Publications

Title / Authors / Details Open Access Download

Citrullination of HP1γ chromodomain affects association with chromatin.
Wiese M, Bannister AJ, Basu S, Boucher W, Wohlfahrt K, Christophorou MA, Nielsen ML, Klenerman D, Laue ED, Kouzarides T

Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance.

+ View Abstract

Epigenetics & chromatin, 12, 1, , 2019

PMID:30940194
DOI: 10.1186/s13072-019-0265-x

Open Access

Citrullination regulates pluripotency and histone H1 binding to chromatin.
Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M, Nielsen ML, Gurdon JB, Kouzarides T

Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

+ View Abstract

Nature, 507, 7490, , 2014

PMID:24463520
DOI: 10.1038/nature12942

Open Access

Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma.
Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB

Autophagy is a lysosome-dependent degradative pathway frequently activated in tumor cells treated with chemotherapy or radiation. Whether autophagy observed in treated cancer cells represents a mechanism that allows tumor cells to survive therapy or a mechanism for initiating a nonapoptotic form of programmed cell death remains controversial. To address this issue, the role of autophagy in a Myc-induced model of lymphoma generated from cells derived from p53ER(TAM)/p53ER(TAM) mice (with ER denoting estrogen receptor) was examined. Such tumors are resistant to apoptosis due to a lack of nuclear p53. Systemic administration of tamoxifen led to p53 activation and tumor regression followed by tumor recurrence. Activation of p53 was associated with the rapid appearance of apoptotic cells and the induction of autophagy in surviving cells. Inhibition of autophagy with either chloroquine or ATG5 short hairpin RNA (shRNA) enhanced the ability of either p53 activation or alkylating drug therapy to induce tumor cell death. These studies provide evidence that autophagy serves as a survival pathway in tumor cells treated with apoptosis activators and a rationale for the use of autophagy inhibitors such as chloroquine in combination with therapies designed to induce apoptosis in human cancers.

+ View Abstract

The Journal of clinical investigation, 117, 2, , 2007

PMID:17235397
DOI: 10.1172/JCI28833

Open Access

The pathological response to DNA damage does not contribute to p53-mediated tumour suppression.
Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI

The p53 protein has a highly evolutionarily conserved role in metazoans as 'guardian of the genome', mediating cell-cycle arrest and apoptosis in response to genotoxic injury. In large, long-lived animals with substantial somatic regenerative capacity, such as vertebrates, p53 is an important tumour suppressor--an attribute thought to stem directly from its induction of death or arrest in mutant cells with damaged or unstable genomes. Chemotherapy and radiation exposure both induce widespread p53-dependent DNA damage. This triggers potentially lethal pathologies that are generally deemed an unfortunate but unavoidable consequence of the role p53 has in tumour suppression. Here we show, using a mouse model in which p53 status can be reversibly switched in vivo between functional and inactive states, that the p53-mediated pathological response to whole-body irradiation, a prototypical genotoxic carcinogen, is irrelevant for suppression of radiation-induced lymphoma. In contrast, delaying the restoration of p53 function until the acute radiation response has subsided abrogates all of the radiation-induced pathology yet preserves much of the protection from lymphoma. Such protection is absolutely dependent on p19(ARF)--a tumour suppressor induced not by DNA damage, but by oncogenic disruption of the cell cycle.

+ View Abstract

Nature, 443, 7108, , 2006

PMID:16957739
DOI: 10.1038/nature05077

Temporal dissection of p53 function in vitro and in vivo.
Christophorou MA, Martin-Zanca D, Soucek L, Lawlor ER, Brown-Swigart L, Verschuren EW, Evan GI

To investigate the functions of the p53 tumor suppressor, we created a new knock-in gene replacement mouse model in which the endogenous Trp53 gene is substituted by one encoding p53ER(TAM), a p53 fusion protein whose function is completely dependent on ectopic provision of 4-hydroxytamoxifen. We show here that both tissues in vivo and cells in vitro derived from such mice can be rapidly toggled between wild-type and p53 knockout states. Using this rapid perturbation model, we define the kinetics, dependence, persistence and reversibility of p53-mediated responses to DNA damage in tissues in vivo and to activation of the Ras oncoprotein and stress in vitro. This is the first example to our knowledge of a new class of genetic model that allows the specific, rapid and reversible perturbation of the function of a single endogenous gene in vivo.

+ View Abstract

Nature genetics, 37, 7, , 2005

PMID:15924142
DOI: 10.1038/ng1572