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Mast cells have been invoked as important players in
immune responses associated with autoimmune diseases.
Based on in vitro studies, or in vivo through the use of Kit
mutant mice, mast cells have been suggested to play
immunological roles in direct antigen presentation to
both CD4+ and CD8+ T cells, in the regulation of T-cell
and dendritic cell migration to lymph nodes, and in Th1
versus Th2 polarization, all of which could significantly
impact the immune response against self-antigens in
autoimmune disease, including type 1 diabetes (T1D).
Until now, the role of mast cells in the onset and inci-
dence of T1D has only been indirectly tested through the
use of low-specificity mast cell inhibitors and activators,
and published studies reported contrasting results. Our
three laboratories have generated independently two
strains of mast cell–deficient nonobese diabetic (NOD)
mice, NOD.Cpa3Cre/+ (Heidelberg) and NOD.KitW-sh/W-sh

(Leuven and Boston), to address the effects of mast cell
deficiency on the development of T1D in the NOD strain.
Our collective data demonstrate that both incidence and
progression of T1D in NOD mice are independent of
mast cells. Moreover, analysis of pancreatic lymph node
cells indicated that lack of mast cells has no discernible
effect on the autoimmune response, which involves both
innate and adaptive immune components. Our results
demonstrate that mast cells are not involved in T1D in
the NOD strain, making their role in this process non-
essential and excluding them as potential therapeutic
targets.

Mast cells are innate immune cells that are the main
effectors in IgE-mediated allergic inflammation. In response
to cross linking of the high-affinity IgE receptor Fc´RI,
mast cells release preformed molecules stored in granules,
such as histamine, proteoglycans, and proteases, that can
contribute to allergic inflammation and to anaphylactic
shock (1). In addition to this well-established role in
IgE-mediated allergic diseases, mast cells, due to the
plethora of factors that they can produce, are believed
to take part in, and modulate, many immune responses,
including autoimmunity. Based on either correlative evi-
dence, for instance, the presence of mast cells in inflamed
tissues, or through the use of mast cell–deficient Kit
mutant mice and mast cell inhibitors, mast cells have
been suggested to play roles in several autoimmune dis-
eases that include thyroid eye disease (2), bullous pem-
phigoid (3), pemphigus vulgaris (4), rheumatoid arthritis
(5), multiple sclerosis (6), systemic sclerosis (7,8), Guillain-
Barre syndrome (9), and, notably, type 1 diabetes (T1D)
(10–13; reviewed in 14,15). However, recent experi-
ments in newly developed Kit-independent mast cell–
deficient mice did not corroborate the proposed roles
for mast cells, at least in models of rheumatoid arthritis
and multiple sclerosis (16). The observed discrepancies
call for a reevaluation of mast cell functions in models
more specific than the traditional Kit mutants (reviewed
in 17,18).
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T1D, which affects ;37 of every 100,000 children
aged 14 years or younger in countries with the highest
incidence (19), results from an autoimmune attack on
insulin-producing b-cells by both cellular and humoral
components of the immune system. In humans, the sus-
ceptibility for T1D is linked to the histocompatibility
leukocyte antigen locus (20). Akin to humans, in the uni-
versally used nonobese diabetic (NOD) mouse model of
T1D, the highest genetic contributor to disease suscepti-
bility maps to the major histocompatibility complex
(21,22). In view of the T-cell dependency of this disease
and the putative roles of mast cells in the control of T-cell
responses, which may occur via direct antigen presenta-
tion to either CD4+ or CD8+ T cells (23–25), by induction
of T-cell migration to lymph nodes (26,27), by control of
dendritic cell activation and migration to lymph nodes
(28–31), or by control of the Th1 versus Th2 skewing
(32–35), it has been postulated that mast cells are likely
important players in the development of T1D (14,15,36).

Earlier studies have reported an association between
mast cells and T1D by showing upregulation of mast cell
genes in the pancreatic lymph nodes (PLNs) of the
BioBreeding (BB) DRlyp/lyp rat (13) or by delaying disease
onset in the BB rat following disodium cromoglycate–
mediated mast cell stabilization (10). In contrast, a third
study found that activation, rather than inhibition, of
mast cells with anti-Fc´RI antibody injections in NOD
mice led to delayed onset of T1D (11). Thus the existing
data are either correlative or conflicting, and hence the
potential role of mast cells in the incidence and progres-
sion of T1D remains largely unknown. Here we report the
analyses of two different mast cell–deficient mouse mod-
els (NOD.Cpa3Cre/+ and NOD.KitW-sh/W-sh), which were in-
dependently generated at three different institutions
(German Cancer Research Center, Harvard Medical School,
and VIB) to evaluate the effects of mast cell deficiency on
the incidence and progression of T1D. Our data show that
the progression or incidence of T1D in NOD mice are un-
affected by mast cell deficiency.

RESEARCH DESIGN AND METHODS

Generation of NOD.Cpa3Cre/+ and NOD.KitW-sh/W-sh

Mice
Carboxypeptidase A3 (Cpa3)Cre/+ mice have been previously
described (16). These mice are wild type for Kit, lack mast
cells in all tissues analyzed, and have no other known defect
in the hematopoietic system, with the exception of a reduc-
tion in basophils. To obtain NOD.Cpa3Cre/+ mice, Cpa3Cre/+

mice were backcrossed into the NOD/ShiLtJ background
(Jax stock number 001976) for at least 12 generations.
KitW-sh/W-sh (“sash”) mice (37) were backcrossed into the
NOD/ShiLtJ background for 11 or 12 generations to gener-
ate two independent lines of NOD.KitW-sh/W-sh mutants.

Determination of Disease Status
Male and female NOD.Cpa3Cre/+, their NOD.Cpa3+/+ litter-
mate controls, and NOD/ShiLtJ controls, all housed in the

same animal facility (German Cancer Research Center, Hei-
delberg, Germany), were monitored for the development of
diabetes starting from 10 weeks of age by weekly assessing
blood glucose levels via tail-vein bleeding using a OneTouch
Ultra glucometer (LifeScan, Inc., Milpitas, CA). Female
NOD.KitW-sh/W-sh, NOD.KitW-sh/+, and NOD.Kit+/+ controls
were monitored for the development of diabetes starting
at 10 weeks of age. Two independent studies were per-
formed with NOD.KitW-sh/W-sh, one at the VIB in Leuven,
Belgium, and one at Harvard Medical School, Boston,
MA. In all studies, mice with glucose concentrations
.250 mg/dL on 2 consecutive days were considered di-
abetic and were immediately killed by CO2 asphyxiation.

Insulitis Scoring and Pancreatic Toluidine Blue
Staining
Pancreata from 15-week-old (Heidelberg) or 10-week-old
(Boston) mice were isolated and fixed in 10% formalin
(Sigma-Aldrich, St. Louis, MO) overnight. Subsequent-
ly, tissues were paraffin embedded and cut into 5 mm
sections. Serial paraffin sections were stained by hema-
toxylin and eosin (H&E) coupled with aldehyde fuchsin as
previously described (38). Images of islets were taken us-
ing a Zeiss Axioplan light microscope coupled with an
AxioCam ICc3 color camera at 2003 or 6303 magnifica-
tions. For the NOD.Cpa3Cre/+ mice (Heidelberg), the scor-
ing was performed using the following scale in a blinded
manner (Supplementary Fig. 1): A) 0, no insulitis; B) 1,
peri-islet insulitis; C) 2, intermediate insulitis; D) 3, intra-
islet insulitis; and E) 4, complete islet insulitis. For the
NOD.KitW-sh/W-sh mice (Boston), scoring was divided into
three categories: insulitis, peri-insulitis, and no insulitis.
Pancreas and ear paraffin sections from NOD.Cpa3Cre/+,
NOD.Cpa3+/+, NOD.KitW-sh/W-sh, and NOD.Kit+/+ mice were
stained with a solution of 0.1% (w/m) toluidine blue
(Sigma-Aldrich) and analyzed by light microscopy for
the presence of metachromatic mast cells.

PLN Immune Cell Analysis
PLNs from 15-week-old mice were isolated, finely minced,
and mechanically sieved through a 40 mm mesh to isolate
immune cells. Isolated single cells were stained for flow
cytometry as previously described (39). The following
antibodies were used: CD45 Alexa Fluor 700 (30-F11;
eBioscience), CD117 (Kit) allophycocyanin (2B8; BD Phar-
mingen), IgE fluorescein isothiocyanate (R35–72; BD Phar-
mingen), CD19 PerCP-Cy5.5 (1D3; BD Pharmingen), CD3
PerCP-Cy5.5 (145–2C11; BioLegend), CD4 allophycocyanin
(RM4.5; eBioscience), CD8 PE-Cy7 (53–6.7; eBioscience),
CD44 fluorescein isothiocyanate (IM7; BD Pharmingen),
CD62L Vio605 (MEL-14; BioLegend), and Foxp3 PE
(FJK-16S; eBioscience). SYTOX blue (Life Technologies)
was used for dead cell exclusion. All samples were measured
using a BD LSRFortessa flow cytometer (BD Biosciences,
Heidelberg) and analyzed using FlowJo X software.

Statistical Analyses
Progression to diabetes and diabetes incidence were
calculated using the product limit method (Kaplan-Meier
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analysis). Statistical significance between a pair of curves
was determined by the log-rank (Mantel-Cox) test using
Prism 5.0 software. Flow cytometry data were analyzed with
two-tailed Student t test. P values #0.05 were considered
statistically significant.

RESULTS

Analysis of Mast Cells in Pancreas and PLNs in Normal
and Mast Cell–Deficient NOD Mice
As mast cell–deficient models, we used Cpa3Cre/+ mice,
which lack mast cells and are wild type for Kit, and
KitW-sh/W-sh mice, which are double deficient for mast cells
and Kit. Cpa3Cre/+mice are targeted knock-in mice that bear
Cre recombinase in the Cpa3 locus. Cre expression under
the control of the endogenous Cpa3 gene leads to genotoxic
ablation of mast cells through a Trp53-dependent mecha-
nism (16,40,41). Cpa3Cre/+ mice are devoid of mucosal and
connective tissue mast cells under steady state and remain
so under various challenges (16,40,41). In KitW-sh/W-sh mice,
an ;3.1 Mb genomic inversion upstream of the Kit locus
disrupts the physiological regulation of Kit transcription
that results in mast cell deficiency (42,43). In addition,
KitW-sh/W-sh have further Kit-related and Kit-unrelated
defects (43). Cpa3Cre/+ or KitW-sh/W-sh mice were backcrossed
onto the NOD background to obtain mast cell–deficient
NOD mouse lines (see RESEARCH DESIGN AND METHODS).

To confirm that NOD.Cpa3Cre/+ mice remained mast
cell–deficient during the progression of insulitis and di-
abetes, we examined NOD.Cpa3Cre/+ and NOD.Cpa3+/+

mice for the presence of mast cells in islets, ears, PLNs,
and the peritoneal cavity (Fig. 1A–I). Histological anal-
ysis of pancreatic islets from 15-week-old female mice, a
time point when autoimmune pathology is progressing,
showed complete lack of mast cells in the islet-immune
infiltrates of both NOD.Cpa3+/+ and NOD.Cpa3Cre/+

mice, indicating that even in mast cell–proficient mice
(NOD.Cpa3+/+), mast cells do not infiltrate the pancreatic
islets (Fig. 1A and B). This was substantiated by an inde-
pendently performed flow cytometric analysis of islets from
10-week-old NOD/ShiLtJ mice (Supplementary Fig. 2). To
substantiate the mast cell–deficient phenotype by histolog-
ical analysis, paraffin-embedded ear sections were stained
with toluidine blue; these showed a large number of mast
cells delineating the epidermis (larger magnification image
depicts mast cells) in the NOD.Cpa3+/+ mice (Fig. 1C and D)
and complete absence of mast cells in the sections of
NOD.Cpa3Cre/+ mice (Fig. 1E). Flow cytometric analysis of
PLN cells showed the presence of mast cells in NOD.Cpa3+/+

mice, supporting previous reports (Fig. 1F) (10,13). How-
ever, these cells were absent in NOD.Cpa3Cre/+ mice (Fig.
1G). Moreover, flow cytometric analysis of peritoneal la-
vage cells revealed that ;4% of all CD45+ cells in the
peritoneal cavity of NOD.Cpa3+/+ mice were mast cells
(Fig. 1H), while mast cells in the peritoneal cavity lavage
ofNOD.Cpa3Cre/+mice were undetectable (Fig. 1I). Toluidine
blue staining of ear paraffin sections confirmed mast cell
deficiency in NOD.KitW-sh/W-sh mice (Supplementary Fig. 3).

Collectively, in NOD.Cpa3+/+, but not in NOD.Cpa3Cre/+

mice, mast cells are present in the skin, in the peritoneal
cavity, and in draining PLNs, but mast cells were not found
in the islet-immune infiltrates.

Incidence and Progression of T1D in Mast Cell–
Deficient Mice
NOD.Cpa3Cre/+ mice, their NOD.Cpa3+/+ littermate con-
trols, and the original NOD/ShiLtJ mice, all housed in
the same animal facility, were monitored for diabetes
starting at 10 weeks of age. In female mice, there was

Figure 1—Establishing mast cell deficiency in NOD.Cpa3Cre/+ mice.
NOD.Cpa3Cre/+ and their NOD.Cpa3+/+ littermate controls were
used to assess mast cell deficiency in pancreas, ear, PLN, and
peritoneal cavity. Pancreata were removed, and paraffin sections
were stained with toluidine blue to test for the presence of mast
cells. Representative images are shown for NOD.Cpa3+/+ (A) and
NOD.Cpa3Cre/+ (B) mice (n = 5 per group). Toluidine blue–stained
ear sections from NOD.Cpa3+/+ (C, 2003 magnification; D, 6303
magnification) and NOD.Cpa3Cre/+ (E) mice. Single-cell suspensions
from the PLN were analyzed by flow cytometry. Mast cells were
identified as CD117 (Kit)+IgE+ cells. Data are representative for
NOD.Cpa3+/+ (F ) (n = 10) and NOD.Cpa3Cre/+ (G) (n = 9) mice. Peri-
toneal lavage cells were analyzed by flow cytometry. Mast cells
were identified as described above (H). Data are representative for
NOD.Cpa3+/+ (G) (n = 8) and NOD.Cpa3Cre/+ (I ) (n = 6) mice.
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no statistically significant difference in the incidence
(;70%) or median onset time (21 vs. 19 weeks) between
NOD.Cpa3Cre/+ mice and their NOD.Cpa3+/+ littermates. A
similar incidence and onset time (20 weeks) was also ob-
served for the NOD/ShiLtJ female mice (Fig. 2A). A parallel
study was conducted for a cohort of male mice, and
again, no differences were found between NOD.Cpa3Cre/+,
NOD.Cpa3+/+, and NOD/ShiLtJ mice (Fig. 2B). Comparing
male and female mice, the sex differences (44) in me-
dian onset of disease were similar for NOD.Cpa3Cre/+ (21
vs. ;35 weeks; P = 0.0015), NOD.Cpa3+/+ (19 vs. 36
weeks; P = 0.0005), and NOD/ShiLtJmice (20 vs. 35 weeks;
P = 0.0149). In keeping with analyses of NOD.Cpa3Cre/+

mice, female NOD mice on the Kit mutant background
generated in Leuven (Fig. 2C) and in Boston (Fig. 2D)
showed no significant differences in diabetes incidence

or onset time comparing NOD.KitW-sh/W-sh and NOD.Kit+/+

littermates.

Insulitis Assessment
Histological analyses were performed on serial paraffin
sections of pancreata stained by H&E together with alde-
hyde fuchsin to assess the level of insulitis in 15-week-
old female and male NOD.Cpa3Cre/+, NOD.Cpa3+/+, and
NOD/ShiLtJ mice. Numbers of islets were counted on five
serial sections, each 5 mm in thickness and with 25 mm
distance between each section. Relative numbers of islets
per mouse did not differ between genotypes (Supplemen-
tary Fig. 1F). Quantification of insulitis showed no differ-
ences in scores comparing female (Fig. 3A) and male
(Fig. 3B) NOD.Cpa3Cre/+, NOD.Cpa3+/+, and NOD/ShiLtJ
mice. Moreover, the degree of islet insulitis was comparable

Figure 2—Diabetes progression in NOD.Cpa3Cre/+ and NOD.KitW-sh/W-sh mice. NOD.Cpa3Cre/+ and NOD.KitW-sh/W-sh mice were monitored
weekly for diabetes (glucose threshold >250 mg/dL) starting at 10 weeks of age. Percent of diabetes incidence in all analyzed female (A)
and male (B) NOD.Cpa3Cre/+ mice and the indicated control genotypes in the experiments conducted in Heidelberg. Percent of diabetes
incidence curve for female NOD.KitW-sh/W-sh and the indicated control genotypes in the experiments conducted in Leuven (C). Percent of
diabetes incidence curve for female NOD.KitW-sh/W-sh and the indicated control genotype in the experiments conducted in Boston (D).
Numbers for each group are indicated in the graph legends for each genotype.

3830 Mast Cells and T1D Diabetes Volume 63, November 2014

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db14-0372/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db14-0372/-/DC1


in female NOD.KitW-sh/W-sh and NOD.Kit+/+littermates (Sup-
plementary Fig. 4).

In summary, these experiments establish that the
incidence, progression, and histopathological degree of
insulitis during diabetes development are unaffected by
the presence or absence of mast cells in the NOD mouse.

Analysis of the Immune Cell Populations and T-Cell
Activation in Mast Cell–Deficient NOD Mice
PLNs from NOD.Cpa3+/+ and NOD.Cpa3Cre/+ mice were col-
lected, and subsequently, cells were counted and analyzed by
flow cytometry. Absolute overall cell numbers (2.8 3 106 6
1.0 [mean 6 SD] for NOD.Cpa3+/+ [n = 4] vs. 2.6 3 106 6
0.5 for NOD.Cpa3Cre/+ [n = 3] mice), absolute numbers of
CD45+ cells (1.8 3 106 6 1.1 for NOD.Cpa3+/+ vs. 2.0 3
106 6 0.5 for NOD.Cpa3Cre/+ mice), percent of CD3+ T
cells (786 11 for NOD.Cpa3+/+ vs. 766 6 for NOD.Cpa3Cre/+

mice), and absolute numbers of CD3+ T cells (1.83 1066 1.1
for NOD.Cpa3+/+ vs. 2.03 106 6 0.5 for NOD.Cpa3Cre/+ mice)
were comparable in mast cell–sufficient and mast cell–
deficient NOD mice (Supplementary Fig. 5). In a larger
cohort of NOD.Cpa3+/+ (n = 8) and NOD.Cpa3Cre/+ (n = 9)

mice, we determined in the PLNs the relative proportions
of T cells, B cells, and dendritic cells (Fig. 4A–C), all of
which were similar in both genotypes. In accordance with
earlier analysis (16), proportions of CD4+ (Fig. 4D) and
CD8+ (Fig. 4E) cells among total T cells and the fraction of
T regulatory cells per total CD4+ T cells (Fig. 4F) were all
not affected by mast cell deficiency.

Immune-driven effector cell differentiation of con-
ventional T cells was assessed by expression analysis
for CD62L and CD44, and T cells were classified into
three categories: naïve cells (CD62L+CD44–), central
memory cells (CD62L+CD44+), and effector memory
cells (CD62L–CD44+) (reviewed in 45). In the CD4
T-cell population (Fig. 4G), percentages of naïve, central
memory, and effector memory subsets were comparable
in NOD.Cpa3Cre/+ and NOD.Cpa3+/+ mice.

Collectively, all analyzed immunological parameters were
similar comparing mast cell–deficient and mast cell–
proficient NOD mice. This is in full agreement with the
lack of evidence for a role of mast cells on incidence, pro-
gression, or degree of insulitis during diabetes development
in the NOD strain.

DISCUSSION

Many years of work by several groups leading to the cur-
rent study have postulated that mast cells are important
players in the initiation and progression of autoimmune
diseases (14,15,36,46,47). In most cases, these studies have
been performed using nonspecific mast cell “stabilizers”
(48) or Kit mutant mice that, although mast cell–deficient,
have other immune (18) and relevant nonimmune abnor-
malities, which include, notably, the recent discovery of the
role of Kit in pancreatic b-cell function (49). Taking into
account the pleiotropic abnormalities in Kit mutant mice,
it is conceivable that several roles that have been attributed
to mast cells are not mast cell–specific, but instead caused
by the Kit mutations. To circumvent this problem, our
group (16) and others (50,51) have generated Kit-
independent mast cell–deficient mice; experiments in
these mice have already challenged the role of mast cells
in antibody-induced autoimmune arthritis and experimen-
tal autoimmune encephalomyelitis (16). The role of mast
cells in the autoimmune destruction of b-cells, or T1D, is
not well understood. In fact, although highly speculated
(14,15,36), the effect of mast cell deficiency on T1D had
never been directly assessed genetically in vivo, with the
exception of an abstract suggesting that NOD.KitW/Wv mice
failed to develop T1D (52). Indirectly, one study tested the
effect of mast cell inhibition using the mast cell stabilizer
disodium cromoglycate and found that this significantly
delayed the onset of T1D (10); however, the specificity
and function of this drug is controversial (48). In contrast,
a second study activated mast cells and basophils via anti-
Fc´RI antibody treatment and reported that this treatment
delayed the onset of T1D (11). It is difficult to interpret
these opposing results, and therefore the role of mast cells
on T1D remained, at best, controversial.

Figure 3—Assessment of islet insulitis in mast cell–deficient mice.
Pancreata from 15-week-old female and male NOD.Cpa3Cre/+ and
NOD.Cpa3+/+ mice were formalin fixed, paraffin embedded, and
stained with H&E plus aldehyde fuchsin to evaluate islet insulitis
(see Supplementary Fig. 1 for scoring). Quantification of islet insu-
litis between female (A) and male (B) NOD.Cpa3Cre/+, NOD.Cpa3+/+,
and NOD/ShiLtJ mice. A total of 17 to 111 islets per group were
scored (n = 5 mice per group).
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In the current study, we assessed the potential ef-
fects of mast cell deficiency on T1D, using both a tradi-
tional Kit mutant (KitW-sh/W-sh) and the more recent
Kit-independent mast cell–deficient Cpa3Cre/+ strain. Both
strains were backcrossed to the NOD background until
the new lines developed diabetes with similar onset
times and rates as the NOD/ShiLtJ mice housed under
identical conditions. We present data from independent

studies conducted in three different institutions, all of
which showed that lack of mast cells did not affect the
incidence and progression of T1D in mast cell–deficient
NOD strains. It was critical to show that NOD.Cpa3Cre/+

mice remained mast cell–deficient during initiation and
progression of the autoimmune attack. Both in the peri-
toneal cavity and in the relevant PLNs, there was a com-
plete absence of mast cells in these NOD mice. Of note,

Figure 4—Immunological analysis of PLNs. Single-cell suspensions of PLNs from 15-week-old NOD.Cpa3Cre/+ and NOD.Cpa3+/+ mice
were analyzed by flow cytometry. Displayed are percent of CD3+ T cells (A), CD19+ B cells (B), and CD11c+ dendritic cells (C ) per total
CD45+ cells; percent of CD4+ (D) and CD8+ (E ) T cells per total T cells; and percent of Foxp3+ regulatory T cells per total CD4+ T cells (F ).
Fractions of naïve cells (CD62L+CD44–), central memory cells (CD62L+CD44+), and effector memory cells (CD62L2CD44+) are shown
among Foxp3–CD4+ T cells (G). In all panels, each symbol represents an individual mouse. Tregs, regulatory T cells.
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the absence of mast cells in the islets of NOD/ShiLtJ mice
or NOD.Cpa3+/+ mice at stages when they were infiltrated
by other immune cells strongly suggests that mast cells
cannot be directly involved in islet immunopathology.
However, the presence of mast cells in secondary lym-
phoid organs, including the PLNs, in mast cell–proficient
NOD mice may reflect an active role of mast cells in the
immunomodulation of the autoimmune response leading
to T1D. After establishing mast cell deficiency in Cpa3Cre/+

mice on the NOD background, we assessed the onset and
severity of diabetes and found that the presence or ab-
sence of mast cells had no impact on the development of
T1D. Furthermore, evaluations of T1D in NOD.KitW-sh/W-sh

mice in Leuven and in Boston showed a similar outcome
regardless of the Kit genotype (wild type or mutant) and,
hence, irrespective of the presence of mast cells. Moreover,
we compared immunological parameters associated with
the autoimmune response in NOD.Cpa3Cre/+ mice and their
littermate controls and found comparable cellularity of
lymphocyte and dendritic cell subsets and in T helper cell
activation.

Collectively, at least two certain conclusions can be
drawn from this study. Firstly, the T1D autoimmune
response in NOD mice is mast cell–independent, as well
as independent from defects associated with hypomorphic
mutations in Kit. Secondly, our study, along with earlier
studies (16), put into question the suggested ability of mast
cells to control or modulate autoimmunity-promoting
adaptive immune response (14,46). Mast cell deficiency
did not affect the levels of conventional or regulatory T
cells, B cells, or dendritic cells in the PLNs; moreover,
T-cell activation, much of which had previously been sug-
gested to be associated with mast cell function, was also
unaffected by mast cell deficiency (23–25,28–35). Obvi-
ously, we refrain from extrapolating negative data obtained
in experiments on arthritis, experimental autoimmune en-
cephalomyelitis (16), and T1D (this study) to the potential
roles of mast cells in other autoimmune responses or
adaptive immunity in general. However, as discussed
recently (17,53), it remains important to reevaluate
mast cell functions, which had previously been suggested
based on in vitro experiments, on the use of inhibitors
or mast cell stabilizers or on the use of Kit mutants by
turning to more conclusive in vivo mouse models for
mast cell deficiency.

Although our results clearly show that mast cell
deficiency does not affect T1D development in NOD
mice, our results suggest, but do not prove, that mast
cells are unimportant in rat and human T1D. In the BB
DRlyp/lyp rat, upregulation of mast cell genes in the PLNs
suggest that mast cell numbers or their activity increase
during the disease (13), and in this model, disease onset
was delayed by mast cell stabilization (10). A link be-
tween T1D progression and mast cell activation has
also more generally been invoked in parasite infections
or during asthma, which might be negatively correlated
to T1D development (11,36,54). Further experiments

should test these ideas by examining the prevalence of
T1D in patients with mastocytosis or by studying the
dependency on mast cells of helminth-mediated T1D in-
hibition. As it stands, mast cells are likely to play important
evolutionarily conserved roles in immunity beyond their
notorious role in allergic diseases. While beneficial mast
cell roles have emerged in venom degradation (55,56)
and in IgE-mediated protection from lethal doses of venom
(57,58), the possible involvement of mast cells in the reg-
ulation of innate and adaptive immune responses and their
roles as effector cells remain enigmatic.
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