Reik Group

Reik Group
Reik Group
Wolf Reik
Honorary Group Leader
Reik Group

Research Summary

Our lab is interested in epigenetic gene regulation in mammalian development and in ageing. Global epigenetic reprogramming occurs at fertilisation and fundamentally remodels the epigenomes of sperm and egg. We are working to understand the mechanisms of reprogramming and also how it may be linked with zygotic genome activation, the sudden transcriptional springing to life of the genome in the early embryo.

Soon after implantation of the embryo in the maternal uterus there is a major programme of cell fate decisions which establishes the three primary germ layers, the ectoderm (which gives rise to brain and skin), the mesoderm (giving rise to muscle and heart), and the endoderm (which gives rise to the gut amongst other tissues).

These three lineages are the foundations of all organs in the adult body and we are interested in the transcriptional and epigenetic events that underlie their emergence from the undifferentiated epiblast. Finally, we are studying how the epigenome degrades during ageing potentially in a programmed fashion, and whether there are approaches by which this degradation can be slowed down or reversed.

Latest Publications

von Meyenn F, Berrens RV, Andrews S, Santos F, Collier AJ, Krueger F, Osorno R, Dean W, Rugg-Gunn PJ, Reik W Epigenetics, Bioinformatics

n/a

+view abstract Developmental cell, PMID: 36473463 05 Dec 2022

Clark SJ, Argelaguet R, Lohoff T, Krueger F, Drage D, Göttgens B, Marioni JC, Nichols J, Reik W Epigenetics

Perturbation of DNA methyltransferases (DNMTs) and of the active DNA demethylation pathway via ten-eleven translocation (TET) methylcytosine dioxygenases results in severe developmental defects and embryonic lethality. Dynamic control of DNA methylation is therefore vital for embryogenesis, yet the underlying mechanisms remain poorly understood.

+view abstract Genome biology, PMID: 36163261 26 Sep 2022

Patalano S, Alsina A, Gregorio-Rodríguez C, Bachman M, Dreier S, Hernando-Herraez I, Nana P, Balasubramanian S, Sumner S, Reik W, Rulands S Epigenetics

Biological systems have the capacity to not only build and robustly maintain complex structures but also to rapidly break up and rebuild such structures. Here, using primitive societies of Polistes wasps, we show that both robust specialization and rapid plasticity are emergent properties of multi-scale dynamics. We combine theory with experiments that, after perturbing the social structure by removing the queen, correlate time-resolved multi-omics with video recordings. We show that the queen-worker dimorphism relies on the balance between the development of a molecular queen phenotype in all insects and colony-scale inhibition of this phenotype via asymmetric interactions. This allows Polistes to be stable against intrinsic perturbations of molecular states while reacting plastically to extrinsic cues affecting the whole society. Long-term stability of the social structure is reinforced by dynamic DNA methylation. Our study provides a general principle of how both specialization and plasticity can be achieved in biological systems. A record of this paper's transparent peer review process is included in the supplemental information.

+view abstract Cell systems, PMID: 36044898 26 Aug 2022

Group Members

Wolf Reik

Honorary Group Leader

Jonathan Boudeman

PhD Student

Deborah Drage

Visiting Scientist

Jannat Ijaz

Postdoc Research Scientist

Ioannis Kafetzopoulos

Postdoc Research Scientist

Yongmin Kwon

PhD Student

Annalisa Mupo

Visiting Scientist

Alice Santambrogio

Postdoc Research Scientist