Simon Walker

Simon obtained his first degree in Biochemistry at Heriot-Watt University in Edinburgh before moving to the John Innes Centre in Norwich where he studied for his PhD under the supervision of Allan Downie looking at the role of calcium signalling during legume symbiosis.

Simon then went to work as a postdoc for four years in Pete Cullen's lab in the Department of Biochemistry at Bristol University where he investigated the GAP1 family of ras GTPase-activating proteins.

​Having become interested in the application of imaging technologies to answer biological quesions Simon moved to the Babraham Institute in 2004 where he helped establish the core Imaging Facility.

Simon now manages the Facility which has over 100 registered users based within the Institute and an increasing number of commercial users based both on and off campus.

Latest Publications

An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis.
Odle RI, Walker SA, Oxley D, Kidger AM, Balmanno K, Gilley R, Okkenhaug H, Florey O, Ktistakis NT, Cook SJ

Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.

+ View Abstract

Molecular cell, S1097-2765, 19, 06 Nov 2019

DOI: 10.1016/j.molcel.2019.10.016

PMID: 31733992

Autophagosome biogenesis machinery.
Walker SA, Ktistakis NT

We review current knowledge of the process of autophagosome formation with special emphasis on the very early steps: turning on the autophagy pathway, assembling the autophagy machinery, and building the autophagosome. The pathway is remarkably well co-ordinated spatially and temporally, and it shows broad conservation across species and cell types, including neurons. In addition, although much current knowledge derives mostly from settings of non-selective autophagy, recent work also indicates that selective autophagy, and more specifically mitophagy, shows similar dynamics. Having an understanding of this remarkable process may help the design of novel therapeutics for neurodegeneration and other pathologies.

+ View Abstract

Journal of molecular biology, , 1089-8638, 2019

PMID: 31705882

Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform.
Zachari M, Gudmundsson SR, Li Z, Manifava M, Shah R, Smith M, Stronge J, Karanasios E, Piunti C, Kishi-Itakura C, Vihinen H, Jokitalo E, Guan JL, Buss F, Smith AM, Walker SA, Eskelinen EL, Ktistakis NT

The dynamics and coordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required the earliest, followed by auto-phosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps, whereas ULK1 and ULK2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way, suggesting multiple initiation events. Targeted ubiquitinated mitochondria are cradled by endoplasmic reticulum (ER) strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands, providing platforms for formation of the mitophagosomes.

+ View Abstract

Developmental cell, , 1878-1551, 2019

PMID: 31353311