Ktistakis Group

Ktistakis Group
Ktistakis Group
Nicholas Ktistakis
Group Leader
Ktistakis Group

Research Summary

Autophagy (from the Greek self-eating) is a cellular mechanism which generates nutrients for the cell, primarily during times of starvation. Autophagy is also used to eliminate cell material that becomes damaged, leading to a periodic clean-up of the cell interior. Although it is a response by single cells, it is also very important for the health of an organism.

When autophagy is suppressed cells exhibit signs of oxidative damage because their dysfunctional mitochondria cannot be removed and continue to produce reactive oxygen species. Similarly, suppression of autophagy causes the build-up of mutant proteins that cause neurodegenerative disorders.

Autophagy is also critical for the neonatal period: animals which lack autophagy die soon after birth because they cannot generate nutrients during that time. Finally, autophagy is critical for the extension of lifespan in all organisms studied, and is therefore a significant factor that affects healthy ageing. The pathway of autophagy starts when a novel double membrane vesicle called an autophagosome is formed in the cell interior.

We have shown that one of the signals for formation of autophagosomes is the synthesis of a lipid called PI3P which leads to formation of omegasomes. These are membrane extensions of the endoplasmic reticulum, from which some autophagosomes emerge. We are studying exactly how this happens, both in terms of signals and of how the intermediate structures eventually lead to an autophagosome.

A Milner Institute enabled project in collaboration with ALBORADA Drug Discovery Institute, MRC Mitochondrial Biology Unit, Astex, Eisai and Eli Lilly and Company is underway in my lab. We are examining by siRNA, chemical inhibition and overexpression a limited set of genes implicated in autophagy to determine their role in neurodegeneration. The last stage of this work will use iPSC-derived neuronal cells that we have developed in my lab and originate either from healthy donors or from Alzheimer’s patients. Read more at:

www.cam.ac.uk/business/neurodegeneration-collaboration
www.cambridgeindependent.co.uk/business/win-win-as-milner-institute-brokers-pharma-trio-to-explore-9202021/

Latest Publications

Gudmundsson SR, Kallio KA, Vihinen H, Jokitalo E, Ktistakis N, Eskelinen EL Signalling

Autophagosome biogenesis occurs in the transient subdomains of the endoplasmic reticulum that are called omegasomes, which, in fluorescence microscopy, appear as small puncta, which then grow in diameter and finally shrink and disappear once the autophagosome is complete. Autophagosomes are formed by phagophores, which are membrane cisterns that elongate and close to form the double membrane that limits autophagosomes. Earlier electron-microscopy studies showed that, during elongation, phagophores are lined by the endoplasmic reticulum on both sides. However, the morphology of the very early phagophore precursors has not been studied at the electron-microscopy level. We used live-cell imaging of cells expressing markers of phagophore biogenesis combined with correlative light-electron microscopy, as well as electron tomography of ATG2A/B-double-deficient cells, to reveal the high-resolution morphology of phagophore precursors in three dimensions. We showed that phagophores are closed or nearly closed into autophagosomes already at the stage when the omegasome diameter is still large. We further observed that phagophore precursors emerge next to the endoplasmic reticulum as bud-like highly curved membrane cisterns with a small opening to the cytosol. The phagophore precursors then open to form more flat cisterns that elongate and curve to form the classically described crescent-shaped phagophores.

+view abstract Cells, PMID: 36231043 30 Sep 2022

Krokowski D, Jobava R, Szkop KJ, Chen CW, Fu X, Venus S, Guan BJ, Wu J, Gao Z, Banaszuk W, Tchorzewski M, Mu T, Ropelewski P, Merrick WC, Mao Y, Sevval AI, Miranda H, Qian SB, Manifava M, Ktistakis NT, Vourekas A, Jankowsky E, Topisirovic I, Larsson O, Hatzoglou M Signalling

The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.

+view abstract Cell reports, PMID: 35858571 19 Jul 2022

Ktistakis NT Signalling

The pathway of mitochondrial-specific autophagy (mitophagy, defined here as the specific elimination of mitochondria following distinct mitochondrial injuries or developmental/metabolic alterations) is important in health and disease. This review will be focussed on the earliest steps of the pathway concerning the mechanisms and requirements for initiating autophagosome formation on a mitochondrial target. More specifically, and in view of the fact that we understand the basic mechanism of non-selective autophagy and are beginning to reshape this knowledge towards the pathways of selective autophagy, two aspects of mitophagy will be covered: (i) How does a machinery normally working in association with the endoplasmic reticulum (ER) to make an autophagosome can also do so at a site distinct from the ER such as on the surface of the targeted cargo? and (ii) how does the machinery deal with cargo of multiple sizes?

+view abstract Biochemical Society transactions, PMID: 34665253 19 Oct 2021

Group Members

Nicholas Ktistakis

Group Leader

Emily Coode

Postdoc Research Scientist

Evie Klotsas

Visiting Student

Maria Manifava

Senior Research Scientist

Aled Parry

Postdoc Research Scientist