Life Sciences Research for Lifelong Health

Wolf Reik

Research Summary

Epigenetic modifications such as DNA methylation and histone marks are often relatively stable in differentiated and in adult tissues in the body, where they help to confer a stable cell identity on tissues. The process of epigenetic reprogramming, by which many of these marks are removed from DNA, is important for the function of embryonic stem cells and in reprogramming stem cells from adult tissue cells. When this erasure goes wrong there may be adverse consequences for healthy development and ageing, which can potentially extend over more than one generation.

​Our insights into the mechanisms of epigenetic reprogramming may help with developing better strategies for stem cell therapies and to combat age related decline. We have also recently initiated work on epigenetic regulation of social behaviours in insects, where we are interested in how patterning and regulation of DNA methylation in the brain is linked with the evolution of sociality.

Latest Publications

Correction: Epigenetic resetting of human pluripotency (doi:10.1242/dev.146811).
Guo G, von Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D, Sahakyan A, Myers S, Bertone P, Reik W, Plath K, Smith A

Development (Cambridge, England), 145, 1477-9129, , 2018

PMID: 29669738

Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data.
Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, Reik W

Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing.

+ View Abstract

Genome biology, 19, 1474-760X, 33, 2018

PMID: 29544553

scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells.
Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, Krueger F, Sanguinetti G, Kelsey G, Marioni JC, Stegle O, Reik W

Parallel single-cell sequencing protocols represent powerful methods for investigating regulatory relationships, including epigenome-transcriptome interactions. Here, we report a single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem cells, finding links between all three molecular layers and revealing dynamic coupling between epigenomic layers during differentiation.

+ View Abstract

Nature communications, 9, 2041-1723, 781, 2018

PMID: 29472610

Group Members

Latest Publications

Correction: Epigenetic resetting of human pluripotency (doi:10.1242/dev.146811).

Guo G, von Meyenn F, Rostovskaya M

Development (Cambridge, England)
145 1477-9129: (2018)

PMID: 29669738

scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells.

Clark SJ, Argelaguet R, Kapourani CA

Nature communications
9 2041-1723:781 (2018)

PMID: 29472610

Science Forum: The Human Cell Atlas.

Regev A, Teichmann SA, Lander ES

eLife
6 2050-084X: (2017)

PMID: 29206104

An endosiRNA-Based Repression Mechanism Counteracts Transposon Activation during Global DNA Demethylation in Embryonic Stem Cells.

Berrens RV, Andrews S, Spensberger D

Cell stem cell
21 1875-9777:694-703.e7 (2017)

PMID: 29100015

cuRRBS: simple and robust evaluation of enzyme combinations for reduced representation approaches.

Martin-Herranz DE, Ribeiro AJM, Krueger F

Nucleic acids research
1362-4962: (2017)

PMID: 29036576

Establishment of mouse expanded potential stem cells.

Yang J, Ryan DJ, Wang W

Nature
1476-4687: (2017)

PMID: 29019987

Single-cell epigenomics: Recording the past and predicting the future.

Kelsey G, Stegle O, Reik W

Science (New York, N.Y.)
358 1095-9203:69-75 (2017)

PMID: 28983045

Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation.

Mohammed H, Hernando-Herraez I, Savino A

Cell reports
20 2211-1247:1215-1228 (2017)

PMID: 28768204

Epigenetic resetting of human pluripotency.

Guo G, von Meyenn F, Rostovskaya M

Development (Cambridge, England)
144 1477-9129:2748-2763 (2017)

PMID: 28765214

Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment.

Kirschner K, Chandra T, Kiselev V

Cell reports
19 2211-1247:1503-1511 (2017)

PMID: 28538171