Life Sciences Research for Lifelong Health

Nicholas Ktistakis

Research Summary

Autophagy (from the Greek self-eating) is a cellular mechanism which generates nutrients for the cell, primarily during times of starvation. Autophagy is also used to eliminate cell material that becomes damaged, leading to a periodic clean-up of the cell interior. Although it is a response by single cells, it is also very important for the health of an organism.

When autophagy is suppressed cells exhibit signs of oxidative damage because their dysfunctional mitochondria cannot be removed and continue to produce reactive oxygen species. Similarly, suppression of autophagy causes the build-up of mutant proteins that cause neurodegenerative disorders.

Autophagy is also critical for the neonatal period: animals which lack autophagy die soon after birth because they cannot generate nutrients during that time. Finally, autophagy is critical for the extension of lifespan in all organisms studied, and is therefore a significant factor that affects healthy ageing. The pathway of autophagy starts when a novel double membrane vesicle called an autophagosome is formed in the cell interior.

We have shown that one of the signals for formation of autophagosomes is the synthesis of a lipid called PI3P which leads to formation of omegasomes. These are membrane extensions of the endoplasmic reticulum, from which some autophagosomes emerge. We are studying exactly how this happens, both in terms of signals and of how the intermediate structures eventually lead to an autophagosome.

Latest Publications

Alpha-synuclein fibrils recruit TBK1 and OPTN to lysosomal damage sites and induce autophagy in microglial cells.
Bussi C, Peralta Ramos JM, Arroyo DS, Gallea JI, Ronchi P, Kolovou A, Wang JM, Florey O, Celej MS, Schwab Y, Ktistakis NT, Iribarren P

Autophagic dysfunction and protein aggregation have been linked to several neurodegenerative disorders, but the exact mechanisms and causal connections are not clear and most work was done in neurons and not in microglial cells. Here we report that exogenous fibrillar but not monomeric alpha-synuclein (AS) induces autophagy in microglial cells. We extensively studied the dynamics of this response by both live-cell imaging and correlative light-electron microscopy (CLEM) and found that it correlates with lysosomal damage and is characterised by the recruitment of the selective autophagy-associated proteins TANK-binding kinase 1 (TBK1) and Optineurin (OPTN) to ubiquitinated lysosomes. In addition, we observed that LC3 recruitment to damaged lysosomes was dependent on TBK1 activity. In these fibrillar AS-treated cells, autophagy inhibition impairs mitochondrial function and leads to microglial cell death. Our results suggest that microglial autophagy is induced in response to lysosomal damage caused by persistent accumulation of AS fibrils. Importantly, triggering of the autophagic response appears to be an attempt at lysosomal quality control and not for engulfment of fibrillar AS.

+ View Abstract

Journal of cell science, , 1477-9137, , 2018

PMID: 30404831

Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations.
Deretic V, Prossnitz E, Burge M, Campen MJ, Cannon J, Liu KJ, Sklar LA, Allers L, Garcia SA, Baehrecke EH, Behrends C, Cecconi F, Codogno P, Chen GC, Elazar Z, Eskelinen EL, Fourie B, Gozuacik D, Hong W, Hotamisligi G, Jäättelä M, Jo EK, Johansen T, Juhász G, Kimchi A, Ktistakis N, Kroemer G, MIzushima N, Münz C, Reggiori F, Rubinsztein D, Ryan K, Schroder K, Simonsen A, Tooze S, Vaccaro M, Yoshimori T, Yu L, Zhang H, Klionsky DJ

Recently, NIH has funded a center for autophagy research named the Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center (UNM HSC), with aspirations to promote autophagy research locally, nationally, and internationally. The center has 3 major missions: (i) to support junior faculty in their endeavors to develop investigations in this area and obtain independent funding; (ii) to develop and provide technological platforms to advance autophagy research with emphasis on cellular approaches for high quality reproducible research; and (iii) to foster international collaborations through the formation of an International Council of Affiliate Members and through hosting national and international workshops and symposia. Scientifically, the AIM center is focused on autophagy and its intersections with other processes, with emphasis on both fundamental discoveries and applied translational research.

+ View Abstract

Autophagy, , 1554-8635, , 2018

PMID: 29938597

In praise of M. Anselmier who first used the term "autophagie" in 1859.
Ktistakis NT

Autophagy, , 1554-8635, 0, 2017

PMID: 28837378

Group Members

Latest Publications

Assembly of early machinery for autophagy induction: novel insights from high resolution microscopy.

Ktistakis NT, Walker SA, Karanasios E

Oncotarget
1949-2553: (2016)

PMID: 27829241

Dynamics of mTORC1 activation in response to amino acids.

Manifava M, Smith M, Rotondo S

eLife
5 2050-084X: (2016)

PMID: 27725083

Characterization of Atg38 and NRBF2, a fifth subunit of the autophagic Vps34/PIK3C3 complex.

Ohashi Y, Soler N, García Ortegón M

Autophagy
1554-8635:0 (2016)

PMID: 27630019

Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles.

Karanasios E, Walker SA, Okkenhaug H

Nature communications
7 2041-1723:12420 (2016)

PMID: 27510922

Digesting the Expanding Mechanisms of Autophagy.

Ktistakis NT, Tooze SA

Trends in cell biology
1879-3088: (2016)

PMID: 27050762

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).

Klionsky DJ, Abdelmohsen K, Abe A

Autophagy
12 1554-8635:1-222 (2016)

PMID: 26799652