 25457153 2015

Papadopoulou AS, Serneels L, Achsel T, Mandemakers W, Callaerts-Vegh Z, Dooley J, Lau P, Ayoubi T, Radaelli E, Spinazzi M, Neumann M, Hébert SS, Silahtaroglu A, Liston A, D'Hooge R, Glatzel M, De Strooper B Immunology,

miR-29 is expressed strongly in the brain and alterations in expression have been linked to several neurological disorders. To further explore the function of this miRNA in the brain, we generated miR-29a/b-1 knockout animals. Knockout mice develop a progressive disorder characterized by locomotor impairment and ataxia. The different members of the miR-29 family are strongly expressed in neurons of the olfactory bulb, the hippocampus and in the Purkinje cells of the cerebellum. Morphological analysis showed that Purkinje cells are smaller and display less dendritic arborisation compared to their wildtype littermates. In addition, a decreased number of parallel fibers form synapses on the Purkinje cells. We identified several mRNAs significantly up-regulated in the absence of the miR-29a/b-1 cluster. At the protein level, however, the voltage-gated potassium channel Kcnc3 (Kv3.3) was significantly up-regulated in the cerebella of the miR-29a/b knockout mice. Dysregulation of KCNC3 expression may contribute to the ataxic phenotype.

+view abstract Neurobiology of disease, PMID: 25315682 2015

Van Eyck L, Liston A, Wouters C Immunology,

+view abstract The New England journal of medicine, PMID: 25075848 2014

Van Eyck L, Liston A, Meyts I Immunology,

+view abstract The New England journal of medicine, PMID: 25075846 2014

Frans G, Moens L, Schaballie H, Van Eyck L, Borgers H, Wuyts M, Dillaerts D, Vermeulen E, Dooley J, Grimbacher B, Cant A, Declerck D, Peumans M, Renard M, De Boeck K, Hoffman I, François I, Liston A, Claessens F, Bossuyt X, Meyts I Immunology,

+view abstract The Journal of allergy and clinical immunology, PMID: 25042743 2014

Gutierrez DA, Fu W, Schonefeldt S, Feyerabend TB, Ortiz-Lopez A, Lampi Y, Liston A, Mathis D, Rodewald HR Immunology,

Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets.

+view abstract Diabetes, PMID: 24917576 2014

Gray DH, Liston A Immunology,

+view abstract Nature immunology, PMID: 24840991 2014

Carlon MS, Vidović D, Dooley J, da Cunha MM, Maris M, Lampi Y, Toelen J, Van den Haute C, Baekelandt V, Deprest J, Verbeken E, Liston A, Gijsbers R, Debyser Z Immunology,

Gene therapy of the lung has the potential to treat life-threatening diseases such as cystic fibrosis and α(1)-antitrypsin or surfactant deficiencies. A major hurdle for successful gene therapy is the development of an immune response against the transgene and/or viral vector. We hypothesized that by targeting the airways in the perinatal period, induction of an immune response against the vector particle could be prevented because of immaturity of the immune system, in turn allowing repeated gene transfer later in adult life to ensure long-term gene expression. Therefore, we readministered recombinant adeno-associated viral vector serotype 5 (rAAV2/5) to mouse airways 3 and 6 months after initial perinatal gene transfer. Our findings demonstrate that perinatal rAAV2/5-mediated gene transfer to the airways avoids a strong immune response. This immunological ignorance allows the readministration of an autologous vector later in adult life, resulting in efficient and stable gene transfer up to 7 months, without evidence of a decrease in transgene expression. Together, these data provide a basis to further explore perinatal gene therapy for pulmonary conditions with adequate gene expression up to 7 months.

+view abstract Human gene therapy, PMID: 24548076 2014

Liston A, Gray DH ,

Regulatory T (TReg) cells constitute an essential counterbalance to adaptive immune responses. Failure to maintain appropriate TReg cell numbers or function leads to autoimmune, malignant and immunodeficient conditions. Dynamic homeostatic processes preserve the number of forkhead box P3-expressing (FOXP3(+)) TReg cells within a healthy range, with high rates of cell division being offset by apoptosis under steady-state conditions. Recent studies have shown that TReg cells become specialized for different environmental contexts, tailoring their functions and homeostatic properties to a wide range of tissues and immune conditions. In this Review, we describe new insights into the molecular controls that maintain the steady-state homeostasis of TReg cells and the cues that drive TReg cell adaptation to inflammation and/or different locations. We highlight how differing local milieu might drive context-specific TReg cell function and restoration of immune homeostasis, and how dysregulation of these processes can precipitate disease.

+view abstract Nature reviews. Immunology, PMID: 24481337 2014

Avau A, Mitera T, Put S, Put K, Brisse E, Filtjens J, Uyttenhove C, Van Snick J, Liston A, Leclercq G, Billiau AD, Wouters CH, Matthys P Immunology,

Systemic juvenile idiopathic arthritis (JIA) is unique among the rheumatic diseases of childhood, given its distinctive systemic inflammatory character. Inappropriate control of innate immune responses following an initially harmless trigger is thought to account for the excessive inflammatory reaction. The aim of this study was to generate a similar systemic inflammatory syndrome in mice by injecting a relatively innocuous, yet persistent, immune system trigger: Freund's complete adjuvant (CFA), containing heat-killed mycobacteria.

+view abstract Arthritis & rheumatology (Hoboken, N.J.), PMID: 24470407 2014

Gomez-Pinilla PJ, Farro G, Di Giovangiulio M, Stakenborg N, Némethova A, de Vries A, Liston A, Feyerabend TB, Rodewald HR, Rodewald HR, Boeckxstaens GE, Matteoli G Immunology,

Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3(Cre/+) , devoid of mast cells but with intact Kit signaling.

+view abstract PloS one, PMID: 24416383 2014

Staats KA, Schönefeldt S, Van Rillaer M, Van Hoecke A, Van Damme P, Robberecht W, Liston A, Van Den Bosch L Immunology,

Beta-2 microglobulin (β2m) is an essential component of the major histocompatibility complex (MHC) class I proteins and in the nervous system β2m is predominantly expressed in motor neurons. As β2m can promote nerve regeneration, we investigated its potential role in amyotrophic lateral sclerosis (ALS) by investigating its expression level as well as the effect of genetically removing β2m on the disease process in mutant superoxide dismutase 1 (SOD1 (G93A) ) mice, a model of ALS. We observed a strong upregulation of β2m in motor neurons during the disease process and ubiquitous removal of β2m dramatically shortens the disease duration indicating that β2m plays an essential and positive role during the disease process. We hypothesize that β2m contributes to plasticity that is essential for muscle reinnervation. Absence of this plasticity will lead to faster muscle denervation and counteracting this process could be a relevant therapeutic target.

+view abstract Frontiers in cellular neuroscience, PMID: 24368896 2013

Siggs OM, Yates AL, Schlenner S, Liston A, Lesage S, Goodnow CC Immunology,

Quantitative reductions in T-cell receptor (TCR) signalling are associated with severe immunodeficiency, yet in certain cases can lead to autoimmunity. Mutation of the tyrosine kinase ZAP-70 can cause either of these outcomes, yet the limits of its signal transducing capacity are not well defined. To investigate these limits we have made use of mrtless: a chemically induced mutation of Zap70 associated with T-cell deficiency. Unlike cells devoid of ZAP-70, mrtless thymocytes showed partial induction of CD5 and CD69, and were sensitive to TCR stimulation with a dose-response shifted approximately 10-fold. However, essentially no T cells were able to compensate for the mrtless mutation and mature beyond the CD4⁺ CD8⁺ stage. This outcome contrasts with a ZAP-70 Src Homology 2 domain mutant strain, where high-affinity self-reactive TCR are positively selected rather than deleted. We discuss these data with respect to current models of TCR signalling in thymocyte selection.

+view abstract Immunology, PMID: 24266404 2014

Amado IF, Berges J, Luther RJ, Mailhé MP, Garcia S, Bandeira A, Weaver C, Liston A, Freitas AA Immunology,

Many species of bacteria use quorum sensing to sense the amount of secreted metabolites and to adapt their growth according to their population density. We asked whether similar mechanisms would operate in lymphocyte homeostasis. We investigated the regulation of the size of interleukin-2 (IL-2)-producing CD4(+) T cell (IL-2p) pool using different IL-2 reporter mice. We found that in the absence of either IL-2 or regulatory CD4(+) T (T reg) cells, the number of IL-2p cells increases. Administration of IL-2 decreases the number of cells of the IL-2p cell subset and, pertinently, abrogates their ability to produce IL-2 upon in vivo cognate stimulation, while increasing T reg cell numbers. We propose that control of the IL-2p cell numbers occurs via a quorum sensing-like feedback loop where the produced IL-2 is sensed by both the activated CD4(+) T cell pool and by T reg cells, which reciprocally regulate cells of the IL-2p cell subset. In conclusion, IL-2 acts as a self-regulatory circuit integrating the homeostasis of activated and T reg cells as CD4(+) T cells restrain their growth by monitoring IL-2 levels, thereby preventing uncontrolled responses and autoimmunity.

+view abstract The Journal of experimental medicine, PMID: 24249704 2013

Cauwe B, Tian L, Franckaert D, Pierson W, Staats KA, Schlenner SM, Liston A Immunology,

Loss of ζ-associated protein 70 (Zap70) results in severe immunodeficiency in humans and mice because of the critical role of Zap70 in T-cell receptor (TCR) signalling. Here we describe a novel mouse strain generated by N-ethyl-N-nitrosourea mutagenesis, with the reduced protein stability (rps) mutation in Zap70. The A243V rps mutation resulted in decreased Zap70 protein and a reduced duration of TCR-induced calcium responses, equivalent to that induced by a 50% decrease in catalytically active Zap70. The reduction of signalling through Zap70 was insufficient to substantially perturb thymic differentiation of conventional CD4 and CD8 T cells, although Foxp3(+) regulatory T cells demonstrated altered thymic production and peripheral homeostasis. Despite the mild phenotype, the Zap70(A243V) variant lies just above the functional threshold for TCR signalling competence, as T cells relying on only a single copy of the Zap70(rps) allele for TCR signalling demonstrated no intracellular calcium response to TCR stimulation. This addition to the Zap70 allelic series indicates that a rate-limiting threshold for Zap70 protein levels exists at which signalling capacity switches from nearly intact to effectively null.

+view abstract Immunology, PMID: 24164480 2014

Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM, Morton V, Sun MY, Jewell D, Coccia M, Harrison O, Maloy K, Schönefeldt S, Bornschein S, Liston A, Simmons A Immunology,

NOD2 is an intracellular sensor that contributes to immune defense and inflammation. Here we investigated whether NOD2 mediates its effects through control of microRNAs (miRNAs). miR-29 expression was upregulated in human dendritic cells (DCs) in response to NOD2 signals, and miR-29 regulated the expression of multiple immune mediators. In particular, miR-29 downregulated interleukin-23 (IL-23) by targeting IL-12p40 directly and IL-23p19 indirectly, likely via reduction of ATF2. DSS-induced colitis was worse in miR-29-deficient mice and was associated with elevated IL-23 and T helper 17 signature cytokines in the intestinal mucosa. Crohn's disease (CD) patient DCs expressing NOD2 polymorphisms failed to induce miR-29 upon pattern recognition receptor stimulation and showed enhanced release of IL-12p40 on exposure to adherent invasive E. coli. Therefore, we suggest that loss of miR-29-mediated immunoregulation in CD DCs might contribute to elevated IL-23 in this disease.

+view abstract Immunity, PMID: 24054330 2013

Staats KA, Hernandez S, Schönefeldt S, Bento-Abreu A, Dooley J, Van Damme P, Liston A, Robberecht W, Van Den Bosch L Immunology,

Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease. Disease pathophysiology is complex and not yet fully understood, but is proposed to include the accumulation of misfolded proteins, as aggregates are present in spinal cords from ALS patients and in ALS model organisms. Increasing autophagy is hypothesized to be protective in ALS as it removes these aggregates. Rapamycin is frequently used to increase autophagy, but is also a potent immune suppressor. To properly assess the role of rapamycin-induced autophagy, the immune suppressive role of rapamycin should be negated.

+view abstract Molecular neurodegeneration, PMID: 24025516 2013

Staats KA, Van Helleputte L, Jones AR, Bento-Abreu A, Van Hoecke A, Shatunov A, Simpson CL, Lemmens R, Jaspers T, Fukami K, Nakamura Y, Brown RH, Van Damme P, Liston A, Robberecht W, Al-Chalabi A, Van Den Bosch L Immunology,

Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease, resulting in selective motor neuron degeneration and paralysis. Patients die approximately 3-5 years after diagnosis. Disease pathophysiology is multifactorial, including excitotoxicity, but is not yet fully understood. Genetic analysis has proven fruitful in the past to further understand genes modulating the disease and increase knowledge of disease mechanisms. Here, we revisit a previously performed microsatellite analysis in ALS and focus on another hit, PLCD1, encoding phospholipase C delta 1 (PLCδ1), to investigate its role in ALS. PLCδ1 may contribute to excitotoxicity as it increases inositol 1,4,5-trisphosphate (IP3) formation, which releases calcium from the endoplasmic reticulum through IP3 receptors. We find that expression of PLCδ1 is increased in ALS mouse spinal cord and in neurons from ALS mice. Furthermore, genetic ablation of this protein in ALS mice significantly increases survival, but does not affect astrogliosis, microgliosis, aggregation or the amount of motor neurons at end stage compared to ALS mice with PLCδ1. Interestingly, genetic ablation of PLCδ1 prevents nuclear shrinkage of motor neurons in ALS mice at end stage. These results indicate that PLCD1 contributes to ALS and that PLCδ1 may be a new target for future studies.

+view abstract Neurobiology of disease, PMID: 23969236 2013

Liston A, Piccirillo CA Immunology,

Murine and human CD4(+) regulatory T (Treg) cells expressing the Forkhead box p3 (Foxp3) transcription factor represent a distinct, highly differentiated CD4(+) T cell lineage that is programmed for dominant self-tolerance and control of immune responses against a variety of foreign antigens. Sustained Foxp3 expression in these cells drives the differentiation of a regulatory phenotype and ensures the stability of their suppressive functions under a variety of inflammatory settings. Some recent studies have challenged this premise and advanced the notion that Foxp3(+) Treg cells manifest a high degree of functional plasticity that enables them to adapt and reprogram into effector-like T cells in response to various inflammatory stimuli. The concept of Treg cell plasticity remains highly contentious, with a high degree of variation in measured plasticity potential observed under different experimental conditions. In this chapter, we propose a unifying model of Treg cell plasticity, which hypothesizes that the stable fates of regulatory and effector T (Teff) cell lineages allow transient plasticity into the alternative lineage under a discrete set of microenvironmental influences associated with, respectively, the initiation and resolution phases of infection. This model utilizes a theoretical framework consistent with the requirements for effective immune regulation and accounts for both the extraordinary long-term stability of Treg cells and the observed fate plasticity.

+view abstract Advances in immunology, PMID: 23886065 2013

Pierson W, Cauwe B, Policheni A, Schlenner SM, Franckaert D, Berges J, Humblet-Baron S, Schönefeldt S, Herold MJ, Hildeman D, Strasser A, Bouillet P, Lu LF, Matthys P, Freitas AA, Luther RJ, Weaver CT, Dooley J, Gray DH, Liston A Immunology,

Foxp3⁺ regulatory T (Treg) cells are a crucial immunosuppressive population of CD4⁺ T cells, yet the homeostatic processes and survival programs that maintain the Treg cell pool are poorly understood. Here we report that peripheral Treg cells markedly alter their proliferative and apoptotic rates to rapidly restore numerical deficit through an interleukin 2-dependent and costimulation-dependent process. By contrast, excess Treg cells are removed by attrition, dependent on the Bim-initiated Bak- and Bax-dependent intrinsic apoptotic pathway. The antiapoptotic proteins Bcl-xL and Bcl-2 were dispensable for survival of Treg cells, whereas Mcl-1 was critical for survival of Treg cells, and the loss of this antiapoptotic protein caused fatal autoimmunity. Together, these data define the active processes by which Treg cells maintain homeostasis via critical survival pathways.

+view abstract Nature immunology, PMID: 23852275 2013

Danso-Abeam D, Zhang J, Dooley J, Staats KA, Van Eyck L, Van Brussel T, Zaman S, Hauben E, Van de Velde M, Morren MA, Renard M, Van Geet C, Schaballie H, Lambrechts D, Tao J, Franckaert D, Humblet-Baron S, Meyts I, Liston A Immunology,

Olmsted syndrome is a rare congenital skin disorder presenting with periorifical hyperkeratotic lesions and mutilating palmoplantar keratoderma, which is often associated with infections of the keratotic area. A recent study identified de novo mutations causing constitutive activation of TRPV3 as a cause of the keratotic manifestations of Olmsted syndrome.

+view abstract Orphanet journal of rare diseases, PMID: 23692804 2013

Ucar O, Tykocinski LO, Dooley J, Liston A, Kyewski B Immunology,

The establishment and maintenance of central tolerance depends to a large extent on the ability of medullary thymic epithelial cells to express a variety of tissue-restricted antigens, the so-called promiscuous gene [removed]pGE). Autoimmune regulator (Aire) is to date the best characterised transcriptional regulator known to at least partially coordinate pGE. There is accruing evidence that the expression of Aire-dependent and -independent genes is modulated by higher order chromatin configuration, epigenetic modifications and post-transcriptional control. Given the involvement of microRNAs (miRNAs) as potent post-transcriptional modulators of gene expression, we investigated their role in the regulation of pGE in purified mouse and human thymic epithelial cells (TECs). Microarray profiling of TEC subpopulations revealed evolutionarily conserved cell type and differentiation-specific miRNA signatures with a subset of miRNAs being significantly upregulated during terminal medullary thymic epithelial cell differentiation. The differential regulation of this subset of miRNAs was correlated with Aire expression and some of these miRNAs were misexpressed in the Aire knockout thymus. In turn, the specific absence of miRNAs in TECs resulted in a progressive reduction of Aire expression and pGE, affecting both Aire-dependent and -independent genes. In contrast, the absence of miR-29a only affected the Aire-dependent gene pool. These findings reveal a mutual interdependence of miRNA and Aire.

+view abstract European journal of immunology, PMID: 23589212 2013

Dooley J, Linterman MA, Liston A Immunology,

MicroRNAs are short, 19-24 nucleotide long, RNA molecules capable of regulating the longevity and, to a lesser extent, translation of messenger RNA (mRNA) species. The function of the microRNA network, and indeed, even that of individual microRNA species, can have profoundly different roles in even a single cell type as the microRNA/mRNA composition evolves. As the role of microRNA within T cells has come under increasing scrutiny, several distinct checkpoints have been demonstrated to have a particular reliance on microRNA regulation. MicroRNAs are arguably most important in T cells during the earliest and last stages in T-cell biology. The first stages of early thymic differentiation have a crucial reliance on the microRNA network, while later stages and peripheral homeostasis are largely, although not completely, microRNA-independent. The most profound effects on T cells are in the activation of effector and regulatory functions of conventional and regulatory T cells, where microRNA deficiency results in a near-complete loss of function. In this review, we focus on integrating the research on individual microRNA into a more global understanding of the function of the microRNA regulatory network in T cells.

+view abstract Immunological reviews, PMID: 23550638 2013

Barizzone N, Pauwels I, Luciano B, Franckaert D, Guerini FR, Cosemans L, Hilven K, Salviati A, Dooley J, Danso-Abeam D, di Sapio A, Cavalla P, Decallonne B, Mathieu C, Liston A, Leone M, Dubois B, D'Alfonso S, Goris A Immunology,

Association studies have implicated common variants in the 12q14.1 region containing CYP27B1 in multiple sclerosis (MS). Rare CYP27B1 mutations cause autosomal recessive vitamin D-dependent rickets type 1, and it has recently been reported that heterozygous CYP27B1 mutations are associated with increased MS susceptibility and lower active vitamin D levels. By sequencing CYP27B1 in 134 multiplex families and genotyping the most common variant R389H in 2,608 MS patients and 1,987 controls from Italy and Belgium (a total of 4,729 individuals), we were unable to replicate these observations. These results provide evidence against a major role for CYP27B1 mutations in MS.

+view abstract Annals of neurology, PMID: 23483640 2013

Hildebrand F, Nguyen TL, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, Liston A, Raes J Immunology,

Murine models are a crucial component of gut microbiome research. Unfortunately, a multitude of genetic backgrounds and experimental setups, together with inter-individual variation, complicates cross-study comparisons and a global understanding of the mouse microbiota landscape. Here, we investigate the variability of the healthy mouse microbiota of five common lab mouse strains using 16S rDNA pyrosequencing.

+view abstract Genome biology, PMID: 23347395 2013

Irla M, Guerri L, Guenot J, Sergé A, Lantz O, Liston A, Imhof BA, Palmer E, Reith W Immunology,

The thymic medulla is dedicated for purging the T-cell receptor (TCR) repertoire of self-reactive specificities. Medullary thymic epithelial cells (mTECs) play a pivotal role in this process because they express numerous peripheral tissue-restricted self-antigens. Although it is well known that medulla formation depends on the development of single-positive (SP) thymocytes, the mechanisms underlying this requirement are incompletely understood. We demonstrate here that conventional SP CD4⁺ thymocytes bearing autoreactive TCRs drive a homeostatic process that fine-tunes medullary plasticity in adult mice by governing the expansion and patterning of the medulla. This process exhibits strict dependence on TCR-reactivity with self-antigens expressed by mTECs, as well as engagement of the CD28-CD80/CD86 costimulatory axis. These interactions induce the expression of lymphotoxin α in autoreactive CD4⁺ thymocytes and RANK in mTECs. Lymphotoxin in turn drives mTEC development in synergy with RANKL and CD40L. Our results show that Ag-dependent interactions between autoreactive CD4⁺ thymocytes and mTECs fine-tune homeostasis of the medulla by completing the signaling axes implicated in mTEC expansion and medullary organization.

+view abstract PloS one, PMID: 23300712 2012

Dugas V, Chabot-Roy G, Beauchamp C, Guimont-Desrochers F, Hillhouse EE, Liston A, Lesage S Immunology,

Immunoregulatory CD4(-)  CD8(-) (double-negative; DN) T cells exhibit a unique antigen-specific mode of suppression, yet the ontogeny of DN T cells remains enigmatic. We have recently shown that 3A9 T-cell receptor (TCR) transgenic mice bear a high proportion of immunoregulatory 3A9 DN T cells, facilitating their study. The 3A9 TCR is positively selected on the H2(k) MHC haplotype, is negatively selected in mice bearing the cognate antigen, namely hen egg lysozyme, and there is absence of positive selection on the H2(b) MHC haplotype. Herein, we take advantage of this well-defined 3A9 TCR transgenic model to assess the thymic differentiation of DN T cells and its impact on determining the proportion of these cells in secondary lymphoid organs. We find that the proportion of DN T cells in the thymus is not dictated by the nature of the MHC-selecting haplotype. By defining DN T-cell differentiation in 3A9 TCR transgenic CD47-deficient mice as well as in mice bearing the NOD.H2(k) genetic background, we further demonstrate that the proportion of 3A9 DN T cells in the spleen is independent of the MHC selecting haplotype. Together, our findings suggest that immunoregulatory DN T cells are subject to rules distinct from those imposed upon CD4 T cells.

+view abstract Immunology, PMID: 23293940 2013

Hox V, Vanoirbeek JA, Alpizar YA, Voedisch S, Callebaut I, Bobic S, Sharify A, De Vooght V, Van Gerven L, Devos F, Liston A, Voets T, Vennekens R, Bullens DM, De Vries A, Hoet P, Braun A, Ceuppens JL, Talavera K, Nemery B, Hellings PW Immunology,

Airway hyperreactivity (AHR) is a key feature of bronchial asthma, and inhalation of irritants may facilitate development of nonallergic AHR. Swimmers exposed to hypochlorite (ClO(-))-containing water show a higher risk of developing AHR. We developed a mouse model in which instillation of ClO(-) before ovalbumin (OVA) induces AHR without bronchial inflammatory cells.

+view abstract American journal of respiratory and critical care medicine, PMID: 23262517 2013

Danso-Abeam D, Staats KA, Franckaert D, Van Den Bosch L, Liston A, Gray DH, Dooley J Immunology,

The autoimmune regulator (Aire), mediates central tolerance of peripheral self. Its activity in thymic epithelial cells (TECs) directs the ectopic expression of thousands of tissue-restricted antigens (TRAs), causing the deletion of autoreactive thymocytes. The molecular mechanisms orchestrating the breadth of transcriptional regulation by Aire remain unknown. One prominent model capable of explaining both the uniquely high number of Aire-dependent targets and their specificity posits that tissue-specific transcription factors induced by Aire directly activate their canonical targets, exponentially adding to the total number of Aire-dependent TRAs. To test this "Hierarchical Transcription" model, we analysed mice deficient in the pancreatic master transcription factor pancreatic and duodenal homeobox 1 (Pdx1), specifically in TECs (Pdx1(ΔFoxn1) ), for the expression and tolerance of pancreatic TRAs. Surprisingly, we found that lack of Pdx1 in TECs did not reduce the transcription of insulin or somatostatin, or alter glucagon expression. Moreover, in a model of thymic deletion driven by a neo-TRA under the control of the insulin promoter, Pdx1 in TECs was not required to affect thymocyte deletion or the generation of regulatory T (Treg) cells. These findings suggest that the capacity of Aire to regulate expression of a huge array of TRAs relies solely on an unconventional transcriptional mechanism, without intermediary transcription factors.

+view abstract European journal of immunology, PMID: 23041971 2013

Romagnoli P, Dooley J, Enault G, Vicente R, Malissen B, Liston A, van Meerwijk JP Immunology,

Thymus-derived CD4(+)Foxp3(+) regulatory T lymphocytes (Tregs) play a central role in the suppression of immune responses to self-antigens and thus avoid autoimmune disorders. It remains unclear if the specialized thymic niche controls the number of differentiating Tregs. We investigated development of murine Tregs from precursors expressing the naturally very large repertoire of TCRs. By analyzing their developmental kinetics, we observed that differentiating Tregs dwell in the thymus ∼1 d longer than their conventional T cell counterparts. By generating hematopoietic chimeras with very low proportions of trackable precursors, we could follow individual waves of developing T cells in the thymus. We observed strongly increased proportions of Tregs at the end of the waves, confirming that these cells are the last to leave the thymus. To assess whether the thymic niche limits Treg development, we generated hematopoietic chimeras in which very few T cell precursors could develop. The substantial increase in the proportion of Tregs we found in these mice suggested a limiting role of the thymic niche; however, this increase was accounted for entirely by the prolonged thymic dwell time of Tregs. We conclude that, when precursors express a naturally diverse TCR repertoire, the thymic niche does not limit differentiation of Tregs.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 22988035 2012

Zuklys S, Mayer CE, Zhanybekova S, Stefanski HE, Nusspaumer G, Gill J, Barthlott T, Chappaz S, Nitta T, Dooley J, Nogales-Cadenas R, Takahama Y, Finke D, Liston A, Blazar BR, Pascual-Montano A, Holländer GA Immunology,

Thymic epithelial cells provide unique cues for the lifelong selection and differentiation of a repertoire of functionally diverse T cells. Rendered microRNA (miRNA) deficient, these stromal cells in the mouse lose their capacity to instruct the commitment of hematopoietic precursors to a T cell fate, to effect thymocyte positive selection, and to achieve promiscuous gene expression required for central tolerance induction. Over time, the microenvironment created by miRNA-deficient thymic epithelia assumes the cellular composition and structure of peripheral lymphoid tissue, where thympoiesis fails to be supported. These findings emphasize a global role for miRNA in the maintenance and function of the thymic epithelial cell scaffold and establish a novel mechanism how these cells control peripheral tissue Ag expression to prompt central immunological tolerance.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 22972926 2012

Liston A, Papadopoulou AS, Danso-Abeam D, Dooley J Immunology,

Recent research into the role of microRNA (miR) in the immune system has identified the miR-29 family as critical regulators of key processes in adaptive immunity. The miR-29 family consists of four members with shared regulatory capacity, namely miR-29a, miR-29b-1, miR-29b-2 and miR-29c. Being expressed in both T and B cells, as well as the main accessory cell types of thymic epithelium and dendritic cells, the miR-29 family has been identified as a putative regulator of immunity due to the predicted suppression of key immunological pathways. The generation of a series of in vivo molecular tools targeting the miR-29 family has identified the critical role of these miR in setting the molecular threshold for three central events in adaptive immunity: (1) control over thymic production of T cells by modulating the threshold for infection-associated thymic involution, (2) creating a neutral threshold for T cell polarization following activation, and (3) setting the threshold for B cell oncogenic transformation. These results identify the miR-29 family as potent immune modulators which have already been exploited through the evolution of a viral mimic and could potentially be exploited further for therapeutic intervention.

+view abstract Cellular and molecular life sciences : CMLS, PMID: 22971773 2012

Danso-Abeam D, Humblet-Baron S, Dooley J, Liston A Immunology,

Mutations in the autoimmune regulator (AIRE) gene lead to autoimmune polyendocrinopathy syndrome type 1 (APS1), characterized by the development of multi-organ autoimmune damage. The mechanism by which defects in AIRE result in autoimmunity has been the subject of intense scrutiny. At the cellular level, the working model explains most of the clinical and immunological characteristics of APS1, with AIRE driving the expression of tissue-restricted antigens (TRAs) in the epithelial cells of the thymic medulla. This TRA expression results in effective negative selection of TRA-reactive thymocytes, preventing autoimmune disease. At the molecular level, the mechanism by which AIRE initiates TRA expression in the thymic medulla remains unclear. Multiple different models for the molecular mechanism have been proposed, ranging from classical transcriptional activity, to random induction of gene expression, to epigenetic tag recognition effect, to altered cell biology. In this review, we evaluate each of these models and discuss their relative strengths and weaknesses.

+view abstract Frontiers in immunology, PMID: 22566805 2011

Dooley J, Liston A Immunology,

The thymus is the primary organ for T-cell differentiation and maturation. Unlike other major organs, the thymus is highly dynamic, capable of undergoing multiple rounds of almost complete atrophy followed by rapid restoration. The process of thymic atrophy, or involution, results in decreased thymopoiesis and emigration of naïve T cells to the periphery. Multiple processes can trigger transient thymic involution, including bacterial and viral infection(s), aging, pregnancy and stress. Intense investigations into the mechanisms that underlie thymic involution have revealed diverse cellular and molecular mediators, with elaborate control mechanisms. This review outlines the disparate pathways through which involution can be mediated, from the transient infection-mediated pathway, tightly controlled by microRNA, to the chronic changes that occur through aging.

+view abstract European journal of immunology, PMID: 22539280 2012

Linterman MA, Liston A, Vinuesa CG Immunology,

Human and mouse studies performed over the last decade have established that follicular helper T (Tfh) cells are a CD4(+) helper subset specialized in the provision of help to B cells. Tfh differentiation is driven by expression of the transcriptional repressor B-cell lymphoma-6 (Bcl-6), which turns on a program that guides T cells close to B-cell areas where Tfh cells first provide help to B cells. Sustained Bcl-6 expression promotes the entry of Tfh cells into follicles and modulates their cytokine expression profile so they can support and select germinal center B cells that have acquired affinity-enhancing mutations in their immunoglobulin genes. Forkhead box 3 protein (Foxp3)(+) regulatory T cells and invariant natural killer T (NKT) cells can also co-opt the Bcl-6-dependent follicular differentiation pathway to migrate into B-cell follicles and regulate antibody responses. The resulting NKT follicular helper cells drive a distinctive type of T-dependent B-cell response to lipid-containing antigens, whereas FoxP3(+) follicular regulatory (Tfr) cells exert a suppressive function on germinal centers. Elucidating how Tfr cells are functionally and numerically regulated and the factors that control the balance between Tfh and Tfr cells is likely to be critical for improved understanding of the pathogenesis and progression of autoimmunity and lymphomas of germinal center origin, and generation of effective vaccines.

+view abstract Immunological reviews, PMID: 22500838 2012

Tian L, Humblet-Baron S, Liston A Immunology,

The potential for self-reactive T cells to cause autoimmune disease is held in check by Foxp3(+) regulatory T cells (Tregs), essential mediators of peripheral immunological tolerance. Tregs have the capacity to suppress multiple branches of the immune system, tightly controlling the different subsets of effector T cells across multiple different tissue environments. Recent genetic experiments have found mutations that disrupt specific Treg: effector T cell relationships, leading to the possibility that subsets of Tregs are required to suppress each subset of effector T cells. Here we review the environmental factors and mechanisms that allow Tregs to suppress specific subsets of effector T cells, and find that a parsimonious explanation of the genetic data can be made without invoking Treg subsets. Instead, Tregs show a functional and chemotactic plasticity based on microenvironmental influences that allows the common pool of cells to suppress multiple distinct immune responses.

+view abstract BioEssays : news and reviews in molecular, cellular and developmental biology, PMID: 22419393 2012

Goris A, Liston A Immunology,

The development of most autoimmune diseases includes a strong heritable component. This genetic contribution to disease ranges from simple Mendelian inheritance of causative alleles to the complex interactions of multiple weak loci influencing risk. The genetic variants responsible for disease are being discovered through a range of strategies from linkage studies to genome-wide association studies. Despite the rapid advances in genetic analysis, substantial components of the heritable risk remain unexplained, either owing to the contribution of an as-yet unidentified, "hidden," component of risk, or through the underappreciated effects of known risk loci. Surprisingly, despite the variation in genetic control, a great deal of conservation appears in the biological processes influenced by risk alleles, with several key immunological pathways being modified in autoimmune diseases covering a broad spectrum of clinical manifestations. The primary translational potential of this knowledge is in the rational design of new therapeutics to exploit the role of these key pathways in influencing disease. With significant further advances in understanding the genetic risk factors and their biological mechanisms, the possibility of genetically tailored (or "personalized") therapy may be realized.

+view abstract Cold Spring Harbor perspectives in biology, PMID: 22383754 2012

Put S, Avau A, Humblet-Baron S, Schurgers E, Liston A, Matthys P Immunology,

+view abstract Blood, PMID: 22308283 2012

Tian L, De Hertogh G, Fedeli M, Staats KA, Schonefeldt S, Humblet-Baron S, Van Den Bosch L, Dellabona P, Dooley J, Liston A Immunology,

With an increasing number of studies demonstrating alterations in T cell microRNA expression during autoimmune disease, modulation of the T cell microRNA network is considered a potential therapeutic strategy. Due to the complex and often opposing interactions of individual microRNA, prioritization of therapeutic targets first requires dissecting the dominant effects of the T cell microRNA network. Initial results utilizing a unidirectional screen suggested that the tolerogenic functions were dominant, with spontaneous colitis resulting from T cell-specific excision of Dicer. Here we performed a bidirectional screen for microRNA function by removing Dicer from the T cells of both wildtype mice and Transforming Growth Factor β (TGFβ) receptor-deficient mice. This allowed the impact of microRNA loss on T cell activation, effector T cell differentiation and autoimmune pathology to be systematically assessed. This bidirectional screen revealed a dominant immunogenic function for T cell microRNA, with potent suppression of T cell activation, IFNγ production and autoimmune pathology in all targeted organs except the colon, where Dicer-dependent microRNA demonstrated a dominant tolerogenic function. These results reverse the original conclusions of microRNA function in T cells by revealing a systemic pro-autoimmune function.

+view abstract Journal of autoimmunity, PMID: 22225602 2012

Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B, Zuklys S, Hollander GA, Matthys P, Gray DH, De Strooper B, Liston A Immunology,

Thymic output is a dynamic process, with high activity at birth punctuated by transient periods of involution during infection. Interferon-α (IFN-α) is a critical molecular mediator of pathogen-induced thymic involution, yet despite the importance of thymic involution, relatively little is known about the molecular integrators that establish sensitivity. Here we found that the microRNA network dependent on the endoribonuclease Dicer, and specifically microRNA miR-29a, was critical for diminishing the sensitivity of the thymic epithelium to simulated infection signals, protecting the thymus against inappropriate involution. In the absence of Dicer or the miR-29a cluster in the thymic epithelium, expression of the IFN-α receptor by the thymic epithelium was higher, which allowed suboptimal signals to trigger rapid loss of thymic cellularity.

+view abstract Nature immunology, PMID: 22179202 2012

Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, Srivastava M, Divekar DP, Beaton L, Hogan JJ, Fagarasan S, Liston A, Smith KG, Vinuesa CG Immunology,

Follicular helper (T(FH)) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of T(FH) numbers maintains self tolerance. We describe a population of Foxp3(+)Blimp-1(+)CD4(+) T cells constituting 10-25% of the CXCR5(high)PD-1(high)CD4(+) T cells found in the germinal center after immunization with protein antigens. These follicular regulatory T (T(FR)) cells share phenotypic characteristics with T(FH) and conventional Foxp3(+) regulatory T (T(reg)) cells yet are distinct from both. Similar to T(FH) cells, T(FR) cell development depends on Bcl-6, SLAM-associated protein (SAP), CD28 and B cells; however, T(FR) cells originate from thymic-derived Foxp3(+) precursors, not naive or T(FH) cells. T(FR) cells are suppressive in vitro and limit T(FH) cell and germinal center B cell numbers in vivo. In the absence of T(FR) cells, an outgrowth of non-antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, the T(FH) differentiation pathway is co-opted by T(reg) cells to control the germinal center response.

+view abstract Nature medicine, PMID: 21785433 2011

Tian L, Altin JA, Makaroff LE, Franckaert D, Cook MC, Goodnow CC, Dooley J, Liston A Immunology,

Foxp3(+) regulatory T cells play a pivotal role in maintaining self-tolerance and immune homeostasis. In the absence of regulatory T cells, generalized immune activation and multiorgan T cell-driven pathology occurs. Although the phenomenon of immunologic control by Foxp3(+) regulatory T cells is well recognized, the comparative effect over different arms of the immune system has not been thoroughly investigated. Here, we generated a cohort of mice with a continuum of regulatory T-cell frequencies ranging from physiologic levels to complete deficiency. This titration of regulatory T-cell depletion was used to determine how different effector subsets are controlled. We found that in vivo Foxp3(+) regulatory T-cell frequency had a proportionate relationship with generalized T-cell activation and Th1 magnitude, but it had a surprising disproportionate relationship with Th2 magnitude. The asymmetric regulation was associated with efficient suppression of Th2 cells through additional regulations on the apoptosis rate in Th2 cells and not Th1 cells and could be replicated by CTLA4-Ig or anti-IL-2 Ab. These results indicate that the Th2 arm of the immune system is under tighter control by regulatory T cells than the Th1 arm, suggesting that Th2-driven diseases may be more responsive to regulatory T-cell manipulation.

+view abstract Blood, PMID: 21715314 2011

Humblet-Baron S, Baron F, Liston A Immunology,

+view abstract Immunology and cell biology, PMID: 21606944 2011

Hubert FX, Kinkel SA, Davey GM, Phipson B, Mueller SN, Liston A, Proietto AI, Cannon PZ, Forehan S, Smyth GK, Wu L, Goodnow CC, Carbone FR, Scott HS, Heath WR Immunology,

To investigate the role of Aire in thymic selection, we examined the cellular requirements for generation of ovalbumin (OVA)-specific CD4 and CD8 T cells in mice expressing OVA under the control of the rat insulin promoter. Aire deficiency reduced the number of mature single-positive OVA-specific CD4(+) or CD8(+) T cells in the thymus, independent of OVA expression. Importantly, it also contributed in 2 ways to OVA-dependent negative selection depending on the T-cell type. Aire-dependent negative selection of OVA-specific CD8 T cells correlated with Aire-regulated expression of OVA. By contrast, for OVA-specific CD4 T cells, Aire affected tolerance induction by a mechanism that operated independent of the level of OVA expression, controlling access of antigen presenting cells to medullary thymic epithelial cell (mTEC)-expressed OVA. This study supports the view that one mechanism by which Aire controls thymic negative selection is by regulating the indirect presentation of mTEC-derived antigens by thymic dendritic cells. It also indicates that mTECs can mediate tolerance by direct presentation of Aire-regulated antigens to both CD4 and CD8 T cells.

+view abstract Blood, PMID: 21505196 2011

Altin JA, Tian L, Liston A, Bertram EM, Goodnow CC, Cook MC Immunology,

Allergy, the most common disease of immune dysregulation, has a substantial genetic component that is poorly understood. Although complete disruption of T-cell receptor (TCR) signaling causes profound immunodeficiency, little is known about the consequences of inherited genetic variants that cause partial quantitative decreases in particular TCR-signaling pathways, despite their potential to dysregulate immune responses and cause immunopathology.

+view abstract The Journal of allergy and clinical immunology, PMID: 21320717 2011

Jeremiah NM, Liston A Immunology,

The discovery of Foxp3 as a reliable marker for murine regulatory T cells has led to an explosion in the development of genetic tools for investigating the biology of regulatory T cells. More than 25 Foxp3-based mouse strains have been published with a variety of characteristics. The effects of Foxp3 expression can be analyzed using null, hypomorphic, conditional, altered control, and over-expression strains. Reporter strains are available to efficiently isolate Foxp3+ cells, with various reporter designs in terms of construct (fusion, replacement, and bicistronic positioning), and reporter system &#40;GFP, YFP, RFP, Luciferase, Thy1.1&#41;. Multifunction strain fusion, replacement, and bicistronic positionings add functional proteins under the control of the Foxp3 promoter allowing induced apoptosis or lineage-specific Cre recombinase activity. In this chapter, we discuss the uses of the cornucopia of genetic tools, in isolation and in combination, for research on Foxp3(+) regulatory T cells.

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 21287332 2011

Liston A Immunology,

+view abstract Immunology and cell biology, PMID: 21209621 2011

Liston A Immunology,

+view abstract Progress in molecular biology and translational science, PMID: 20800826 2010

Liston A Immunology,

+view abstract Progress in molecular biology and translational science, PMID: 20800810 2010

Pierson W, Liston A Immunology,

+view abstract Immunology and cell biology, PMID: 20714338 0

Altin J, Shen C, Liston A Immunology,

Immunoglobulin E (IgE) is a key mediator of anti-parasitic and anti-tumour immunity. However it is also a critical component of atopic and autoimmune diseases, and elevated serum IgE levels are a common indicator of immune dysregulation. In this review we survey the literature on genetic associations of elevated IgE in humans and mice. We find that defects in a limited number of pathways explain the majority of gene associations with IgE. Commonly, elevated IgE is associated with defects in Th bias and B cell class switching, severe T cell tolerance defects and defects in immunity at the host-environment interface. These genetic data demonstrate the mechanisms of control over IgE production and the manner in which they can be circumvented.

+view abstract Blood reviews, PMID: 20637535 0

Liston A, Linterman M, Lu LF Immunology,

MicroRNA are emerging as key regulators of the development and function of adaptive immunity. These 19-24 nucleotide regulatory RNA molecules have essential roles in multiple faucets of adaptive immunity, from regulating the development of the key cellular players to the activation and function in immune responses.

+view abstract Journal of clinical immunology, PMID: 20191314 2010

Lu LF, Liston A Immunology,

The advent of microRNA has potentially uncovered a new level of complexity to be considered for every biological process. Through the modulation of transcription and translation, microRNA alter the basal state of cells and the outcome of stimulatory events. The exact effect of the microRNA network and individual microRNA on cellular processes is only just starting to be dissected. In the immune system, microRNA appear to have a key role in the early differentiation and effector differentiation of B cells. In T cells, microRNA have been shown to be key regulators of the lineage induction pathways, and to have a strong role in the induction, function and maintenance of the regulatory T-cell lineage. MicroRNA are also important for regulating the differentiation of dendritic cells and macrophages via toll-like receptors, with responsibilities in suppressing effector function before activation and enhancing function after stimulation. In addition to regulating key processes in the immune system, microRNA may also represent an archaic immune system themselves. Small interfering RNA of viral origin has been shown to function as an intracellular mediator in the suppression of viral infection in eukaryotes as diverse as plants, insects, nematodes and fungi, and there is growing evidence that endogenous mammalian microRNA can have similar impacts. In this article we speculate that the anti-viral function of microRNA drove the expression of different subsets of microRNA in different cellular lineages, which may have, in turn, led to the myriad of roles microRNA play in lineage differentiation and stability.

+view abstract Immunology, PMID: 19538248 2009

Liston A, Kim JM Immunology,

+view abstract Immunology and cell biology, PMID: 19399027 0

Liston A, Kohler RE, Townley S, Haylock-Jacobs S, Comerford I, Caon AC, Webster J, Harrison JM, Swann J, Clark-Lewis I, Korner H, McColl SR Immunology,

Chemokines are essential for homeostasis and activation of the immune system. The chemokine ligand/receptor pairing CCL20/CCR6 is interesting because these molecules display characteristics of both homeostatic and activation functions. These dual characteristics suggest a role for CCR6 in the priming and effector phases of the immune response. However, while CCR6 has been implicated in the effector phase in several models, a role in the priming phase is less clear. Herein we analyze the role of CCR6 in these two important arms of the immune response during experimental autoimmune encephalomyelitis (EAE). Both CCR6 and its chemokine ligand CCL20 were up-regulated in the draining lymph nodes and spinal cord during EAE, and CCR6 was up-regulated on CD4(+) T cells that had divided following induction of EAE. The functional role of this expression was demonstrated by impaired development of EAE in gene-targeted CCR6-deficient mice and in mice treated either with a neutralizing anti-CCR6 Ab or with a novel receptor antagonist. Inhibition of EAE was due to reduced priming of autoreactive CD4(+) T cells probably as a result of impaired late-stage influx of dendritic cells into draining lymph nodes. This was accompanied by reduced egress of activated lymphocytes from the lymph nodes. These results demonstrate a novel role for CCR6 in the mechanism of autoreactive lymphocyte priming and emigration to the efferent lymphatics.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 19234209 2009

Liston A, Lu LF, O'Carroll D, Tarakhovsky A, Rudensky AY Immunology,

Regulatory T (T reg) cells are indispensable for preventing autoimmunity. Incumbent to this role is the ability of T reg cells to exert their suppressor function under inflammatory conditions. We found that T reg cell-mediated tolerance is critically dependent on the Dicer-controlled microRNA (miRNA) pathway. Depletion of miRNA within the T reg cell lineage resulted in fatal autoimmunity indistinguishable from that in T reg cell-deficient mice. In disease-free mice lacking Dicer in all T cells or harboring both Dicer-deficient and -sufficient T reg cells, Dicer-deficient T reg cells were suppressive, albeit to a lesser degree, whereas their homeostatic potential was diminished as compared with their Dicer-sufficient counterparts. However, in diseased mice, Dicer-deficient T reg cells completely lost suppressor capacity. Thus, miRNA preserve the T reg cell functional program under inflammatory conditions.

+view abstract The Journal of experimental medicine, PMID: 18725526 2008

Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA, Rudensky AY Immunology,

Regulatory Foxp3(+) T cells (T(R)) are indispensable for preventing autoimmune pathology in multiple organs and tissues. During thymic differentiation T cell receptor (TCR)-ligand interactions within a certain increased affinity range, in conjunction with gammac-containing cytokine receptor signals, induce Foxp3 expression and thereby commit developing thymocytes to the T(R) lineage. The contribution of distinct MHC class II-expressing accessory cell types to the differentiation process of Foxp3(+) thymocytes remains controversial, because a unique role in this process has been ascribed to either thymic dendritic cells (tDC) or to medullary thymic epithelial cells (mTEC). Furthermore, it was suggested that the thymic medulla, where the bulk of the negative selection of self-reactive thymocytes takes place, provides a specialized microenvironment supporting T(R) differentiation. Here, we report that the cortex, as defined by cortical thymic epithelial cells (cTEC), is sufficient for supporting T(R) differentiation. MHC class II expression restricted to both cTEC and mTEC or to cTEC alone did not significantly affect the numbers of Foxp3(+) thymocytes. Furthermore, genetic or pharmacologic blockade of thymocyte migration resulted in a prominent accumulation of Foxp3(+) thymocytes in the cortex, demonstrating that secondary signals required for Foxp3 up-regulation exist in the cortex. Our results suggest that mTEC or tDC do not serve as a cell type singularly responsible for T(R) differentiation and that neither the cortex nor the medulla exclusively provides an environment suitable for Foxp3 induction. Instead, multiple accessory cell types probably contribute to the thymic generation of regulatory Foxp3(+) T cells.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 18695219 2008

Liston A, Enders A, Siggs OM Immunology,

Partial T-cell immunodeficiencies constitute a heterogeneous cluster of disorders characterized by an incomplete reduction in T-cell number or activity. The immune deficiency component of these diseases is less severe than that of the severe T-cell immunodeficiencies and therefore some ability to respond to infectious organisms is retained. Unlike severe T-cell immunodeficiencies, however, partial immunodeficiencies are commonly associated with hyper-immune dysregulation, including autoimmunity, inflammatory diseases and elevated IgE production. This causative association is counter-intuitive--immune deficiencies are caused by loss-of-function changes to the T-cell component, whereas the coincident autoimmune symptoms are the consequence of gain-of-function changes. This Review details the genetic basis of partial T -cell immunodeficiencies and draws on recent advances in mouse models to propose mechanisms by which a reduction in T-cell numbers or function may disturb the population-dependent balance between activation and tolerance.

+view abstract Nature reviews. Immunology, PMID: 18551129 2008

Liston A Immunology,

+view abstract Immunology and cell biology, PMID: 18301386 0

Siggs OM, Miosge LA, Yates AL, Kucharska EM, Sheahan D, Brdicka T, Weiss A, Liston A, Goodnow CC Immunology,

Null mutations that cripple T cell receptor (TCR) signaling explain rare primary immunodeficiencies, but it is not understood why more common polymorphisms that lead to subtle TCR signaling defects are paradoxically associated with autoimmunity. Here we analyzed how a series of Zap70 variants with step-wise decreases in TCR signaling impacted upon opposing TCR functions of immunity and tolerance. One Zap70 variant, murdock, moderately decreased TCR signaling and thymic selection without compromising immunological tolerance, whereas a more severe Zap70 defect, mrtless, abolished thymic-positive selection and led to immunodeficiency. Signaling capacities between these two thresholds disproportionately compromised negative selection and Foxp3(+) regulatory T cell formation, creating a cellular imbalance between immunogenic and tolerogenic functions that resulted in the excessive production of autoantibodies and immunoglobulin E (IgE). The pleiotropic functions of ZAP-70 and their differential response to graded variation provide a paradigm for understanding the complex outcomes of human genetic variation.

+view abstract Immunity, PMID: 18093540 2007

Liston A, Siggs OM, Goodnow CC Immunology,

Genetic variants of interleukin 2 (IL-2) and its receptor are associated with murine and human susceptibility to Type 1 diabetes, yet the role of IL-2 in controlling pancreatic islet-reactive T cells is unknown. Here, we develop a model where IL-2 deficiency precipitates a breakdown of self-tolerance and progression to diabetes, and its action upon diabetogenic islet-specific CD4 T cells can be tracked. We find that IL-2 is not required for Aire-dependent thymic clonal deletion of high-avidity diabetogenic clones, but is essential for thymic formation of islet-specific Foxp3-expressing CD4 T cells. The absence of IL-2 results in the expansion of low-avidity Foxp3(-) islet-reactive CD4 T cells. The mechanism by which IL-2 prevents diabetes is therefore through the establishment of a repertoire of islet-reactive Foxp3(+) T cells within the thymus, and limitation of the peripheral activation of low-avidity islet-reactive T cells that normally escape thymic negative selection.

+view abstract Immunology and cell biology, PMID: 17372610 2007

Liston A, Farr AG, Chen Z, Benoist C, Mathis D, Manley NR, Rudensky AY Immunology,

Foxp3 is essential for the commitment of differentiating thymocytes to the regulatory CD4(+) T (T reg) cell lineage. In humans and mice with a genetic Foxp3 deficiency, absence of this critical T reg cell population was suggested to be responsible for the severe autoimmune lesions. Recently, it has been proposed that in addition to T reg cells, Foxp3 is also expressed in thymic epithelial cells where it is involved in regulation of early thymocyte differentiation and is required to prevent autoimmunity. Here, we used genetic tools to demonstrate that the thymic epithelium does not express Foxp3. Furthermore, we formally showed that genetic abatement of Foxp3 in the hematopoietic compartment, i.e. in T cells, is both necessary and sufficient to induce the autoimmune lesions associated with Foxp3 loss. In contrast, deletion of a conditional Foxp3 allele in thymic epithelial cells did not result in detectable changes in thymocyte differentiation or pathology. Therefore, in mice the only known role for Foxp3 remains promotion of T reg cell differentiation within the T cell lineage, whereas there is no role for Foxp3 in thymic epithelial cells.

+view abstract The Journal of experimental medicine, PMID: 17353370 2007

Liston A, Rudensky AY Immunology,

The development and maintenance of regulatory T (T-reg) cells is crucial for determining the level of reactivity in the immune system. Until recently, however, surprisingly little was known about the factors involved in the development of these cells in the thymus or the mechanisms that maintain them in the periphery. Studies have now demonstrated that thymic development of T-reg cells is facilitated by TCRs with increased affinity for self-peptide-MHC complexes. Increased TCR affinity alone, however, is not sufficient to support the development of T-reg cells, and external factors such as CD80 and CD86, ligands for co-stimulatory receptor CD28, and interleukin 2 are required. These factors are also needed to maintain the T-reg cell subset in the periphery.

+view abstract Current opinion in immunology, PMID: 17306520 2007

Liston A, Hardy K, Pittelkow Y, Wilson SR, Makaroff LE, Fahrer AM, Goodnow CC Immunology,

T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection underlie organ-specific autoimmune disease in AIRE-deficient people and the non-obese diabetic (NOD) mouse strain

+view abstract Genome biology, PMID: 17239257 2007

Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL Immunology,

Despite the importance of thymic stromal cells to T-cell development, relatively little is known about their biology. Here, we use single-cell analysis of stromal cells to analyze extensive changes in the number and composition of thymic stroma throughout life, revealing a surprisingly dynamic population. Phenotypic progression of thymic epithelial subsets was assessed at high resolution in young mice to provide a developmental framework. The cellular and molecular requirements of adult epithelium were studied, using various mutant mice to demonstrate new cross talk checkpoints dependent on RelB in the cortex and CD40 in the medulla. With the use of Ki67 and BrdU labeling, the turnover of thymic epithelium was found to be rapid, but then diminished on thymic involution. The various defects in stromal turnover and composition that accompanied involution were rapidly reversed following sex steroid ablation. Unexpectedly, mature cortical and medullary epithelium showed a potent capacity to stimulate naive T cells, comparable to that of thymic dendritic cells. Overall, these studies show that the thymic stroma is a surprisingly dynamic population and may have a more direct role in negative selection than previously thought.

+view abstract Blood, PMID: 16896157 2006

Siggs OM, Makaroff LE, Liston A Immunology,

The generation of T cell receptor (TCR) sequence diversity is the strength of adaptive immunity, yet is also the Achilles' heel. To purge highly self-reactive T cells from the immune system, generation of diversity has coevolved with a mechanism of negative selection. Recent studies have revealed new insights addressing the why and how of negative selection by examining situations in which negative selection has failed in human and animals models of autoimmunity. Both thymocyte extrinsic and intrinsic mechanisms are required to restrict the TCR repertoire to a non-autoreactive set. Negative selection also ensures that T cells emerge with receptors that are focussed on the peptide moiety of MHC-peptide complexes.

+view abstract Current opinion in immunology, PMID: 16459069 2006

Liston A, Goodnow CC Immunology,

The cause of common polygenic autoimmune diseases is poorly understood because of genetic and cellular complexity in humans and animals. We have investigated the mechanisms of two genetic causes of organ-specific autoimmunity by tracking the fate of high avidity organ-specific CD4 T cells using a transgenic mouse model. Firstly, we have found that an Idd-associated duster of loci from the NOD strain causes a T cell intrinsic failure to delete during in vivo encounter with high-avidity autoantigen, a trait distinguished by the failure to induce the pro-apoptotic gene Bim. Secondly, we have found that inactivation of the autoimmune regulator (Aire) gene reduces the level of thymic expression of organ-specific genes, in a gene-dose dependent manner. In this paper we describe a model relating efficiency of thymic deletion and susceptibility to autoimmunity. Using this model, subtle quantitative trait loci can have an additive effect on each of the parameters of thymic deletion, and the result of interaction between subtle modifications in the multiple parameters can result in large changes in the susceptibility to autoimmunity.

+view abstract Novartis Foundation symposium, PMID: 15999807 2005

Liston A, Lesage S, Gray DH, Boyd RL, Goodnow CC Immunology,

The cause of common organ-specific autoimmune diseases is poorly understood because of genetic and cellular complexity in humans and animals. Recent advances in the understanding of the mechanisms of the defects underlying autoimmune disease in autoimmune polyendocrinopathy syndrome type 1 and non-obese diabetic mice suggest that failures in central tolerance play a key role in predisposition towards organ-specific autoimmunity. The lessons from such rare monogenic autoimmune disorders and well-characterized polygenic traits demonstrate how subtle quantitative trait loci can result in large changes in the susceptibility to autoimmunity. These data allow us to propose a model relating efficiency of thymic deletion to T-cell tolerance and susceptibility to autoimmunity.

+view abstract Immunological reviews, PMID: 15790352 2005

Liston A, Lesage S, Gray DH, O'Reilly LA, Strasser A, Fahrer AM, Boyd RL, Wilson J, Baxter AG, Gallo EM, Crabtree GR, Peng K, Wilson SR, Goodnow CC Immunology,

The cause of common polygenic autoimmune diseases is not understood because of genetic and cellular complexity. Here, we pinpoint the action of a subset of autoimmune susceptibility loci in the NOD mouse strain linked to D1mit181, D2mit490, D7mit101, and D15mit229, which cause a generalized resistance to thymic deletion in vivo that applies equally to Aire-induced organ-specific gene products in the thymic medulla and to systemic antigens expressed at high levels throughout the thymus and affects CD4(+), CD4(+)8(+), and CD4(+)25(+) thymocytes. Resistance to thymic deletion does not reflect a general deficit in TCR signaling to calcineurin- or ERK-induced genes, imbalance in constitutive regulators of apoptosis, nor excessive signaling to prosurvival genes but is distinguished by failure to induce the proapoptotic gene and protein, Bim, during in vivo encounter with high-avidity autoantigen. These findings establish defects in thymic deletion and Bim induction as a key mechanism in the pathogenesis of autoimmunity.

+view abstract Immunity, PMID: 15589170 2004

Liston A, Gray DH, Lesage S, Fletcher AL, Wilson J, Webster KE, Scott HS, Boyd RL, Peltonen L, Goodnow CC Immunology,

Inactivation of the autoimmune regulator (Aire) gene causes a rare recessive disorder, autoimmune polyendocrine syndrome 1 (APS1), but it is not known if Aire-dependent tolerance mechanisms are susceptible to the quantitative genetic changes thought to underlie more common autoimmune diseases. In mice with a targeted mutation, complete loss of Aire abolished expression of an insulin promoter transgene in thymic epithelium, but had no effect in pancreatic islets or the testes. Loss of one copy of Aire diminished thymic expression of the endogenous insulin gene and the transgene, resulting in a 300% increase in islet-reactive CD4 T cells escaping thymic deletion in T cell receptor transgenic mice, and dramatically increased progression to diabetes. Thymic deletion induced by antigen under control of the thyroglobulin promoter was abolished in Aire homozygotes and less efficient in heterozygotes, providing an explanation for thyroid autoimmunity in APS1. In contrast, Aire deficiency had no effect on thymic deletion to antigen controlled by a systemic H-2K promoter. The sensitivity of Aire-dependent thymic deletion to small reductions in function makes this pathway a prime candidate for more subtle autoimmune quantitative trait loci, and suggests that methods to increase Aire activity would be a potent strategy to lower the incidence of organ-specific autoimmunity.

+view abstract The Journal of experimental medicine, PMID: 15492124 2004

Liston A, McColl S Immunology,

It is well known that microbial pathogens are able to subvert the host immune system in order to increase microbial replication and propagation. Recent research indicates that another arm of the immune response, that of the chemokine system, is also subject to this sabotage, and is undermined by a range of microbial pathogens, including viruses, bacteria, and parasites. Currently, it is known that the chemokine system is being challenged by a number of mechanisms, and still more are likely to be discovered with further research. Here we first review the general mechanisms by which microbial pathogens bypass mammalian chemokine defences. Broadly, these can be grouped as viral chemokine interacting proteins, microbial manipulation of host chemokine and chemokine receptor expression, microbial blockade of host chemokine receptor signalling, and the largely hypothetical mechanisms of microbial enhancement of host anti-chemokine networks (including digestion, antagonism, and neutralisation of host chemokines and chemokine receptors). We then discuss the potential results of these interactions in terms of outcome of infection.

+view abstract BioEssays : news and reviews in molecular, cellular and developmental biology, PMID: 12717818 2003

Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC Immunology,

Autoimmune polyendocrinopathy syndrome type 1 is a recessive Mendelian disorder resulting from mutations in a novel gene, AIRE, and is characterized by a spectrum of organ-specific autoimmune diseases. It is not known what tolerance mechanisms are defective as a result of AIRE mutation. By tracing the fate of autoreactive CD4+ T cells with high affinity for a pancreatic antigen in transgenic mice with an Aire mutation, we show here that Aire deficiency causes almost complete failure to delete the organ-specific cells in the thymus. These results indicate that autoimmune polyendocrinopathy syndrome 1 is caused by failure of a specialized mechanism for deleting forbidden T cell clones, establishing a central role for this tolerance mechanism.

+view abstract Nature immunology, PMID: 12612579 2003