Jonathan Clark

Jonathan Clark
Jonathan Clark
Jonathan Clark
Head of Biological Chemistry Facility
Jonathan Clark

Jonathan studied Biological Chemistry at the University of Leicester and then obtained a PhD in new synthetic methods towards the synthesis of Taxol. After a postdoctoral position in the Pharmaceutical Science Department at the University of Nottingham, he moved to Cambridge to work in the local biotechnology industry for the next 11 years. He then took up a position with Babraham Bioscience Technologies to provide chemical services to the local biotechnology industry and to help commercialise and develop science originating from the Babraham Institute. He has now taken up a position within the Institute to provide biological chemistry support to the Institute. His group carry out chemical research focused on Institute science and ageing.

Latest Publications

Walpole GFW, Pacheco J, Chauhan N, Clark J, Anderson KE, Abbas YM, Brabant-Kirwan D, Montaño-Rendón F, Liu Z, Zhu H, Brumell JH, Deiters A, Stephens LR, Hawkins PT, Hammond GRV, Grinstein S, Fairn GD Signalling, Biological Chemistry

Despite their low abundance, phosphoinositides play a central role in membrane traffic and signalling. PtdIns(3,4,5)P and PtdIns(3,4)P are uniquely important, as they promote cell growth, survival and migration. Pathogenic organisms have developed means to subvert phosphoinositide metabolism to promote successful infection and their survival in host organisms. We demonstrate that PtdIns(3,4)P is a major product generated in host cells by the effectors of the enteropathogenic bacteria Salmonella and Shigella. Pharmacological, gene silencing and heterologous expression experiments revealed that, remarkably, the biosynthesis of PtdIns(3,4)P occurs independently of phosphoinositide 3-kinases. Instead, we found that the Salmonella effector SopB, heretofore believed to be a phosphatase, generates PtdIns(3,4)P de novo via a phosphotransferase/phosphoisomerase mechanism. Recombinant SopB is capable of generating PtdIns(3,4,5)P and PtdIns(3,4)P from PtdIns(4,5)P in a cell-free system. Through a remarkable instance of convergent evolution, bacterial effectors acquired the ability to synthesize 3-phosphorylated phosphoinositides by an ATP- and kinase-independent mechanism, thereby subverting host signalling to gain entry and even provoke oncogenic transformation.

+view abstract Nature cell biology, PMID: 35484249 May 2022

Chicanne G, Bertrand-Michel J, Viaud J, Hnia K, Clark J, Payrastre B Biological Chemistry

Our knowledge of the role and biology of the different phosphoinositides has greatly expanded over recent years. Reversible phosphorylation by specific kinases and phosphatases of positions 3, 4, and 5 on the inositol ring is a highly dynamic process playing a critical role in the regulation of the spatiotemporal recruitment and binding of effector proteins. The specific phosphoinositide kinases and phosphatases are key players in the control of many cellular functions, including proliferation, survival, intracellular trafficking, or cytoskeleton reorganization. Several of these enzymes are mutated in human diseases. The impact of the fatty acid composition of phosphoinositides in their function is much less understood. There is an important molecular diversity in the fatty acid side chains of PI. While stearic and arachidonic fatty acids are the major acyl species in PIP, PIP, and PIP, other fatty acid combinations are also found. The role of these different molecular species is still unknown, but it is important to quantify these different molecules and their potential changes during cell stimulation to better characterize this emerging field. Here, we describe a sensitive high-performance liquid chromatography-mass spectrometry method that we used for the first time to profile the changes in phosphoinositide molecular species (summed fatty acyl chain profiles) in human and mouse platelets under resting conditions and following stimulation. This method can be applied to other hematopoietic primary cells isolated from human or experimental animal models.

+view abstract Methods in molecular biology, PMID: 33481230 2021

Rynkiewicz NK, Anderson KE, Suire S, Collins DM, Karanasios E, Vadas O, Williams R, Oxley D, Clark J, Stephens LR, Hawkins PT Signalling, Mass Spectrometry, Biological Chemistry

The PI3Kγ isoform is activated by Gi-coupled GPCRs in myeloid cells, but the extent to which the two endogenous complexes of PI3Kγ, p101/p110γ and p84/p110γ, receive direct regulation through Gβγ or indirect regulation through RAS and the sufficiency of those inputs is controversial or unclear. We generated mice with point mutations that prevent Gβγ binding to p110γ (RK552DD) or to p101 (VVKR777AAAA) and investigated the effects of these mutations in primary neutrophils and in mouse models of neutrophilic inflammation. Loss of Gβγ binding to p110γ substantially reduced the activation of both p101/p110γ and p84/p110γ in neutrophils by various GPCR agonists. Loss of Gβγ binding to p101 caused more variable effects, depending on both the agonist and cellular response, with the biggest reductions seen in PIP production by primary neutrophils in response to LTB4 and MIP-2 and in the migration of neutrophils during thioglycolate-induced peritonitis or MIP2-induced ear pouch inflammation. We also observed that p101 neutrophils showed enhanced p84-dependent ROS responses to MLP and C5a, suggesting that competition may exist between p101/p110γ and p84/p110γ for Gβγ subunits downstream of GPCR activation. GPCRs did not activate p110γ in neutrophils from mice lacking both the p101 and p84 regulatory subunits, indicating that RAS binding to p110γ is insufficient to support GPCR activation in this cell type. These findings define a direct role for Gβγ subunits in activating both of the endogenous PI3Kγ complexes and indicate that the regulatory PI3Kγ subunit biases activation toward different GPCRs.

+view abstract Science signaling, PMID: 33144519 03 Nov 2020

Group Members

Jonathan Clark

Head of Biological Chemistry Facility

Izabella Niewczas

Postdoc Research Scientist