Life Sciences Research for Lifelong Health

Stefan Schoenfelder

Dr Schoenfelder holds a Babraham Institute Career Progression Fellowship which provides two years of support for his research.

Research Summary

Functional organisation of the genome in 3D
98% of the DNA in our body is non-coding, i.e. does not carry the information needed to build proteins. Non-coding has sometimes been equated with ‘non-functional’, or called ‘junk’ in the past; today we know that this is far from the truth. Scattered throughout non-coding DNA is a plethora of so-called regulatory elements, including enhancers, silencers and insulators. These regulatory elements function like molecular switches to control which genes are active (and thus produce proteins) in which cells. This process of gene expression control is vital to allow cells – which all contain the same genes – to specialise to carry out different tasks, and to help them respond to changes.

Enhancers are a type of regulatory element that control gene expression over long distances. They contact their target genes via chromosomal interactions, often bridging large distances in the genome, with the intervening DNA ‘looping out’. To understand how enhancers work, we study them in the context of the three-dimensional organisation of the genome.
 
Our aim is to find regulatory elements and to understand which genes they control. We also aim to uncover the molecular mechanisms by which regulatory elements find their target genes in the three-dimensional space of the cell nucleus, and to understand how altering the function of regulatory elements can lead to developmental malformations and disease.
 
We study these questions in pluripotent stem cells – cells that have the potential to create all cell types in the adult body. We use a combination of molecular, genetic, biochemical and imaging approaches to study pluripotent stem cells in their ‘ground state’, and when they start to form new cell types – a process called cell lineage specification.
 
Techniques and Methods

Through high-resolution mapping and experimental perturbation of the spatial genome architecture, we aim to reveal gene regulatory principles that underpin cell states and cell fate transitions. This may ultimately pave the way for us to experimentally engineer 3D genome folding to achieve predictable outcomes on gene expression and cell fate choice, with potential implications for gene therapy and regenerative medicine.
 

Latest Publications

Divergent wiring of repressive and active chromatin interactions between mouse embryonic and trophoblast lineages.
Schoenfelder S, Mifsud B, Senner CE, Todd CD, Chrysanthou S, Darbo E, Hemberger M, Branco MR

The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the genome, which in turn may mediate transcriptional divergence between the two cell lineages. Here, we perform promoter capture Hi-C experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how chromatin conformation relates to cell-specific transcriptional programmes. We find that key TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are prominent in TSCs are enriched for enhancer-gene contacts involving key TSC transcription factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our work shows that the first developmental cell fate decision results in distinct chromatin conformation patterns establishing lineage-specific contexts involving both repressive and active interactions.

+ View Abstract

Nature communications, 9, 2041-1723, 4189, 2018

PMID: 30305613

Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells.
Koohy H, Bolland DJ, Matheson LS, Schoenfelder S, Stellato C, Dimond A, Várnai C, Chovanec P, Chessa T, Denizot J, Manzano Garcia R, Wingett SW, Freire-Pritchett P, Nagano T, Hawkins P, Stephens L, Elderkin S, Spivakov M, Fraser P, Corcoran AE, Varga-Weisz PD

Aging is characterized by loss of function of the adaptive immune system, but the underlying causes are poorly understood. To assess the molecular effects of aging on B cell development, we profiled gene expression and chromatin features genome-wide, including histone modifications and chromosome conformation, in bone marrow pro-B and pre-B cells from young and aged mice.

+ View Abstract

Genome biology, 19, 1474-760X, 126, 2018

PMID: 30180872

Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions.
Schoenfelder S, Javierre BM, Furlan-Magaril M, Wingett SW, Fraser P

The three-dimensional organization of the genome is linked to its function. For example, regulatory elements such as transcriptional enhancers control the spatio-temporal expression of their target genes through physical contact, often bridging considerable (in some cases hundreds of kilobases) genomic distances and bypassing nearby genes. The human genome harbors an estimated one million enhancers, the vast majority of which have unknown gene targets. Assigning distal regulatory regions to their target genes is thus crucial to understand gene expression control. We developed Promoter Capture Hi-C (PCHi-C) to enable the genome-wide detection of distal promoter-interacting regions (PIRs), for all promoters in a single experiment. In PCHi-C, highly complex Hi-C libraries are specifically enriched for promoter sequences through in-solution hybrid selection with thousands of biotinylated RNA baits complementary to the ends of all promoter-containing restriction fragments. The aim is to then pull-down promoter sequences and their frequent interaction partners such as enhancers and other potential regulatory elements. After high-throughput paired-end sequencing, a statistical test is applied to each promoter-ligated restriction fragment to identify significant PIRs at the restriction fragment level. We have used PCHi-C to generate an atlas of long-range promoter interactions in dozens of human and mouse cell types. These promoter interactome maps have contributed to a greater understanding of mammalian gene expression control by assigning putative regulatory regions to their target genes and revealing preferential spatial promoter-promoter interaction networks. This information also has high relevance to understanding human genetic disease and the identification of potential disease genes, by linking non-coding disease-associated sequence variants in or near control sequences to their target genes.

+ View Abstract

Journal of visualized experiments : JoVE, , 1940-087X, , 2018

PMID: 30010637

 

Group Members

Latest Publications

Divergent wiring of repressive and active chromatin interactions between mouse embryonic and trophoblast lineages.

Schoenfelder S, Mifsud B, Senner CE

Nature communications
9 2041-1723:4189 (2018)

PMID: 30305613

Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions.

Schoenfelder S, Javierre BM, Furlan-Magaril M

Journal of visualized experiments : JoVE
1940-087X: (2018)

PMID: 30010637

Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells.

Freire-Pritchett P, Schoenfelder S, Várnai C

eLife
6 2050-084X: (2017)

PMID: 28332981

Identifying Causal Genes at the Multiple Sclerosis Associated Region 6q23 Using Capture Hi-C.

Martin P, McGovern A, Massey J

PloS one
11 1932-6203:e0166923 (2016)

PMID: 27861577

Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23.

McGovern A, Schoenfelder S, Martin P

Genome biology
17 1474-760X:212 (2016)

PMID: 27799070

CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data.

Cairns J, Freire-Pritchett P, Wingett SW

Genome biology
17 1474-760X:127 (2016)

PMID: 27306882