Life Sciences Research for Lifelong Health

Jonathan Clark

Jonathan studied Biological Chemistry at the University of Leicester and then obtained a PhD in new synthetic methods towards the synthesis of Taxol. After a postdoctoral position in the Pharmaceutical Science Department at the University of Nottingham, he moved to Cambridge to work in the local biotechnology industry for the next 11 years. He then took up a position with Babraham Bioscience Technologies to provide chemical services to the local biotechnology industry and to help commercialise and develop science originating from the Babraham Institute. He has now taken up a position within the Institute to provide biological chemistry support to the Institute. His group carry out chemical research focused on Institute science and ageing.

Latest Publications

Immunodeficiency, autoimmune thrombocytopenia and enterocolitis caused by autosomal recessive deficiency of PIK3CD-encoded phosphoinositide 3-kinase δ.
Swan DJ, Aschenbrenner D, Lamb CA, Chakraborty K, Clark J, Pandey S, Engelhardt KR, Chen R, Cavounidis A, Ding Y, Krasnogor N, Carey CD, Acres M, Needham S, Cant AJ, Arkwright PD, Chandra A, Okkenhaug K, Uhlig HH, Hambleton S

Haematologica, , 1592-8721, , 2019

PMID: 31073077

Translation of inhaled drug optimization strategies into clinical pharmacokinetics and pharmacodynamics using GSK2292767A, a novel inhaled PI3Kδ inhibitor.
Begg M, Edwards CD, Hamblin JN, Pifani E, Wilson R, Gilbert J, Vitulli G, Mallett D, Morrell J, Hingle MI, Uddin S, Ehtesham F, Marotti M, Harell A, Newman C, Fernando D, Clark J, Cahn A, Hessel EM

This study describes the pharmacokinetic (PK) and pharmacodynamic (PD) profile of GSK2292767A, a novel low solubility inhaled PI3Kδ inhibitor developed as an alternative to nemiralisib, which is a highly soluble inhaled inhibitor of PI3Kδ with a lung profile consistent with once-daily dosing. GSK2292767A has a similar in vitro cellular profile to nemiralisib and reduces eosinophilia in a murine PD model by 63% (n=5, p

+ View Abstract

The Journal of pharmacology and experimental therapeutics, , 1521-0103, , 2019

PMID: 30940692

Relationship between pharmacokinetics and pharmacodynamic responses in healthy smokers informs a once daily dosing regimen for nemiralisib.
Begg M, Wilson R, Hamblin JN, Montembault M, Green J, Deans A, Amour A, Worsley S, Fantom K, Cui Y, Dear G, Ahmad S, Kielkowska A, Clark J, Boyce M, Cahn A, Hessel EM

Nemiralisib (GSK2269557) is a potent inhaled inhibitor of phosphoinositide 3-kinase delta (PI3Kδ) which is being developed for the treatment of respiratory disorders including COPD (Chronic Obstructive Pulmonary Disease). Determining the pharmacokinetic (PK) and pharmacodynamic (PD) responses of inhaled drugs early during drug development is key to informing the appropriate dose and preferred dose regimen in patients. We set out to measure PD changes in induced sputum in combination with drug concentrations in plasma and bronchoalveolar lavage (BAL) taken from healthy smokers (n=56) treated for up to 14 days with increasing doses of inhaled nemiralisib (0.1 mg to 6.4 mg). Induced sputum analysis demonstrated a dose-dependent reduction in phosphatidylinositol-trisphosphate (PIP3, the product of PI3K activation), with a maximum placebo-corrected reduction of 23% (90% CI 11-34%) and 36% (90% CI 11-64%) following single dose or 14 days of treatment with nemiralisib respectively (2 mg, once daily). Plasma analysis suggested a linear PK relationship with an observed accumulation of ~3-4.5-fold (peak vs. trough) in plasma exposure following 14 days of nemiralisib treatment. BAL analysis at trough confirmed higher levels of drug in lung vs. plasma (32-fold in the BAL fluid component, and 214-fold in the BAL cellular fraction). Comparison of drug levels in plasma and reductions in sputum PIP3 show a direct relationship between exposure and PIP3 reduction. In conclusion, these results demonstrate target engagement upon treatment with inhaled nemiralisib and provide confidence for a once-daily dosing regimen.

+ View Abstract

The Journal of pharmacology and experimental therapeutics, , 1521-0103, , 2019

PMID: 30886125

01223 496075

Email Jonathan
View Profile

Keywords

 

Facility Members

Latest Publications

Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency.

Rulands S, Lee HJ, Clark SJ

Cell systems
2405-4712: (2018)

PMID: 30031774

Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases.

Fellows R, Denizot J, Stellato C

Nature communications
9 2041-1723:105 (2018)

PMID: 29317660

PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K.

Malek M, Kielkowska A, Chessa T

Molecular cell
1097-4164: (2017)

PMID: 29056325

Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations.

Huang-Doran I, Tomlinson P, Payne F

JCI insight
1 :e88766 (2016)

PMID: 27766312

Dynamics of mTORC1 activation in response to amino acids.

Manifava M, Smith M, Rotondo S

eLife
5 2050-084X: (2016)

PMID: 27725083

Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation.

Lochhead PA, Clark J, Wang LZ

Cell cycle (Georgetown, Tex.)
15 1551-4005:506-18 (2016)

PMID: 26959608