Simon Walker

Simon obtained his first degree in Biochemistry at Heriot-Watt University in Edinburgh before moving to the John Innes Centre in Norwich where he studied for his PhD under the supervision of Allan Downie looking at the role of calcium signalling during legume symbiosis.

Simon then went to work as a postdoc for four years in Pete Cullen's lab in the Department of Biochemistry at Bristol University where he investigated the GAP1 family of ras GTPase-activating proteins.

​Having become interested in the application of imaging technologies to answer biological quesions Simon moved to the Babraham Institute in 2004 where he helped establish the core Imaging Facility.

Simon now manages the Facility which has over 100 registered users based within the Institute and an increasing number of commercial users based both on and off campus.

Latest Publications

Optimized immunofluorescence staining protocol for imaging germinal centers in secondary lymphoid tissues of vaccinated mice.
Fra-Bido S, Walker SA, Innocentin S, Linterman MA

Location of immune cells that form the germinal center reaction within secondary lymphoid tissues can be characterized using confocal microscopy. Here, we present an optimized immunofluorescence staining protocol to image germinal center structures in fixed/frozen spleen sections from ChAdOx1 nCoV-19 immunized mice. This protocol can be adapted to identify other cell types within secondary lymphoid tissues. For complete information on the generation and use of this protocol to examine immune responses to the COVID vaccine ChAdOx1 nCoV-19, please refer to Silva-Cayetano et al. (2020).

+ View Abstract

STAR protocols, 2, 3, 17 Sep 2021

PMID: 34195671

Open Access

A cell-based bioluminescence assay reveals dose-dependent and contextual repression of AP-1-driven gene expression by BACH2.
Vardaka P, Lozano T, Bot C, Ellery J, Whiteside SK, Imianowski CJ, Farrow S, Walker S, Okkenhaug H, Yang J, Okkenhaug K, Kuo P, Roychoudhuri R

Whereas effector CD4 and CD8 T cells promote immune activation and can drive clearance of infections and cancer, CD4 regulatory T (T) cells suppress their function, contributing to both immune homeostasis and cancer immunosuppression. The transcription factor BACH2 functions as a pervasive regulator of T cell differentiation, promoting development of CD4 T cells and suppressing the effector functions of multiple effector T cell (T) lineages. Here, we report the development of a stable cell-based bioluminescence assay of the transcription factor activity of BACH2. Tetracycline-inducible BACH2 expression resulted in suppression of phorbol 12-myristate 13-acetate (PMA)/ionomycin-driven activation of a luciferase reporter containing BACH2/AP-1 target sequences from the mouse Ifng + 18k enhancer. BACH2 expression repressed the luciferase signal in a dose-dependent manner but this activity was abolished at high levels of AP-1 signalling, suggesting contextual regulation of AP-1 driven gene expression by BACH2. Finally, using the reporter assay developed, we find that the histone deacetylase 3 (HDAC3)-selective inhibitor, RGFP966, inhibits BACH2-mediated repression of signal-driven luciferase expression. In addition to enabling mechanistic studies, this cell-based reporter may enable identification of small molecule agonists or antagonists of BACH2 function for drug development.

+ View Abstract

Scientific reports, 10, 1, 03 Nov 2020

PMID: 33144667

Open Access

Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform.
Zachari M, Gudmundsson SR, Li Z, Manifava M, Cugliandolo F, Shah R, Smith M, Stronge J, Karanasios E, Piunti C, Kishi-Itakura C, Vihinen H, Jokitalo E, Guan JL, Buss F, Smith AM, Walker SA, Eskelinen EL, Ktistakis NT

-

+ View Abstract

Developmental cell, 55, 2, 26 Oct 2020

PMID: 33108756