Cook Group

Cook Group
Cook Group
Simon Cook
Interim Director & Head of Signalling Programme
Cook Group

Research Summary

One of the keys to understanding lifelong health is to understand the signalling pathways that operate inside cells and govern key fate decisions such as cell death, cell survival, cell division or cell senescence (collectively cell longevity).  These signalling pathways involve enzymes called ‘protein kinases’ that attach phosphate groups to specific cellular proteins, thereby controlling their activity, location or abundance. In this way protein kinases orchestrate the cellular response to growth factors, nutrient availability or stress and damage.

Ageing results in part from the imbalance between cellular damage, accrued throughout life, and the progressive decline in stress response and repair pathways. We are interested in how protein kinases function in stress responses, the removal of damaged cellular components (e.g. autophagy, see also Nicholas Ktistakis and Oliver Florey) and the control of cellular lifespan. We believe this will enhance our understanding of how the normal declines in these processes drive ageing.

Signalling pathways are frequently de-regulated in certain age-related diseases – notably in cancer, inflammation and neurodegeneration – and many protein kinases are attractive drug targets. Consequently we translate our basic knowledge of signalling through collaborations with charities and pharmaceutical companies (e.g. AstraZeneca and MISSION Therapeutics).

Latest Publications

Miller DC, Reuillon T, Molyneux L, Blackburn T, Cook SJ, Edwards N, Endicott JA, Golding BT, Griffin RJ, Hardcastle I, Harnor SJ, Heptinstall A, Lochhead P, Martin MP, Martin NC, Myers S, Newell DR, Noble RA, Phillips N, Rigoreau L, Thomas H, Tucker JA, Wang LZ, Waring MJ, Wong AC, Wedge SR, Noble MEM, Cano C Signalling

The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.

+view abstract Journal of medicinal chemistry, PMID: 35468293 12 May 2022

Prescott JA, Balmanno K, Mitchell JP, Okkenhaug H, Cook SJ Signalling, Imaging

Inhibitor of kappa B (IκB) kinase β (IKKβ) has long been viewed as the dominant IKK in the canonical nuclear factor-κB (NF-κB) signalling pathway, with IKKα being more important in non-canonical NF-κB activation. Here we have investigated the role of IKKα and IKKβ in canonical NF-κB activation in colorectal cells using CRISPR-Cas9 knock-out cell lines, siRNA and selective IKKβ inhibitors. IKKα and IKKβ were redundant for IκBα phosphorylation and turnover since loss of IKKα or IKKβ alone had little (SW620 cells) or no (HCT116 cells) effect. However, in HCT116 cells IKKα was the dominant IKK required for basal phosphorylation of p65 at S536, stimulated phosphorylation of p65 at S468, nuclear translocation of p65 and the NF-κB-dependent transcriptional response to both TNFα and IL-1α. In these cells IKKβ was far less efficient at compensating for the loss of IKKα than IKKα was able to compensate for the loss of IKKβ. This was confirmed when siRNA was used to knock-down the non-targeted kinase in single KO cells. Critically, the selective IKKβ inhibitor BIX02514 confirmed these observations in WT cells and similar results were seen in SW620 cells. Notably, whilst IKKα loss strongly inhibited TNFα-dependent p65 nuclear translocation, IKKα and IKKβ contributed equally to c-Rel nuclear translocation indicating that different NF-κB subunits exhibit different dependencies on these IKKs. These results demonstrate a major role for IKKα in canonical NF-κB signalling in colorectal cells and may be relevant to efforts to design IKK inhibitors, which have focused largely on IKKβ to date.

+view abstract The Biochemical journal, PMID: 35029639 14 Jan 2022

Prescott JA, Mitchell JP, Cook SJ Signalling

Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and 're-set' inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical 'inhibitor of κB kinases' (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.

+view abstract The Biochemical journal, PMID: 34269817 16 Jul 2021

bioRxiv Manuscripts

DNA REPLICATION DURING ACUTE MEK INHIBITION DRIVES ACQUISITION OF RESISTANCE THROUGH AMPLIFICATION OF THE BRAF ONCOGENE
Prasanna Channathodiyil, Anne Segonds-Pichon, Paul D. Smith, Simon J. Cook, Jonathan Houseley
bioRxiv 2021.03.23.436572
https://doi.org/10.1101/2021.03.23.436572

Group Members

Simon Cook

Interim Director & Head of Signalling Programme

Kathryn Balmanno

Senior Research Scientist

Suzan Ber

Senior Research Scientist

Megan Cassidy

PhD Student

Frazer Cook

PhD Student

Rebecca Gilley

Senior Research Associate

Laura Weatherdon

PhD Student