Adrian Liston

Research Summary

The Liston laboratory works on regulatory T cells. These are a type of white blood cell that act to suppress the rest of the immune response, preventing spontaneous autoimmune disease and acting as a rheostat to control just how active our immune system is. The number of these cells in our blood goes up as we get old, which may contribute to the immune-suppressed state of older persons. We seek to understand these cells, using both patient material and mouse models, so that we can harness their power to fine-tune the immune system for healthy ageing.

Latest Publications

A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T cells.
Nasrallah R, Imianowski CJ, Bossini-Castillo L, Grant FM, Dogan M, Placek L, Kozhaya L, Kuo P, Sadiyah F, Whiteside SK, Mumbach MR, Glinos D, Vardaka P, Whyte CE, Lozano T, Fujita T, Fujii H, Liston A, Andrews S, Cozzani A, Yang J, Mitra S, Lugli E, Chang HY, Unutmaz D, Trynka G, Roychoudhuri R

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5 contains a distal enhancer that is functional in CD4 regulatory T (T) cells and required for T-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3 T cells, which are unable to control colitis in a cell-transfer model of the disease. In human T cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.

+ View Abstract

Nature, 1, 1, 13 May 2020

DOI: 10.1038/s41586-020-2296-7

PMID: 32499651

Bile acids mediate signaling between microbiome and the immune system.
Liston A, Whyte CE

The microbiome is increasingly recognized for its ability to modulate human health. Colonization with gut symbionts induces Foxp3‐expressing regulatory T cells (Tregs) and expands their local numbers, a critical step in the suppression of intestinal inflammation and maintaining gut homeostasis. The molecular mechanism by which the microbiome interacts with peripherally induced Treg (pTreg) is likely complex and multifactorial; however, part of the effect is mediated via the release of microbial fermentation products, such as butyrate and other short‐chain fatty acids.

+ View Abstract

Immunology and cell biology, 1, 1, 24 Apr 2020

DOI: 10.1111/imcb.12332

PMID: 32329090

Defective SEC61α1 underlies a novel cause of autosomal dominant severe congenital neutropenia.
Van Nieuwenhove E, Barber JS, Neumann J, Smeets E, Willemsen M, Pasciuto E, Prezzemolo T, Lagou V, Seldeslachts L, Malengier-Devlies B, Metzemaekers M, Haßdenteufel S, Kerstens A, van der Kant R, Rousseau F, Schymkowitz J, Di Marino D, Lang S, Zimmermann R, Schlenner S, Munck S, Proost P, Matthys P, Devalck C, Boeckx N, Claessens F, Wouters C, Humblet-Baron S, Meyts I, Liston A

The molecular cause of severe congenital neutropenia (SCN) is unknown in 30-50% of patients. SEC61A1 encodes the α subunit of the SEC61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease.

+ View Abstract

The Journal of allergy and clinical immunology, 1, 1, 20 Apr 2020

DOI: 10.1016/j.jaci.2020.03.034

PMID: 32325141