David Oxley

David Oxley
David Oxley
David Oxley
Head of Mass Spectrometry Facility
David Oxley

David obtained a degree in Chemistry from the University of Hull and completed a PhD studying the structures of the O- and K-polysaccharide antigens of the opportunistic pathogen Serratia marcescens. He then moved to the Plant Cell Biology Research Centre at the University of Melbourne in Australia, working first on the structure/function of the S-ribonucleases, the female component of the self-incompatibility system in the many flowering plants; and also on arabinogalactan proteins – ubiquitous plant cell surface and extracellular matrix proteoglycans. After a short spell at Proteome Systems Ltd – a biotech company in Sydney, where he set-up the LC-MS based platform for proteomic analysis and developed high sensitivity LC-MS methods for the analysis of glycoproteins. David joined the Babraham Institute in 2002 and established the Mass Spectrometry Facility, which he still runs.

Latest Publications

Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE Signalling, Imaging, Mass Spectrometry, Bioinformatics, Flow Cytometry

Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. , Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating β2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and β2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.

+view abstract Frontiers in immunology, PMID: 38077328 2023

Chessa TAM, Jung P, Anwar A, Suire S, Anderson KE, Barneda D, Kielkowska A, Sadiq BA, Lai IW, Felisbino S, Turnham DJ, Pearson HB, Phillips WA, Sasaki J, Sasaki T, Oxley D, Spensberger D, Segonds-Pichon A, Wilson M, Walker S, Okkenhaug H, Cosulich S, Hawkins PT, Stephens LR Signalling, Imaging, Mass Spectrometry, Bioinformatics, Gene Targeting

The PIP/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP/PI(3,4)P phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP/PI(3,4)P-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of YXXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP signaling, and supports tumor progression.

+view abstract Molecular cell, PMID: 37567175 17 Aug 2023

Arez M, Eckersley-Maslin M, Klobučar T, von Gilsa Lopes J, Krueger F, Mupo A, Raposo AC, Oxley D, Mancino S, Gendrel AV, Bernardes de Jesus B, da Rocha ST Epigenetics, Bioinformatics, Mass Spectrometry

Reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalised approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. Epigenetic fidelity can be tracked by genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unknown reasons. To try to understand the causes underlying these defects, we conducted a thorough imprinting analysis using IMPLICON, a high-throughput method measuring DNA methylation levels, in multiple female and male murine iPSC lines generated under different experimental conditions. Our results show that imprinting defects are remarkably common in iPSCs, but their nature depends on the sex of donor cells and their response to culture conditions. Imprints in female iPSCs resist the initial genome-wide DNA demethylation wave during reprogramming, but ultimately cells accumulate hypomethylation defects irrespective of culture medium formulations. In contrast, imprinting defects on male iPSCs depends on the experimental conditions and arise during reprogramming, being mitigated by the addition of vitamin C (VitC). Our findings are fundamental to further optimise reprogramming strategies and generate iPSCs with a stable epigenome.

+view abstract Nature communications, PMID: 36114205 16 Sep 2022

Group Members

David Oxley

Head of Mass Spectrometry Facility

Judith Webster

Research Assistant

Kranthikumar Yadav

Postdoc Research Scientist

Lu Yu

Deputy Head of Mass Spectrometry Facility