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AutoSpill is a principled framework that simplifies
the analysis of multichromatic flow cytometry data
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Compensating in flow cytometry is an unavoidable challenge in the data analysis of

fluorescence-based flow cytometry. Even the advent of spectral cytometry cannot circumvent

the spillover problem, with spectral unmixing an intrinsic part of such systems. The calcu-

lation of spillover coefficients from single-color controls has remained essentially unchanged

since its inception, and is increasingly limited in its ability to deal with high-parameter flow

cytometry. Here, we present AutoSpill, an alternative method for calculating spillover coef-

ficients. The approach combines automated gating of cells, calculation of an initial spillover

matrix based on robust linear regression, and iterative refinement to reduce error. Moreover,

autofluorescence can be compensated out, by processing it as an endogenous dye in an

unstained control. AutoSpill uses single-color controls and is compatible with common flow

cytometry software. AutoSpill allows simpler and more robust workflows, while reducing the

magnitude of compensation errors in high-parameter flow cytometry.
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F luorescently labeled antibodies and flow cytometry have
been the workhorse for single-cell data generation in many
fields of biosciences since its development in the late 1960s1.

The ability to rapidly collect quantitative data from millions of
single cells has driven the understanding of heterogeneity in
complex cellular mixtures, and led to the development of many
fluorescence-based functional assays2–5. The diverse utility of
flow cytometry has driven constant demand for an expansion in
the number of parameters to be simultaneously measured.
Development of novel fluorophores and advances in laser tech-
nology have provided a steady increase in the number of para-
meters that can be measured on state-of-the-art machines,
roughly doubling each decade since the 1970s (Roederer’s Law for
Flow Cytometry)6.

The development from single-color flow cytometry to ultra
high-parameter flow cytometry has allowed an enormous growth
in the data collected per cell. In our own field of immunology,
high-parameter flow cytometry panels have become necessary,
with multiple markers required to identify cellular lineages, major
subsets, and activation markers. A key limitation with high-
parameter flow cytometry, however, is the spectral overlap of
fluorescent dyes7. This results in the spillover of fluorescence to
detectors different from the detector assigned to each dye (in
classical flow cytometry). Removing this unwanted spillover, i.e.
compensating, is a necessary preliminary step in the data analysis
of multi-color flow cytometry.

State-of-the-art flow cytometers, with ~30 channels, make
compensation increasingly difficult as the number of channels
grows, due to the unavoidable overlap between emission spectra
of fluorescent dyes. The difficulty of experimental design has
followed the growth in fluorophore options, to the point where
the development, refinement, and validation of ultra-high para-
meter panels can take months to years of expert input4,8–10.
Indeed, the development of mass cytometry as an alternative
technology is largely driven by its lack of spillover11, as otherwise
the technology compares unfavorably to flow cytometry in several
aspects6.

Unlike the extensive development efforts in fluorophore gen-
eration, fluidics refinement, and laser addition, the basis for
dealing with spillover in flow cytometry has largely remained
unchanged. Current compensation algorithms are based upon the
algorithm for spillover calculation proposed by Bagwell and
Adams, when flow cytometers worked with only a few
fluorophores12. While aspects of data processing have been
refined since then, such as autofluorescence correction, the basic
compensation strategy of calculating the spillover signal between
defined positive and negative populations remains the traditional
approach used across the majority of software packages. These
approaches provide an estimation of the spillover matrix, in
which the degree of spectral spillover between channels is esti-
mated from single-color controls. A compensation matrix is
obtained by inverting the spillover matrix, by which spillover is
compensated out from experimental datasets. While effective in
low-parameter datasets, where spillover is moderate to start with,
in the case of high-parameter data this method often requires
manual adjustment before proceeding with downstream analyses.
This manual tuning entails manipulating a matrix with several
hundred coefficients, which can be challenging and time-con-
suming, thus severely constraining panel design in practice. This
approach requires single-color controls with well-defined positive
and negative populations, which often forces the single-color
controls to differ from those of the actual panel, increasing the
complexity of the experiment.

Spectral flow cytometry is a refinement of classical flow cyt-
ometers, expanding the number of parameters simultaneously

measured. In these systems, spectral unmixing is used to dis-
criminate between the spectra of similar fluorophores. The unmixing
is carried out in a different way, but obtaining the spectral signature
of each fluorophore is also based on single-color controls. As with
compensation, unmixing requires the calculation of spillover to
every detector, with more detectors used than fluorophores. Both
classical flow cytometers, and the spectral systems potentially
replacing them over the upcoming decades, are therefore limited by
the accuracy of spillover calculation.

We have developed an algorithm, AutoSpill, to compensate
flow cytometry data. This approach uses single-color controls,
making it compatible with existing datasets and protocols. Unlike
other compensation approaches, however, it calculates spillover
coefficients by means of robust linear models. This method
produces better estimation of spillover coefficients, without
requiring well-defined positive and negative populations. More-
over, AutoSpill uses this improved estimation of the spillover
matrix only as the initial value for an iterative algorithm that
automatically refines the spillover matrix until achieving, for
practical purposes, virtually perfect compensation for the given
set of controls. In addition to providing optimal spillover matrices
for compensating (or unmixing in spectral systems), and given
that AutoSpill does not rely on well-defined positive and negative
populations, it can calculate the autofluorescence spectrum of
cells by treating it as an extra endogenous dye. Thus, it allows
effective detection and removal of autofluorescence from
experimental data.

A linear modeling approach can equally be used to estimate the
increase in fluorescence noise or spread caused by compensating
spillover. Thus, we also propose a second algorithm, AutoSpread,
which calculates spillover spreading coefficients with linear
models, thereby providing a spillover spreading matrix (SSM)
without the need for well-defined positive and negative popula-
tions in the single-color controls.

Together, AutoSpill and AutoSpread remove limiting con-
straints of traditional compensation methods, easing the pre-
paration of compensation controls in high-parameter flow
cytometry, making errors less likely, and facilitating the practical
implementation of ultra high-parameter flow cytometry. Auto-
Spill is available through open-source code and a freely available
web service (https://autospill.vib.be). AutoSpill and AutoSpread
are available in FlowJo v.10.7.

Results
Tessellation allows robust gating. A critical first step in the
processing of flow cytometry data is the elimination of cellular
debris and other non-cellular contamination. This stage is typi-
cally performed by manual or automated gating of particles with
the expected size and granularity, based on forward scatter and
side scatter. In order to develop a fully automated pipeline, we
sought to encode this initial cellular gating in the AutoSpill
algorithm (Supplementary Software 1). After numerous tests on
data provided by collaborating immunologists, we settled on a
multi-step process with two tessellations, which demonstrated the
required features of robust cell or bead identification. Figure 1
shows the initial gating for one single-color control of each set of
controls. The multi-step process robustly identified the cellular
fractions as desired, regardless of the presence of high amounts of
cellular debris in the HS1 and HS2 datasets (Fig. 1, second and
third columns). It also worked correctly with beads (Be1 dataset),
which exhibited substantially different forward-scatter/side-scat-
ter profiles (Fig. 1, fourth column). For all channels and all
datasets, the gate selected the cell/bead population in the desired
density maximum, without needing manual adjustment.
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Robust linear regression effectively estimates spillover coeffi-
cients. The estimation of spillover coefficients is based on the
comparison between the level of fluorescence detected in the
primary channel (i.e. the detector dedicated to the dye or fluor-
ophore, in classical systems, or the detector with highest signal, in
spectral systems) and the secondary channels (i.e. every other

detector). The linear relationship between the fluorescence levels
of primary and secondary channels is not visible in the usual bi-
exponential scale (Fig. 2, first and third columns), but it becomes
apparent in linear scale (Fig. 2, second and fourth columns). The
linear relationship between the primary and secondary channels
shows that the ratio of fluorescence between the two channels is

Fig. 1 Tessellation allows robust initial gating. Results of gating before the calculation of compensation, using forward (FSC) and side scatter (SSC)
parameters (as shown in the axes), for different samples with cells or beads. Columns show one gate example for each dataset, as indicated. Rows show
the successive steps of the algorithm for each example: a–d bound calculation (dashed black line) and first tessellation (in blue), to identify the density
maxima (blue points, with numbers showing decreasing order of density value); e–h region identification (solid black line) around the target maximum;
i–l second tessellation (in blue), to isolate the target maximum from close maxima inside the region (point color and number as in a–d); m–p calculation of
the boundary gate (black closed curve), by a threshold on density and a convex hull; q–t gate summary provided to package/website users, with same line,
point, and color code as in a–d. Pseudo-color represents cellular density. Raw datasets are available at FlowRepository with IDs FR-FCM-Z2SS (MM1)
[https://flowrepository.org/id/FR-FCM-Z2SS], FR-FCM-Z2ST (HS1 & HS2) [https://flowrepository.org/id/FR-FCM-Z2ST], and FR-FCM-Z2SV (Be1)
[https://flowrepository.org/id/FR-FCM-Z2SV].
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constant across a broad range of fluorescence levels. Thus, a linear
regression can be used to properly identify the slope between the
two channels, that is, the spillover coefficient. As fluorescence
data is heteroskedastic, owing to the effects of photon-counting
statistics, robust linear regression, which efficiently estimates the
relationship while down-weighting outlier points, is more suitable
for this purpose than an ordinary linear regression, which has
increased sensitivity to outliers that violate the normality of the
data. We sought to compare robust linear regression to the tra-
ditional approach. As our robust gating (described above) pro-
vided notable benefits on downstream spillover calculation,
independent of calculation method, we applied the same initial
robust gating strategies to both the traditional and robust linear
regression approaches. Other than the use of improved robust
gating (applied so as to not overestimate the advantages of our
approach), the traditional calculation used the standard approach
of identifying positive and negative peaks and selecting the

median. The robust linear model approach produces a similar
result to that achieved by the “traditional” calculation of a slope
between the median values of the positive and negative
populations12, which is the method usually employed (Fig. 2, first
and second columns). Notably, however, the use of linear
regression also allows the robust calculation of the slope in cases
that the traditional approach was not designed to deal with: low
numbers of positive events (Fig. 2b), without a well-defined
positive population (Fig. 2c), or without well-defined positive and
negative populations (Fig. 2d). The quality of compensation can
be evaluated by the difference between the obtained compensa-
tion and the ideal one, with perfectly compensated data showing
an exactly vertical distribution of data along the primary fluor-
ophore (i.e. zero slope). While traditional estimation of spillover
was successful to some extent in producing low-error compen-
sation, in particular when distinct positive and negative popula-
tions were present (Fig. 2a, first and second columns), errors were

Fig. 2 Robust linear regression effectively estimates spillover coefficients. Each row a–d, e–h, i–l, m–p shows a compensation example from the MM1
dataset, with the primary and secondary channels, indicated, respectively, in the y-axes and x-axes. Compensation results are displayed using positive and
negative populations (first column (a, e, i, m), bi-exponential scale; second column (b, f, j, n), linear scale), and robust linear regression (third column
(c, g, k, o), bi-exponential scale; fourth column (d, h, l, p), linear scale). The linear relationship between the levels of fluorescence is not visible in
bi-exponential scale, but it is very clear in linear scale. Uncompensated data is displayed in blue and compensated data in black. Dim points correspond to
gated-out events, not used in the calculation. Lines in the second and fourth columns (linear scale) show regressions of uncompensated (blue) and
compensated (black) data. The slope coefficient of the latter provided the compensation error (number at the bottom right of each panel). Vertical
green dashed lines are shown as a reference for perfectly compensated data. Raw dataset is available at FlowRepository with ID FR-FCM-Z2SS (MM1)
[https://flowrepository.org/id/FR-FCM-Z2SS].
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identified in particular channels, especially when populations did
not conform to good separation (Fig. 2c, first and second col-
umns). Traditional algorithms struggle in the case of poor
separation between positive and negative populations due to the
requirement to identify two distinct populations to calculate a
slope between (Fig. 2c). In extreme cases this can result in the
identification of two populations within the negative cell cluster,
and grossly wrong slope calculations. AutoSpill, by contrast, treats
data at the single-cell level, utilizing expression data even when
the positive and negative populations are low in frequency or
form a tail from the negative population, driving a large correc-
tion in error (Fig. 2c). In all cases, linear regression resulted in less
compensation error (Fig. 2, third and fourth columns).

Iterative reduction of compensation error yields optimal spil-
lover coefficients. The spillover coefficients obtained in the first
iteration step by robust linear regression produced low-error
estimates of the spillover matrix for all channels (Fig. 3, with
representative example in Fig. S1). While this error level out-
performed that of the traditional approach (Figs. 3 and S1C),
some channels exhibited a residual degree of over compensation
or under compensation (Fig. S1E). While such errors are small,
they nonetheless produce overcompensation or under-
compensation noticeable in bi-exponential scale, which visually
amplifies fluorescence levels close to zero. In a high-parameter
flow cytometry panel, with multiple fluorophores present on
small subpopulations, such errors can accumulate to the point of
making individual channels effectively unusable. We therefore
developed an iterative approach, by which the spillover results
obtained through the robust linear regression approach (Fig. S1E)
were used as the starting point for an additional round of robust
linear regression. This process repeats, successively obtaining
better spillover matrices allowing for further reduction of error in
the compensated data, until pre-defined criteria are met. This
iterative refinement of the spillover matrix reduced the com-
pensation errors to negligible values (Figs. 3 and S1F).

While effective in most cases, this strategy for reducing
compensation error can become compromised when using
controls with low fluorescence levels in the primary channel or
other fluorescence artifacts. Under these circumstances, iterations
gave rise to oscillations in the observed compensation errors
before reaching convergence (Fig. 3a, c). In order to deal with
these extreme cases, we applied a fraction of the update to the
spillover matrix, slowing down convergence and further decreas-
ing compensation error (Fig. 3a, c).

Overall, the iterative refinement of spillover coefficients was
effective at reducing errors in compensation. In the four
representative datasets reported here, the refinement reduced
error from the initial compensation step in 4–6 orders of
magnitude (Fig. 3). This improvement was observed even with
subsampling single color controls to very low numbers of cells
(Fig. S2A), although an increased number of iterations was
required to achieve convergence (Fig. S2B). This low error
amounts to optimal spillover coefficients and compensation
matrices, relative to the quality of the single-color controls used as
input, and therefore it removes a key challenge to successful
compensation in high-dimensional flow cytometry.

Removal of autofluorescence through compensation with an
additional autofluorescence channel. Cells produce auto-
fluorescence, due to the interaction of the constituent organic
molecules with the incoming photons. The amount of auto-
fluorescence varies between cell types, and it is, for example,
higher on cells from the myeloid lineage13,14. This can create
problems in the analysis of certain flow cytometry datasets.

Although the amount of autofluorescence varies between cell
types, the spillover from autofluorescence observed in an
unstained control (Fig. 4a) behaved similarly to the spillover
detected from (exogenous) fluorescent dyes (Fig. 2, first and third
columns), with the key feature of not having well-defined positive
and negative populations. The capacity of AutoSpill to estimate
spillover coefficients without needing these populations allowed
the treatment of autofluorescence as coming from an endogenous
dye, whose single-color control was an unstained control, and
whose fluorescence level was recorded in an extra empty channel
assigned to a dummy dye. We therefore tested the ability of
AutoSpill to compensate out autofluorescence, which was in issue
in the HS1 and HS2 datasets. In effect, we were able to use the
extra channel to measure the intensity of autofluorescence and
greatly reduce its impact onto the other channels (Fig. 4b, c).
Importantly, the empty channel assigned to autofluorescence
worked best when it was the channel with higher level of signal in
the unstained control. This way, the most autofluorescent channel
was sacrificed during panel design to enhance resolution across all
the other channels. As this process of autofluorescence removal is
based on the calculation of spillover in the unstained control,
autofluorescence removal requires all of the single-color control
samples to be run from the same base cell type as the experi-
mental samples. Autofluorescence removal is therefore not pos-
sible in AutoSpill, or any other computational approaches of
which we are aware, when single color controls come from dis-
parate sources (such as using beads or cellular mixes with
different baseline autofluorescence). While autofluorescence
removal is effective in a mixed cellular population in which dif-
ferent cell types have quantitatively different levels of auto-
fluorescence, the process may fail if the sample includes a mixture
cells which qualitatively differ in their autofluorescence spectrum.
Autofluorescence subtraction in samples with minimal auto-
fluorescence could, in principle, add low degree of noise to the
data. We therefore suggest that users manually inspect unstained
samples for variance in fluorescence and only use the auto-
fluorescence subtraction option if autofluorescence is detected in
the sample.

Linear models for estimation of the SSM. Spillover spreading is
defined as the incremental increase in standard deviation of
fluorescent intensity in one parameter caused by the increase in
fluorescent intensity of another parameter. Calculation of SSM
coefficients, while not a standard step in the analysis pipeline, is a
useful tool for machine quality control of consistency in sensi-
tivity and performance, and can aid in minimizing interference
during the design of high parameter flow cytometry panels15. The
SSM coefficients can be calculated by comparing the fluorescent
intensity in the primary detector to the standard deviation of
fluorescence in the secondary detector, for a pair of positive and
negative populations in a single-color control corresponding to
the primary detector15. It can also be demonstrated that the
linearity of this relationship for different sizes

ffiffiffiffiffiffi
ΔF

p
, and that the

estimation of each spillover spreading coefficient is machine-
dependent and compensation-matrix-dependent, but is, however,
dataset independent15. Here, we used quantile partitioning and
linear regression to estimate the linear relationship observed by
Nguyen et al. thereby allowing the inclusion of events above,
below, or in-between the positive and negative populations of the
original approach.

The events of each single-color control were partitioned
quantile-wise in the primary detector, and the standard deviation
of the level of fluorescence was estimated, for each quantile bin, in
every secondary detector. Next, two linear regressions were used
to estimate, first, the standard deviation at zero fluorescence, and
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second, the spillover spreading coefficient. Coefficients deemed
non-significant using an F-test were replaced with zeros, as well
as any negative coefficients. The majority of quantiles were, in
fact, subsamples of the traditional positive and negative
populations, but the inclusion of additional quantiles improved
the precision of AutoSpread in estimating spillover spreading
effects, because all these events conform to the same linear

relationship, assuming that they are on-scale and in the linear
range of the flow cytometer (Fig. 5a). As a result, AutoSpread
accurately estimated spillover spreading for datasets whose
compensation matrices successfully orthogonalized the fluores-
cent signals present in the single-color controls (Fig. 5b).

The adjustment step of AutoSpread (the first regression)
was critical. The adjustment removed the minor quadratic effect
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caused by σ0 in the initial estimates, thereby allowing a more
accurate estimation of the coefficients SSPC . If this adjustment step
were skipped, that is, if the β’s were taken as the spillover
spreading coefficients, then spreading effects would be consis-
tently underestimated. In that case, comparison against the
traditional SSM algorithm would show a clear negative bias
(Fig. 5c). Including the adjustment, step eliminated that bias. For
datasets whose single-color controls were contaminated by
uncompensated signals (e.g. autofluorescence), both AutoSpread
and the traditional SSM calculation may fail to accurately
estimate spillover spreading. Initial gating that actively eliminates
such effects, as well as the use of an extra autofluorescence
channel, can alleviate the problem for both algorithms.

Biological utility of AutoSpill. To demonstrate the biological
utility of improving the spillover matrix, we compared down-
stream analyses resulting from data compensated with AutoSpill
versus the current traditional compensation algorithm. Here we
used flow cytometry panels built to address biological questions
that required antibody sets close to machine limits, or the analysis
of highly autofluorescent cells, i.e., contexts where the greatest
advantages of AutoSpill can be observed. First we compared the
results of gating based on automated compensation calculation
built into FlowJo v10.6 (traditional) with the results achieved by
uploading an AutoSpill-generated spillover matrix into the same
gating experiment in FlowJo. Analyzing 18- and 28-parameter
flow cytometry datasets (MM3 and MM2, respectively), we
identified multiple examples of poor discrimination of well-
described immunological populations due to over- and under-
compensation (Fig. 6a). A substantial fraction of the error
introduced by traditional compensation calculation was due to
inefficiencies in the gating component driving major errors in
spillover calculation (which can be corrected by the user through
manual regating), with the remaining quotient due to residual
errors in spillover calculation even with corrected gates (as seen in
Fig. S1). AutoSpill corrected both aspects of the pipeline and
produced quality results (Fig. 6a). Next, as AutoSpill was incor-
porated into FlowJo v10.7 during the course of manuscript
review, we were able to run a typical user experience test, with
all sample compensation and analysis performed within FlowJo
v10.7 either using the traditional algorithm or with the AutoSpill
option enabled. As with the website pipeline, the FlowJo v10.7
AutoSpill option corrected several obvious compensation flaws
(Fig. 6b). While these errors can readily be identified as
compensation errors, AutoSpill also corrected less obvious
downstream analyses. For example, in the 18-parameter MM3
dataset, where we gated for CD4+CD8−CD25+ lymphocytes,

the population was 10-fold lower using traditional compensation
algorithms than with AutoSpill, despite similar compensation
identified between the CD4, CD8, and CD25 channels (Fig. 6b).
Backgating the missing CD25+ population identified the problem
as undercompensation between the CD25 and CD19 channels,
leading to elimination of more than 90% of the CD25+ popu-
lation during early gating stages (Fig. 6c). Finally, we display two
clear examples of the benefit of autofluorescence reduction, both
based on highly autofluorescent myeloid populations (MM4 and
MM5 datasets). First, microglia, a brain-resident macrophage-like
population, are often described as having low expression of
MHCII during homeostasis16. This is a key difference from brain-
resident macrophages, with high baseline MHCII expression, and
determines the ability of the cell to present antigen to CD4 T cells.
Using traditional compensation algorithms, low expression of
MHCII was detected on 40% of microglia. This figure, however,
dropped to near 0% when autofluorescence reduction was added
(Fig. 6d), consistent with the complete absence of MHCII
expression at the mRNA level in single-cell transcriptome
analysis17. We validated the result by including microglia from
MHCII knockout mice, where a similar level of background
MHCII expression was observed (Fig. 6d), demonstrating that
autofluorescence reduction gave the biologically correct outcome.
As an independent example, we investigated Foxp3 expression,
the key lineage-determining factor of regulatory T cells. Foxp3
expression has also been reported on various autofluorescent
lineages, including thymic epithelium18, lung epithelium9, tumor
cells19, and macrophages20. While expression outside the reg-
ulatory T cell lineage was later demonstrated to be due to auto-
fluorescence artifacts21–24, the incorrect reports resulted in
research misdirection for several years. Using high dimensional
analysis on a Foxp3GFP reporter line and traditional compensa-
tion, low expression of the reporter was detected in 10% of the
CD11b+ macrophage population (Fig. 6e). This expression was
almost entirely eliminated through the use of the auto-
fluorescence correction of AutoSpill, and was validated against
wildtype mice, which do not have a GFP reporter present
(Fig. 6e). Together, these practical examples demonstrate the
added value of AutoSpill to flow cytometry analysis.

Discussion
Flow cytometry has been a revolutionary force in single-cell
analysis. The ability to rapidly analyze protein expression of
millions of cells at single-cell level, coupled with the purification
capacity of fluorescence-activated cell sorting, has provided a
remarkable tool for understanding cellular heterogeneity and
function. Initial limitations were overcome through ingenious
technical developments: the number of fluorescent parameters

Fig. 3 Iterative reduction of compensation error yields optimal spillover coefficients. Each row shows the reduction of compensation error that occurs
over the iterative process for each dataset: a MM1, b HS1, c HS2, and d Be1. Left column displays the comparison of probability density functions of
observed spillover coefficient errors within each dataset (with the density plots displaying the aggregate of individual spillover coefficient errors, i.e. off-
diagonal elements of spillover matrix). Density plots are displayed for the same dataset in each plot, using different approaches: after traditional
compensation, based on identifying positive and negative populations (red), after the first step of AutoSpill (green), and at the final step of the iterative
process of AutoSpill (blue). Errors are displayed in log-scale scale of absolute values, separated for under-compensation (solid lines) and over-
compensation (dashed lines) errors to demonstrate no bias between positive and negative errors. Right column displays the convergence of AutoSpill, with
points showing standard deviations of errors (brown), maximum absolute error (orange), and the moving average of the decrease in the standard deviation
of errors (pink), used to detect oscillations. Linear regressions were carried out in linear scale (triangles) or bi-exponential scale (circles). Empty triangles
(same color code) show compensation errors resulting from calculating spillover coefficients with positive and negative populations. Dashed lines display
the thresholds for changing from linear to bi-exponential (10−2, on the maximum absolute error, to provide better compensation in the bi-exponential scale
used for visualization), reaching convergence (10−4, on the maximum absolute error), and detecting oscillations (10−6, on the moving average of the
decrease in the standard deviation of errors). Raw datasets are available at FlowRepository with IDs FR-FCM-Z2SS (MM1) [https://flowrepository.org/id/
FR-FCM-Z2SS], FR-FCM-Z2ST (HS1 and HS2) [https://flowrepository.org/id/FR-FCM-Z2ST], and FR-FCM-Z2SV (Be1) [https://flowrepository.org/id/
FR-FCM-Z2SV].
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were expanded through the development of new dyes and lasers,
intracellular staining protocols were optimized for the detection of
intracellular (and even post-translationally modified) proteins,
RNAflow techniques allowed measurement at the RNA level25,
and numerous non-antibody-based dyes were able to detect pro-
cesses from redox potential26 to organelle content and status27.
The very utility of the technique has pushed flow cytometry to its

technical barrier—the desire to measure everything on every cell
has driven up the number of parameters that can be distinctly
measured. The constraints imposed by overlapping fluorescent
spectra are arguably the largest limit to the potential of flow
cytometry, yet progress in the mathematical underpinnings of the
analysis have substantially lagged behind the advances in the
chemical and physical bases of the technology.
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Newer single-cell technologies, most notably mass cytometry
and single-cell RNA-Seq, do not have the spillover issues of flow
cytometry. Mass cytometry is a direct competitor to flow cyto-
metry, also primarily utilizing antibody-based detection of single-
cell expression28. As the heavy metal labels do not overlap, mass
cytometry panels can be built up in an modular manner, without
the same design constraints required for flow cytometry29.
While spectral flow cytometry and mass cytometry can readily
run more than 40 parameters, classical flow cytometry experi-
ments struggle to use more than 30 parameters, due to the
challenge of distinguishing signals from each dye or fluorophore.
Nonetheless, flow cytometry has major advantages over mass
cytometry, most notably the speed of data acquisition (around 50-
fold more rapid data collection) and the ability to sort live cells.
The other main competitor to flow cytometry is single-cell RNA-
Seq28. While initially limited to measurement of RNA content in
a semi-quantitative manner, the advent of barcoded antibodies in
protocols such as CITE-Seq30 and Abseq31 provided data directly
comparable to that of flow cytometry. As barcoding approaches
have no practical limit concerning compensation issues, they can
compete with flow cytometry. Even in this case, however, flow
cytometry has distinct technological advantages. In addition to
the previously mentioned advantage of live-cell sorting, flow
cytometry produces data at an unparalleled speed, with more
than 106 cells measured per minute, and with a data format
enabling immediate analysis. In terms of price, current flow
cytometry assays are several orders of magnitude cheaper than
RNA-Seq, with costs on the order of 10 USD per 106 cells28. Flow
cytometry is therefore very much a living technology, with
important advantages over competitor technologies and limited
only by the parameter barrier.

The latest iteration of flow cytometry is spectral flow cyto-
metry, a refinement where more channels (detectors) are used
than dyes. Spectral flow cytometry allows for enhanced dis-
crimination of fluorophores, including those that share a main
channel, by calculating the dye origin through fluorescence at
minor channels where the emission spectrum differs32. Spectral
unmixing (assignment of detector signal to dyes) requires the
generation of an accurate spillover matrix, which can be per-
formed in a mathematically identical manner to the spillover
matrix of traditional flow cytometry, regressing each dye against
each other, but producing a rectangular rather than square spil-
lover matrix (as channels > dyes). While different algorithms have
been proposed on the methodology of applying this spillover
matrix to unmix the spectral data33,34, each benefits from the use
of a more correct spillover matrix. As AutoSpill focuses on
improving the estimation of the spillover coefficients, rather than
on how these coefficients are used, the implementation of the
AutoSpill algorithm to spectral cytometry data can therefore yield
similar benefits to that observed with traditional flow cytometry
data. Indeed, spectral systems may well be the more compelling
use case, as the system encourages dye crowding and the use of

dyes with overlapping spectra. Moreover, spectral systems almost
always have sufficient spectral resolution to orthogonalize auto-
fluorescence from the other fluorescent spectra present in a
sample. It is in these more complex cases where AutoSpill pro-
vides the greatest benefit.

We have presented here a compensation method which
greatly reduces compensation error and expands the possible
number of parameters in flow cytometry experiments. The use
of robust linear regression and iterative refinement allows the
calculation of spillover matrices without the need for using
controls with well-defined positive and negative populations,
thus permitting the use of the actual panel antibodies for the
controls in many experiments. This method can be applied to
any flow panel from 4 to 6 fluorophores up to multi-color
staining sets with more than 30 fluorescent dyes. Given that the
typical number of gated events in single-color controls is at least
in the order of thousands, the amount of data points available
enables this approach to reduce compensation errors to such
small values that the resulting compensation is, in practical
terms, functionally perfect for the given set of single-color
controls. On the other hand, the method needs some level of
fluorescence in the primary channel for each control (or at least
in one of the detectors for spectral systems), to be able to regress
the spillover coefficients.

An added feature of AutoSpill is the ability to compensate
out autofluorescence. Although some methods have been
proposed35–37, typically it is not possible to remove auto-
fluorescence, with the exception of some spectral systems38,39. By
default, AutoSpill does not use an unstained control, but it can be
included and assigned to an extra unused channel in the flow
cytometer. Data collected in this extra channel can be treated as
coming from an endogenous fluorescent dye, which results in the
inclusion of autofluorescence levels in the calculation of spillover
coefficients and ensuing compensation. This optional approach is
recommended when there are non-negligible levels of auto-
fluorescence in one or several channels (as observed from an
unstained control), and one of those high-autofluorescence
channels is not used in the design of the panel. As auto-
fluorescence can be increased by physiological and cellular
processes13,40, the ability to compensate out autofluorescence can
remove distortions appearing as false positives, where cellular
changes are mistakenly identified as altered expression of a
marker, while the signal is in fact caused by autofluorescence.
This approach will be of particular utility in the study of cell
populations with high intrinsic autofluorescence, such as
myeloid-lineage cells13,14 or tumor cells41,42.

In comparison with previous compensation methods, which do
not guarantee an upper bound on the compensation error,
AutoSpill provides a spillover matrix with such a guarantee, given
a set of controls. Therefore, it is possible now to address a new
question: To which extent a set of single-color controls is suffi-
cient to ensure proper compensation of data obtained with a

Fig. 4 Removal of autofluorescence through compensation with an additional autofluorescence channel. a, b Examples, for the unstained control of the
HS1 dataset, of compensation of spillover from the autofluorescence channel (y-axes) to two secondary channels (x-axes). Uncompensated data is
displayed in blue and compensated data in black. Resulting compensation errors (slope coefficients of the regressions on compensated data) are shown at
the bottom left or right of each panel. Vertical green dashed lines are shown as a reference for perfectly compensated data. c–f Compensation of two
channels (one case per row) severely affected by autofluorescence in the HS1 dataset (left, (c, e), without autofluorescence channel; right, (d, f), with
autofluorescence channel), with primary channels in y-axes and the secondary channels in x-axes. Same color and line code, and number with
compensation error, as in a, b. g, h Comparison of probability density functions of spillover skewness in the HS1 dataset, without (g) or with (h)
autofluorescence channel. Errors are displayed in log-scale of absolute values, separated in positive (solid lines) and negative (dashed lines) values to
document any bias between positive and negative errors. Autofluorescence, causing spurious positive spillover, corresponds to anomalously large positive
skewness in the affected channels (left). Raw datasets are available at FlowRepository with IDs FR-FCM-Z2SS (MM1) [https://flowrepository.org/id/FR-
FCM-Z2SS] and FR-FCM-Z2ST (HS1) [https://flowrepository.org/id/FR-FCM-Z2ST].
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complete panel, that is, not just for the set of controls. In our
experience, some panels still require minor modifications of the
spillover matrix, which implies that the single-color controls do
not fully describe the fluorescence properties of the complete
panel, probably because of second-order phenomena such as

secondary fluorescence or other interactions between dyes. Thus,
this remains an open question.

While we demonstrate the utility of this method using
eight representative datasets, the tool has been beta-tested more
than 1000 times over a period of 22 months by more than 100

Fig. 5 Linear models for estimation of the Spillover Spreading Matrix (SSM). Examples are shown for the datasets MM1 (left, a, c, e) and HS1 (right, b, d, f).
a, b Regression carried out over the gated events of one single-color control of each dataset, with no well-defined positive and negative populations, with the
primary and secondary channels as indicated, respectively, in the y- and x-axes. Uncompensated data points are displayed in blue and compensated ones in
black. Regression from uncompensated (resp. compensated) data is displayed with dashed (resp. solid) lines, in black (resp. gray) when the regression
coefficient is significant and positive (resp. non-significant or non-positive). c, d Comparison of probability density functions of the differences between the
results obtained with AutoSpread vs. the usual SSM algorithm. This shows the small difference between both calculations. Values are displayed in log-scale of
the absolute value of the difference, separated in positive (solid lines) and negative (dashed lines) values to assess any bias between positive and negative
errors. e, f Comparison between results obtained with AutoSpread vs the usual SSM algorithm, but with the omission of the first regression in AutoSpread,
which leads to a systematic downward bias in AutoSpread results. Same scale and line code as in c, d. Raw datasets are available at FlowRepository with IDs FR-
FCM-Z2SS (MM1) [https://flowrepository.org/id/FR-FCM-Z2SS] and FR-FCM-Z2ST (HS1) [https://flowrepository.org/id/FR-FCM-Z2ST].
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collaborating immunologists. This has allowed the development
of a robust algorithm, designed to accommodate diverse datasets
and to deal with less-than-perfect data arising in real-world
experiments. The code is open source and is released with a
permissive license, allowing integration into existing flow cyto-
metry analysis pipelines in academia and industry. To increase

access by research communities in immunology and other fields,
we also provide a website (https://autospill.vib.be) that allows the
upload of sets of single-color controls for calculating the spillover
matrix with AutoSpill, produced in formats compatible with
common software for flow cytometry analysis. As we have
demonstrated by including AutoSpill in FlowJo v.10.7, this
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algorithm is suitable for integration into commercial software,
allowing for rapid and widespread uptake of superior flow cyto-
metry compensation.

Methods
Datasets. Collaborating immunologists beta-tested AutoSpill over a period of
22 months, which allowed extensive testing and improvement of the algorithm for
niche cases. Among these datasets, four are used as examples here, covering mouse
cells, human cells, and beads. Compensation using AutoSpill, with default para-
meters, was carried out for each of these four sets of single-color controls: mouse
splenocytes (MM1 dataset), human PBMCs (HS1 and HS2 datasets), and beads
(Be1 dataset). We also analyzed four fully stained datasets, as examples of biological
utility: mouse splenocytes (MM2 and MM3 datasets), and mouse microglia (MM4
and MM5 datasets). Data collection complied with all relevant ethical regulations
for animal research and work with human participants. All animal experiments
were performed in accordance with the University of Leuven Animal Ethics
Committee guidelines or the Babraham Institute Animal Welfare and Ethics
Review Body. Animal husbandry and experimentation complied with existing
European Union and national legislation and local standards. Sample sizes for
mouse experiments were chosen in conjunction with the ethics committees to allow
for robust sensitivity without excessive use. For human experiments, written
informed consent was obtained from all participants and the ethics committee of
University Hospitals Leuven approved the study.

Be1 dataset, beads. UltraComp eBeadsTM Compensation Beads (Thermofisher)
were used to optimize fluorescence compensation settings for multi-color flow
cytometric analysis at a Symphony flow cytometer. UltraComp eBeadsTM were
stained with the following fluorochrome-labeled anti-human antibodies: anti-
CD8–BUV805 (1:200, clone SK1), anti-CD4–BUV496 (1:50, clone SK3), anti-
CD86–BUV737 (1:50, clone 2331 FUN-1), anti-CD141–BUV615-P (1:50, clone
1A4), anti-CD56–BUV563 (1:50, clone NCAM 16.2), anti-CD16–BUV395 (1:50,
clone 3G8), anti-CD123–BB660-P (1:50, clone 7G3), anti-CD80–BB630 (1:50,clone
L307.4), anti-CD21–BV785 (1:50, clone B-ly4), anti-CD27–BV750-P (1:40,clone
L128), anti-BAFF-R–BV650 (1:50, clone 11C1), anti-CD94–BV605 (1:50, clone
HP-3D9), anti-CD40–APC-R700 (1:50, clone 5C3) (all BD bioscience); anti-
CD3–PerCP-Vio700 (1:50, clone REA613) (Miltenyi Biotec); anti-CD57–FITC
(1:100, clone TB01), anti-CD14–PE-Cy5.5 (1:200, clone TuK4), fixable viability dye
eFluor780 (1:1000) (all eBioscience); anti-CD24–BV711 (1:50, clone ML5), anti-
CD19–BV510 (1:25, clone HIB19), anti-HLA-DR–BV570 (1:40, clone L243), anti-
IgM–BV421 (1:100, clone MHM-88), anti-CD11c–APC (1:40, clone 3.9), anti-
CD38–PE/Dazzle 594 (1:100, clone HB-7), anti-CD10–PE-Cy5 (1:50, clone HI10a),
and anti-IgD–PE-Cy7 (1:100, clone IA6-2) (all BioLegend).

HS1 dataset, human peripheral blood mononuclear cells (PBMCs). PBMCs
were isolated from heparinized blood samples of human healthy donors using
Ficoll-Paque density centrifugation (MP biomedicals), frozen and then stored in
liquid nitrogen. Frozen PBMCs were thawed and counted, and cell concentration
was adjusted to 1 × 106 for each single-color control. Cells were plated in a V-
bottom 96-well plate, washed once with PBS (Fisher Scientific) and stained with
live/dead marker and fluorochrome-conjugated antibodies against surface markers:
anti-CD8–BUV805 (1:200, clone SK1), anti-CD4–BUV496 (1:50, clone SK3),
anti-CD95–BUV737 (1:100, clone DX2), anti-CD4–BUV615-P (1:50, SK3), anti-
CD28–BB660-P (1:100, clone CD28.2), anti-CD4–BB630 (1:50, clone SK3),
anti-CD4–BV750-P (1:50, clone SK3), anti-CD31–BV480 (1:100, clone WM59),
anti-CXCR5–BV650 (1:25, clone RF8B2), anti-CD4–PE (1:100, clone SK3), anti-
CD4–PE-Cy5 (1:50, clone SK3) (all BD Biosciences); anti-CD3–PerCP-Vio700
(1:50, clone Rea613) (Miltenyi Biotec); anti-CD3–FITC (1:50, clone UCHT1),
anti-CD4–PE-Cy5.5 (1:50, clone SK3), anti-CCR7–PE-Cy7(1:50, clone 3D12),

anti-CD4–APCeFluor780 (1:50, clone SK3) (all eBioscience); anti-CD4–BV786
(1:50, clone SK3), anti-CD4–BV711 (1:50, clone SK3), anti-CD4–BV605 (1:50,
clone SK3), anti-HLA-DR–BV570 (1:40, clone L243), anti-CD127–BV421 (1:25,
clone A019D5), anti-CD4–PE/Dazzle 594 (1:100, clone SK3), anti-CD4–AF647
(1:50, clone SK3) (all BioLegend).

Samples were stained for 60 min at 4 °C, washed twice in PBS/1% FBS (Tico
Europe), and then fixed and permeabilized with Foxp3 Transcription Factor
Staining Buffer Set (eBioscience), according to manufacturer’s instructions. Cells
were stored overnight at 4 °C and were then acquired on a Symphony flow
cytometer with Diva software (BD Biosciences). A minimum of 5 × 104 events were
acquired for each sample.

HS2 dataset, human PBMCs. Frozen PBMCs from human healthy donors were
processed as for the HS1 datasset and stained with live/dead marker and
fluorochrome-conjugated antibodies against the following surface markers: anti-
CD8–BUV805 (1:200, clone SK1), anti-CD4–BUV496 (1:50, clone SK3), anti-
CD95–BUV737 (1:100, clone DX2), anti-CD28–BB660-P (1:100, clone CD28.2),
anti-ICOS–BB630 (1:50, clone DX29), anti-CXCR3–BV785 (1:25, clone 1C6), anti-
PD-1–BV750-P (1:25, clone EH12.1), anti-CXCR5–BV650 (1:25, clone RF8B2),
anti-CCR2–BV605 (1:25, clone 1D9), anti-CD31–BV480 (1:100, clone WM59) (all
BD Biosciences); anti-CD3–PerCP-Vio700 (1:50, clone REA613) (Miltenyi Biotec);
anti-CD45RA–FITC (1:50, clone HI100), anti-CD14-PE–Cy5.5 (1:200, clone
TuK4), anti-CCR7-PE–Cy7 (1:50, clone 3D12), fixable viability dye eFluor780 (all
eBioscience); anti-CD25–BV711 (1:25, clone BC96), anti-HLA-DR–BV570 (1:40,
clone L243), anti-CD127–BV421 (1:25, clone A019D5), and anti-CCR4–PE/Dazzle
594 (1:100, clone L291H4) (all BioLegend).

Samples were stained for 60 min at 4 °C, washed twice in PBS/1% FBS (Tico
Europe), and then fixed and permeabilized with Foxp3 Transcription Factor
Staining Buffer Set (eBioscience), according to manufacturer’s instructions. Cells
were stained overnight at 4 °C with anti-Ki67–BUV615-P, anti-CTLA-4–PE-Cy5,
anti-RORγt–PE (BD Biosciences), and anti-FOXP3–AF647 (BioLegend) anti-
human intracellular antibody. Samples were acquired on a Symphony flow
cytometer (BD Biosciences).

MM1 dataset, mouse splenocytes. Splenocytes from C57Bl/6 mice were disrupted
with glass slides, filtered through 100 μm mesh, and red blood cells lysed. Cells were
fixed and permeabilized with Foxp3 transcription factor staining buffer set
(eBioscience) according to the manufacturer’s instructions, and stained overnight at
4 °C with Fixable Viability Dye eFluor780 (eBioscience) or the following antibodies:
anti-CD4–BV421 (1:200, clone GK1.5), anti-CD24–BV510 (1:400, clone M1/69),
anti-CD3–BV570 (1:250, clone 145-2C11), anti-CD4–BV605 (1:200, clone RM4-
5), anti-CD3–BV650 (1:400, clone 145-2C11), anti-CD4–BV711 (1:200, clone
GK1.5), anti-CD4–BV785 (1:200, clone GK1.5), anti-CD3–AF488 (1:1000, clone 145-
2C11)/anti-CD4–AF488 (1:200, clone RM4-5)/anti-TCRβ–AF488 (1:2000, clone H57-
597), anti-CD4–PerCP-Cy5.5 (1:200, clone RM4-5), anti-CD4–PE-594 (1:200, clone
RM4-5), anti-CD8–PE-Cy7 (1:2000, clone 53-6.7), anti-MHC-II–AF700 (1:1000,
clone M5/114.15.2) (all Biolegend), anti-CD19–BV750 (1:500, clone 1D3), anti-
CD3–BB630-P (1:1000, clone 145-2C11)/anti-Thy1.2–BB630-P (1:4000, clone 53-2.1),
anti-CD45.2–BB660-P2 (1:1000, clone 104)/anti-CD3–BB660-P2 (1:1000, clone 145-
2C11), anti-TCRβ–BB790-P (1:2000, clone H57-597), anti-CD4–BUV395 (1:200,
clone GK1.5), anti-IgD–BUV496 (1:2000, clone 11-26c.2a), anti-CD3–BUV563
(1:400, clone 145-2C11), anti-CD3–BUV615-P (1:400, clone 145-2C11), anti-
CD19–BUV661 (1:250, clone 1D3), anti-CD21–BUV737 (1:500, clone 7G6), anti-
CD8–BUV805 (1:250, clone 53-6.7) (all BD Biosciences), anti-CD4–PE (1:500, clone
RM4-5)/anti-CD3–PE (1:2000, clone 145-2C11)/anti-CD8–PE (1:500, clone 53-6.7),
anti-IgM–PE-Cy5 (1:2000, clone Il/41), anti-CD3–PE-Cy5.5 (1:8000, clone 145-2C11)
or anti-CD4–APC (1:1000, clone RM4-5) (all eBioscience). For some fluorophores,
multiple antibodies were used in the same compensation control, which is indicated
by slashes. Samples were acquired on a Symphony flow cytometer (BD Biosciences).

Fig. 6 Biological utility of AutoSpill. Downstream analyses of data compensated by either the traditional compensation algorithm or AutoSpill. a Plots were
prepared and compensated using FlowJo v.10.6, using either the default traditional algorithm or uploading the spillover matrix generated by AutoSpill.
Representative flow cytometry plots illustrating errors corrected by AutoSpill (MM2 dataset). b–e All plots were prepared from the same FCS files and
compensated using FlowJo v.10.7, using either the traditional algorithm or the AutoSpill option. b Representative flow cytometry plots illustrating errors
corrected by the AutoSpill option in FlowJo v10.7, c including hierarchical gating for CD4+CD8+CD25+ lymphocytes (MM3 dataset). d The CD4+CD25+
population gated in b was backgated to identify the source of population loss in the traditional algorithm (MM3 dataset). e MHCII expression on known
negative cells (CD4 T cells), known positive cells (CD11b+ splenocytes), and microglia (MM4 dataset). f Percent positive was thresholded using CD4 T cells
as the negative. MHCII knockout microglia we`re used as a true negative staining control. g Foxp3GFP expression on known bimodal cells (CD4+
splenocytes) and CD11b+ macrophages (MM5 dataset). h The positive population was thresholded using the negative CD4 T cell peak. Wildtype mice,
without the GFP transgene, were used as a true negative staining control. Pseudo-color represents cellular density. For gating strategy see Fig. S3. Traditional
and AutoSpill spillover matrices are provided on Mendeley data: [http://dx.doi.org/10.17632/mtdww9hd3m.1]. MM2, MM3, MM4, MM5 Raw datasets are
available at FlowRepository with IDs FR-FCM-Z2SW (MM2) [https://flowrepository.org/id/FR-FCM-Z2SW], FR-FCM-Z2SJ (MM3) [https://
flowrepository.org/id/FR-FCM-Z2SJ], FR-FR-FCM-Z2SK (MM4) [https://flowrepository.org/id/FR-FCM-Z2SK], and FR-FCM-Z2SL (MM5) [https://
flowrepository.org/id/FR-FCM-Z2SL].
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MM2 dataset, mouse splenocytes. Splenocytes from C57Bl/6 mice were dis-
rupted with glass slides, filtered through 100 μm mesh, and red blood cells lysed.
Cells were stained with Fixable Viability Dye eFluor780 (eBioscience), fixed and
permeabilized with Foxp3 transcription factor staining buffer set (eBioscience)
according to the manufacturer’s instructions, and stained overnight at 4 °C with the
following antibodies: anti-CD4–BV421 (1:2000, clone N418), anti-CD24–BV510
(1:2000, clone M1/69), anti-Ly6G–BV570 (1:2000, clone 1A8), anti-XCR1–BV650
(1:2500, clone ZET), anti-CD19–BV785 (1:400, clone 1D3), anti-CD3–AF488
(1:1000, clone 145-2C11), anti-PDCA-1–PerCP-Cy5.5 (1:1000, clone 927), anti-
CD23–PE (1:5000, clone B3B4), anti-CD64–PE-594 (1:500, clone X54-5/7.1), anti-
CD172a–PE-Cy7 (1:5000, clone P84), anti-CD45–APC (1:10,000, clone 30-F11),
anti-MHCII–AF700 (1:2000, clone M5/114.15.2) (all Biolegend), anti-IgE–BV605
(1:5000, clone R35-72), anti-CD93–BV711 (1:2000, clone AA4.1), anti-
CD11b–BV750 (1:2000, clone M1/70), anti-CD80–BB630-P (1:2000, clone 16-
10A1), anti-CD95–BB660-P2 (1:10,000, clone Jo2), anti-TCRβ–BB790-P (1:2000,
clone H57-597), anti-CD103–BUV395 (1:1000, clone M290), anti-IgD–BUV496
(1:2000, clone 11-26c.2a), anti-Ly6C–BUV563 (1:500, clone AL-21), anti-Siglec
F–BUV615-P (1:1000, clone E50-2440), anti-c-Kit–BUV661 (1:5000, clone 2B8),
anti-CD21/35–BUV737 (1:5000, clone 7G6), anti-CD8a–BUV805 (1:500, clone 53-
6.7) (all BD Biosciences), anti-IgM–PE-Cy5 (1:1000, clone Il/41) and anti-
NK1.1–PECy5.5 (1:2000, clone PK136) (eBioscience). Compensation controls were
stained as described in the MM1 dataset. Samples were acquired on a Symphony
flow cytometer (BD Biosciences).

MM3 dataset, mouse splenocytes. Splenocytes from C57Bl/6 mice were dis-
rupted with glass slides, filtered through 100 μm mesh, and red blood cells lysed.
Cells were stained with Fixable Viability Dye eFluor780 (eBioscience), anti-
CD90.2–BV510 (1:250, clone 53-2.1), anti-CD25–BV650 (1:200, clone PC61), anti-
CD45–BUV395 (1:500, clone 30-F11) (all Biolegend), anti-CD127–PE (1:100, clone
A7R34) and anti-B220–PE-Cy5 (1:200, clone RA3-6B2) (all eBioscience). Cells
were fixed and permeabilized with Foxp3 transcription factor staining buffer set
(eBioscience) according to the manufacturer’s instructions, and stained overnight
at 4 °C with the following antibodies: anti-T-bet–BV421 (1:200, clone 4B10),
anti-CD8–BV785 (1:2000, clone 53-6.7), anti-NKp46–FITC (1:500, clone 29A1.4),
anti-NK1.1–PE-Cy5.5 (1:2500, clone PK136), anti-MHCII–AF700 (1:2000, clone
M5/114.15.2) (all Biolegend), anti-CD11b–eFluor450 (1:1000, clone M1/70),
anti-GATA3–PE-Cy7 (1:100, clone L50-823), anti-CD3–biotin (1:1000, clone
145-2C11), anti-RORt–APC (1:500, clone AFKJS-9) (all eBioscience), anti-
TCRβ–BB790-P (1:4000, clone H57-597), anti-CD4–BUV496 (1:500, clone GK1.5),
and anti-CD19–BUV661 (1:2000, clone 1D3) (all BD Biosciences). Antibodies used
for compensation controls were anti-CD25–BV421 (1:200, clone PC61), anti-
CD44–BV510 (1:200, clone IM7), anti-CD3–BV650 (1:200, clone 17A2), anti-
CD8–BV785 (1:2000, clone 53-6.7), anti-NK1.1–PE-Cy5.5 (1:2500, clone PK136),
anti-MHCII–AF700 (1:2000, clone M5/114.15.2) (all Biolegend), anti-
CD11b–eFluor450 (1:1000, clone M1/70), anti-TCRβ–FITC (1:500, clone H57-
597), anti-B220–PE-Cy5 (1:200, clone RA3-6B2), anti-CD23–PE-Cy7 (1:500, clone
B3B4), anti-CD8–biotin (1:200, clone 53-6.7), anti-Foxp3–APC (1:200, clone FJK-
16s), anti-CD69–PE (1:200, clone H1.2F3) (all eBioscience), anti-TCRβ–BB790-P
(1:4000, clone H57-597), anti-CD103–BUV395 (1:500, clone M290), anti-
CD4–BUV496 (1:200, clone GK1.5), and anti-CD19–BUV661 (1:2000, clone 1D3)
(all BD Biosciences). Streptavidin AF350 (1:200, Invitrogen) was used to identify
biotinylated antibody. Samples were acquired on a Yeti/ZE5 flow cytometer (Propel
Labs/BioRad).

MM4 dataset, mouse microglia. MHCII knockout mice43 were used on the B6
background. Leukocytes and microglia were extracted from mouse brains by
chopping with a razor blade, digested in 0.4 mg/ml collagenase D (Sigma-Aldrich),
and separated over 40% Percoll (GE Healthcare). Microglia were stained with anti-
MHCII–FITC (1:200, clone M5/114.15.2, eBioscience), anti-CD11b–PE-Cy7
(1:500, clone M1/70, eBioscience), anti-CD45–APC (1:1000, clone 30-F11,
eBioscience), anti-CD4–PE-Dazzle594 (1:500, clone GK1.5, BioLegend), and fixable
viability dye eFluor780 (eBioscience). Samples were acquired on an Aurora spectral
cytometer (Cytek).

MM5 dataset, mouse splenocytes. Foxp3DTR-GFP mice44 were used on the B6
background. Splenocytes were disrupted with glass slides, filtered through 100 μm
mesh, and red blood cells lysed. Splenocytes anti-CD11b–PE-Cy7 (1:2000, clone
M1/70, eBioscience), anti-CD45–APC (1:1000, clone 30-F11, eBioscience), anti-
CD4–PE-Dazzle594 (1:500, clone GK1.5, BioLegend), and fixable viability dye
eFluor780 (1:4000, eBioscience). Samples were acquired on an Aurora spectral
cytometer (Cytek).

General implementation details of AutoSpill. AutoSpill was implemented in R
v.3.6.3, using the packages flow core v.1.52.1, flowWorkspace v.3.34.1, ggplot2
v.3.3.2, moments v.0.14, and RColorBrewer v.1.1-2. Further details on packages
specific to particular steps of the algorithm are listed below.

Initial gating. The initial gate was calculated independently for each control, over
the 2d-density of events on forward and side scatter (FSC-A and SSC-A

parameters). To robustly detect the population of interest, two tessellations were
successively carried out to isolate the desired density peak. First, data were trimmed
on extreme values (1% and 99%). Then, maxima were located numerically by a
moving average (window size 3) on a soft estimation of the 2d-density (bandwidth
factor 3). Maxima were used to generating non-overlapping tiles covering the entire
2d dataset (tessellation). The first tessellation was carried out on these density
maxima, and the tile corresponding to the highest maximum was selected, ignoring
peaks with lower values of both FSC-A and SSC-A (<5% of range). A rectangular
region in the FSC-A/SSC-A-plane was chosen by using the median and 3 × the
mean absolute deviation of the events contained in the selected tile. A second, finer
2d-density estimation (bandwidth factor 2) was obtained on this region, followed
again by numerical detection of maxima (window size 2) and tessellation by the
maxima. A final 2d-density estimation (bandwidth factor 1) was obtained on the
tile containing the highest maximum, with the gate being defined as the convex hull
enclosing the points that belonged to this tile and had a density larger than a
threshold (33% of range).

Tessellations were carried out with package deliver v.0.1-28, density estimations
with packages MASS v.7.3-51.6, surface interpolations with package fields v.10.3,
and spatial operations with packages sp v.1.4-2 and tripack v.1.3-9.

Robust linear models for estimation of spillover coefficients. The linearity of
the quantum mechanical nature of photons implies that the ratio between the
average fluorescence level (that is, the average number of photons) detected in any
two detectors and from any dye is equal to the ratio between the corresponding
values of the emission spectrum of the dye, regardless of the level of fluorescence.
As the value of the spillover coefficient for the primary channel (the channel
assigned to the dye in the single-color control, in classical systems) is usually
normalized to one, the spillover coefficient of every secondary channel is equal to
the fluorescence ratio above. This implies that each spillover coefficient can be
directly read from the slope of a linear regression considering the fluorescence in
the primary channel as the independent variable and the fluorescence in the sec-
ondary channel as the dependent variable (that is, with x and y swapped for the
usual representation of single-color controls when compensating). Thus, the
absence of spillover corresponds to a zero slope in this regression, that is, to the
vertical direction in the usual plot where the primary channel is displayed in the y-
axis. To protect the algorithm against distortions in the data, especially those
coming from autofluorescence issues, robust linear regression was used, giving
lower weights to events farther away from the estimated regression line. Robust
linear models (motivated by the heteroscedastic data with outliers) were imple-
mented with the package MASS v.7.3-51.6, with default parameters, i.e. M-
estimation with Huber weighting and the parameter k= 1.345.

Refinement of spillover matrix. After the first iteration of the algorithm, applying
on compensated data the same kind of calculation used for the spillover coeffi-
cients, on channels in classical systems or on dyes in spectral systems, would
produce zero values with perfect compensation, corresponding to perfectly vertical
compensation plots. Otherwise, errors in compensation would yield non-zero
values reflecting residual spillover. Overcompensated data would amount to
excessively negative values in the secondary channel/dye, corresponding to a
negative slope. Similarly, undercompensation would produce excessively positive
values in the secondary channel/dye, corresponding to a positive slope.

Observed errors in compensation arise from errors in the estimation of the
spillover coefficients. Crucially, it can be proved that, for the average event at any
level of fluorescence, the error matrix T in the calculation of the spillover matrix S
can be calculated from the observed compensation errors E as

T ¼ �EU ; ð1Þ

U= S+ T is the (erroneous) spillover matrix used to compensate the data (see
below).

By successively applying Eq. (1), that is, by iteratively refining the spillover
matrix and recalculating the compensation, errors in the spillover matrix and
errors in compensation can be reduced to a negligible magnitude. The algorithm
starts working in linear scale, and switches to bi-exponential scale when the
maximum compensation error across all single-color controls is less than a
threshold fixed a priori (10−2). To be used in Eq. (1), compensation errors
obtained in the bi-exponential scale are transformed back to a linear scale, by
using the two points in the regression line with extreme values in the primary
channel. Iterations stop near the convergence of the algorithm when the
maximum compensation error across all single-color controls is less than a
threshold of 10−4.

While effective in most cases, this strategy for reducing compensation error can
become compromised when using controls with low fluorescence levels in the
primary channel or other fluorescence artifacts. In these situations, iterations can
give rise to oscillations in the observed compensation errors before reaching
convergence. To deal with these extreme cases, oscillations are detected by a
moving average (size 10, initial value 1) of the decrease in the standard deviation of
spillover errors. When this moving average gets below a threshold of 10−6, a
fraction (10%) of the update to the spillover matrix is applied in Eq. (1), slowing
down convergence and further decreasing compensation error.
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Spillover error. In a flow cytometry system with c channels, let us consider the
spillover matrix for a set of d single-color controls, that is for d dyes, with d ≤ c. We
concentrate on the dye i= 1…d during the following argument.

For any event in the flow cytometer, we have the following two-row vectors: the
true event data x, with length d, and the observed event data y, with length c. On
average for any level of fluorescence, true and observed events are related linearly
through the d × c spillover matrix S, according to

xS ¼ y: ð2Þ
Classical flow cytometry systems have c= d, and compensation is usually achieved
by inverting the spillover matrix S and multiplying by the observed data y. Spectral
systems feature c > d, and compensation is usually called unmixing and is not
unequivocally defined, because Eq. (2) produces an overspecified system of
equations. In the following, and for simplicity, we refer to unmixing in spectral
systems also as compensation.

Independently of the compensation method used, when the spillover matrix S is
estimated as U= S+ T, thus with some error T, it unavoidably gives rise to
incorrectly compensated data x+ p, which verifies, on average,

ðx þ pÞðSþ TÞ ¼ y: ð3Þ
Therefore,

xT ¼ �pU: ð4Þ
The vectors x and p, and the matrices S, T, and U, have the following properties:

● Because x represents the true value of events in the single-color control for dye
i, then xi > 0 and xj= 0, for all j ≠ i.

● The ith row of the spillover matrix S is normalized with 1= Sir ≥ Sis ≥ 0,
for some r= 1…c and every s ≠ r.

● The row normalization of S implies that the true value of the dye in the
control, xi, can always be obtained from the observed value yr, as Eq. (2)
implies yr= xiSir= xi. Therefore, pi= 0, irrespective of errors in the
estimation of the spillover matrix.

● Also because of the row normalization of the spillover matrix, the
estimation of the spillover coefficient Sir= 1 will always be exact, i.e.

Uir= 1 and Tir= 0, irrespective of errors in the estimation of the
spillover matrix.

Let us consider now the LHS of Eq. (4), i.e. the row vector xT. Its sth coefficient,
for any s= 1…c, equals

ðxTÞs ¼ ∑
d

j¼1
xjTjs ¼ xiTis: ð5Þ

Note that (xT)r= 0.
Let us consider the RHS of Eq. (4), i.e. the row vector−pU. Its sth coefficient, for

any s= 1…c, equals

ð�pUÞs ¼ � ∑
d

j¼1
pjUjs: ð6Þ

Note that the summation term piUis= 0.
Equations (4–6) imply that, for any s= 1…c,

Tis ¼ � ∑
d

j¼1

pj
xi
Ujs: ð7Þ

The ratio pj/xi can be considered as the compensation error for the average
event, corresponding to a spurious signal assigned to dye j, caused by incorrectly
compensated spillover from dye i. Equation (3) implies that the ratio pj/xi is
invariant w.r.t. the level of fluorescence, and thus it can be estimated by regressing
pj vs. xi.

Let us define the compensation error matrix E as the d × d matrix with
coefficients

Eij ¼
pj
xi
: ð8Þ

Note that Eii= 0. We can then rewrite Eq. (7) as

Tis ¼ � ∑
d

j¼1
EijUjs ¼ �Eði; �Þ Uð�; sÞ; ð9Þ

for any s= 1…c.

Box 1 | Refinement of the spillover matrix, part 1

The algorithm calculates a first approximation to the spillover matrix, and then it refines it iteratively by successively applying Eq. (10). As before, we
refer to unmixing in spectral systems as compensation.
Input: Collection of d single-color controls (one per dye) {Yi}, i= 1…d, each one being a matrix with ni rows (events) and c columns (channels), c≥ d.
Output: Spillover matrix S, a matrix with d rows (dyes) and c columns (channels), and the collection of compensated controls {Xi}, i= 1…d, each one
being a matrix with ni rows (events) and d columns (dyes).
Parameters: Upper bound ϵ in the compensation error required to achieve convergence.
Algorithm:

1. For each single-color control Yi, i= 1…d, For each channel j= 1…c, j≠ hi, hi is the channel with the highest signal for dye i, Calculate robust linear
model Yi(*, j) ~Yi(*, hi) and obtain slope sð0Þij .

2. Build initial spillover matrix S(0) as

Sð0Þði; jÞ ¼
1 if i ¼ hi;

sð0Þij if i≠hi:

(

3. Obtain initially compensated controls fXð0Þ
i g, by applying the algorithm of choice with S(0) on the controls {Yi}.

4. Refine spillover matrix S(t) and compensated controls fXðtÞ
i g, obtaining spillover matrix S(t+1) and compensated controls fXðtþ1Þ

i g, until convergence.
41. For each compensated single-color control XðtÞ

i , i= 1…d, For each other dye j= 1…d, j≠ i, Calculate robust linear model XðtÞ
i ð�; jÞ � XðtÞ

i ð�; iÞ and
obtain slope eðtÞij .

42. Build matrix of compensation errors E(t) as

EðtÞði; jÞ ¼
0 if i ¼ j;

eðtÞij if i≠j:

(

43. Calculate non-normalized spillover matrix Ŝ
ðtþ1Þ ¼ SðtÞ þ EðtÞSðtÞ.

44. Calculate normalized spillover matrix S(t+1) by rows, as Sðtþ1Þði; �Þ ¼ Ŝ
ðtþ1Þði; �Þ=Ŝðtþ1Þði; iÞ.

45. Obtain compensated controls fXðtþ1Þ
i g, by applying the algorithm of choice with S(t+1) on the initial controls {Yi}.

46. Convergence is attained when ∣∣E(t)∣∣ < ϵ.

5. At convergence, t* being the last iteration, obtain final spillover matrix and compensated controls as

S ¼ Sðt
�Þ;

Xi ¼ Xðt�Þ
i ; i ¼ 1¼ d:
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In summary, Eq. (9) allows to calculate the ith row of the spillover error matrix T.
By repeating the same argument for every dye, we can obtain all the rows i= 1…d,
and thus the complete matrix as

T ¼ �EU: ð10Þ
Box 1

Linear models for estimation of SSM. Successful compensation equilibrates
around zero the fluorescence levels in all secondary channels, but with the cost of
accentuating undesirable variance or spread in those channels. Again for quantum
mechanical reasons, the variance in fluorescence for any (compensated or
uncompensated) channel/dye grows linearly with the fluorescence level, and
therefore the coefficients of the SSM can be estimated with linear regression.

We start with the formula for an SSM coefficient SSPC , which characterizes the
incremental standard deviation induced in parameter C by the spillover from
parameter P15,

SSPC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2positive � σ2negative

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fpositive � Fnegative

p ; ð11Þ

where σpositive and σnegative are the standard deviations in C-fluorescence in positive
and negative populations, respectively, and Fpositive − Fnegative is the difference in P-
fluorescence intensity between them. While the traditional algorithm estimates the
above quantities using medians and robust standard deviations of fluorescence in
the positive and negative populations, we will, for the sake of linear regression, let
our negative be the theoretical quantity when P-fluorescence (F) is equal to zero,
while the standard deviation is an unknown quantity, which we call σ0. This
assumption, introduced for practical computation, excludes the quadratic effect
that σ0 imparts. The effect of this exclusion is negligible, as: (i) σ0 (characterization
of the cytometer’s machine noise) is guaranteed to be small when compared to the
standard deviation introduced by the Poisson process of counting photons
(otherwise the cytometer cannot generate meaningful data), (ii) compensation
controls used during SSM calculation include negative populations that reside close
to zero, and (iii) the result of a small σ0 and presence of a population near-zero
dramatically reduces the impact of the σ0 quadratic effect on the model because
they guarantee that the data reside on a near-linear region of a parabola. This gives
us the following equation relating F to σ, which is suitable for estimating σ0 by
linear regression:

σ ¼
ffiffiffi
F

p
βþ σ0 : ð12Þ

Notice that the slope β is not equal to the spillover spreading coefficient SSPC , except
in the unique case where σ0 equals zero. We thus proceed with the estimation of σ0
as the first step of AutoSpread.

To supply data for the regression, we partition the events of the single-color
control for parameter P by quantile. For controls with a large number of events, we
use 256 quantiles, but we allow as few as 8 to ensure enough events in each quantile
to estimate standard deviation reliably. For each other parameter C, we calculate in
each quantile the robust standard deviation of fluorescence (the 84th percentile
minus the median) as the estimate of σ and the median fluorescence as the estimate
of F. The F values may be negative and/or close to zero, so they are passed through
a square-root-like transform defined by f ffip ðxÞ ¼ signðxÞ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffijxj þ 1

p � 1Þ prior to
regression, instead of the simple square root function. The resulting regression
provides an estimate of σ0.

Using the estimate of σ0, AutoSpread calculates for each quantile the estimate of
σ 0, defined by σ 0 ¼ f ffip ðσ2 � σ20Þ, and these adjusted standard deviation estimates

provide the data for the second regression, σ0 ¼ ffiffiffi
F

p
SSPC . This regression is

calculated without an intercept term because the adjustment of σ0 forces it to zero.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data for the eight analyzed datasets is available at FlowRepository (https://
flowrepository.org), with IDs FR-FCM-Z2SV (Be1) [https://flowrepository.org/id/FR-
FCM-Z2SV], FR-FCM-Z2ST (HS1 & HS2) [https://flowrepository.org/id/FR-FCM-
Z2ST], FR-FCM-Z2SS (MM1) [https://flowrepository.org/id/FR-FCM-Z2SS], FR-FCM-
Z2SW (MM2) [https://flowrepository.org/id/FR-FCM-Z2SW], FR-FCM-Z2SJ (MM3)
[https://flowrepository.org/id/FR-FCM-Z2SJ], FR-FCM-Z2SK (MM4) [https://
flowrepository.org/id/FR-FCM-Z2SK], and FR-FCM-Z2SL (MM5) [https://
flowrepository.org/id/FR-FCM-Z2SL]. Note that the compensation controls for the MM2
dataset are the MM1 dataset. Source data are provided with this paper.

Code availability
Source code for AutoSpill is available through the R package autospill, available at
the github repository https://github.com/carlosproca/autospill45, which includes batch
code that reproduces the reported results for the datasets MM1, HS1, HS2, and Be1. The
R package is also available in the Supplementary Information as Supplementary Data. In

addition, AutoSpill is accessible as a freely available web service at https://autospill.vib.be.
The R package also includes batch code to reproduce results as generated by the website.

To allow a large user base to take immediate advantage of the approaches reported
here, an implementation of AutoSpill is included in the release of FlowJo v.10.7.
AutoSpread is available in binary form in FlowJo v.10.7 (patent pending).
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