Rayon Group

Rayon Group
Rayon Group
Teresa Rayon
Tenure Track Group Leader
Rayon Group

Research Summary

Teresa bridges two of the Institute’s research programmes, being jointly appointed to both the Epigenetics and Signalling programmes.

How do organisms keep track of time and what determines the lifespan of a species? The mechanisms that underlie biological timing remain largely unknown. Despite the high conservation of genetic programs throughout the animal kingdom, the duration of embryogenesis and lifespan are species-specific. For instance, mouse development lasts around 20 days, and the embryonic period of human gestation takes place during the first 60 days of pregnancy. This differences in timing arise at conception, as the progression from the fertilized zygote to embryo implantation lasts around four days in mouse whereas it takes seven days in human. Further, some species can halt development for extended periods of time (diapause) with no apparent trade-offs for development or lifespan.

Our lab studies the regulatory and dynamic processes that control timing in development and homeostasis across and within species with the long-term goal to modulate biological timing in a precise and tunable manner. Our current research questions are:

  1. What controls biological timing?
  2. Can we modulate developmental timing and extend lifespan?
  3. What is the role of protein turnover in developmental timing and lifespan?

We make use of comparative human and mouse stem cell models as well as embryos to search for the regulatory mechanisms that determine species-specific timing. The lab employs genetic and pharmacological manipulations and quantitative and temporally resolved techniques such as flow cytometry, imaging, and genome-wide approaches to investigate the molecular and metabolic mechanisms that regulate developmental timing.

Overall, the identification of physiological mechanisms that modulate timing and its translation to stem cell models may have important implications in the field of human assisted reproduction, regenerative medicine, and aging. Changing the pace of developmental processes may facilitate the generation of clinically relevant cell types faster or it may allow lifespan extension.

Stem Cell Development



Discover Teresa on Prelights


Latest Publications

Rayon T Epigenetics, Signalling

An overview on the molecular and metabolic mechanisms behind individual cell differences in developmental timing in the segmentation clock and the central nervous system.

+view abstract Science advances, PMID: 36888707 10 Mar 2023

Rayon T, van den Ameele J Signalling, Epigenetics

In preprint

+view abstract Development (Cambridge, England), PMID: 36515644 15 Dec 2022

Rayon T, Maizels RJ, Barrington C, Briscoe J Epigenetics

The spinal cord receives input from peripheral sensory neurons and controls motor output by regulating muscle innervating motor neurons. These functions are carried out by neural circuits comprising molecularly distinct neuronal subtypes generated in a characteristic spatiotemporal arrangement from progenitors in the embryonic neural tube. To gain insight into the diversity and complexity of cells in the developing human neural tube, we used single-cell mRNA sequencing to profile cervical and thoracic regions in four human embryos of Carnegie stages (CS) CS12, CS14, CS17 and CS19 from gestational weeks 4-7. Analysis of progenitor and neuronal populations from the neural tube and dorsal root ganglia identified dozens of distinct cell types and facilitated the reconstruction of the differentiation pathways of specific neuronal subtypes. Comparison with mouse revealed overall similarity of mammalian neural tube development while highlighting some human-specific features. These data provide a catalogue of gene expression and cell type identity in the human neural tube that will support future studies of sensory and motor control systems. The data can be explored at https://shiny.crick.ac.uk/scviewer/neuraltube/.

+view abstract Development, PMID: 34351410 01 Aug 2021

Group Members

Teresa Rayon

Tenure Track Group Leader

Chiara Azzi

Postdoc Research Scientist

Jo Blagrove

Visiting Student

Loukik Doshi

Research Assistant

Shota Nakanoh

Postdoc Research Scientist

Eleonore Ocana

PhD Student