Simon Cook

Research Summary

One of the keys to understanding lifelong health is to understand the signalling pathways that operate inside cells and govern key fate decisions such as cell death, cell survival, cell division or cell senescence (collectively cell longevity).  These signalling pathways involve enzymes called ‘protein kinases’ that attach phosphate groups to specific cellular proteins, thereby controlling their activity, location or abundance. In this way protein kinases orchestrate the cellular response to growth factors, nutrient availability or stress and damage.

Ageing results in part from the imbalance between cellular damage, accrued throughout life, and the progressive decline in stress response and repair pathways. We are interested in how protein kinases function in stress responses, the removal of damaged cellular components (e.g. autophagy, see also Nicholas Ktistakis and Oliver Florey) and the control of cellular lifespan. We believe this will enhance our understanding of how the normal declines in these processes drive ageing.

Signalling pathways are frequently de-regulated in certain age-related diseases – notably in cancer, inflammation and neurodegeneration – and many protein kinases are attractive drug targets. Consequently we translate our basic knowledge of signalling through collaborations with charities and pharmaceutical companies (e.g. AstraZeneca and MISSION Therapeutics).

Latest Publications

Inhibition of RAF dimers: it takes two to tango.
Cook FA, Cook SJ

The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.

+ View Abstract

Biochemical Society transactions, 1, 1, 24 Dec 2020

PMID: 33367512

CDK1, the Other 'Master Regulator' of Autophagy.
Odle RI, Florey O, Ktistakis NT, Cook SJ

Autophagy and cap-dependent mRNA translation are tightly regulated by the mechanistic target of rapamycin complex 1 (mTORC1) signalling complex in response to nutrient availability. However, the regulation of these processes, and mTORC1 itself, is different during mitosis, and this has remained an area of significant controversy; for example, studies have argued that autophagy is either repressed or highly active during mitosis. Recent studies have shown that autophagy initiation is repressed, and cap-dependent mRNA translation is maintained during mitosis despite mTORC1 activity being repressed. This is achieved in large part by a switch from mTORC1- to cyclin-dependent kinase 1 (CDK1)-mediated regulation. Here, we review the history and recent advances and seek to present a unifying model to inform the future study of autophagy and mTORC1 during mitosis.

+ View Abstract

Trends in cell biology, 1, 1, 30 Nov 2020

PMID: 33272830

Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors.
Lochhead PA, Tucker JA, Tatum NJ, Wang J, Oxley D, Kidger AM, Johnson VP, Cassidy MA, Gray NS, Noble MEM, Cook SJ

The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.

+ View Abstract

Nature communications, 11, 1, 13 Mar 2020

DOI: 10.1038/s41467-020-15031-3

PMID: 32170057

01223 496453

Email Simon
View Profile

Keywords

stress responses
ras