Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Renna FJ, Herrera Lopez M, Manifava M, Ktistakis NT, Vaccaro MI Signalling

Autophagy is a specialized catabolic process that selectively degrades cytoplasmic components, including proteins and damaged organelles. Autophagy allows cells to physiologically respond to stress stimuli and, thus, maintain cellular homeostasis. Cancer cells might modulate their autophagy levels to adapt to adverse conditions such as hypoxia, nutrient deficiency, or damage caused by chemotherapy. Ductal pancreatic adenocarcinoma is one of the deadliest types of cancer. Pancreatic cancer cells have high autophagy activity due to the transcriptional upregulation and post-translational activation of autophagy proteins. Here, the PANC-1 cell line was used as a model of pancreatic human cancer cells, and the AR42J pancreatic acinar cell line was used as a physiological model of highly differentiated mammalian cells. This study used the immunofluorescence of microtubule-associated protein light chain 3 (LC3) as an indicator of the status of autophagy activation. LC3 is an autophagy protein that, in basal conditions, shows a diffuse pattern of distribution in the cytoplasm (known as LC3-I in this condition). Autophagy induction triggers the conjugation of LC3 to phosphatidylethanolamine on the surface of newly formed autophagosomes to form LC3-II, a membrane-bound protein that aids in the formation and expansion of autophagosomes. To quantify the number of labeled autophagic structures, the open-source software FIJI was utilized with the aid of the "3D Objects Counter" tool. The measure of the autophagic levels both in physiological conditions and in cancer cells allows us to study the modulation of autophagy under diverse conditions such as hypoxia, chemotherapy treatment, or the knockdown of certain proteins.

+view abstract Journal of visualized experiments : JoVE, PMID: 37184277

van der Klaauw AA, Horner EC, Pereyra-Gerber P, Agrawal U, Foster WS, Spencer S, Vergese B, Smith M, Henning E, Ramsay ID, Smith JA, Guillaume SM, Sharpe HJ, Hay IM, Thompson S, Innocentin S, Booth LH, Robertson C, McCowan C, Kerr S, Mulroney TE, O'Reilly MJ, Gurugama TP, Gurugama LP, Rust MA, Ferreira A, Ebrahimi S, Ceron-Gutierrez L, Scotucci J, Kronsteiner B, Dunachie SJ, Klenerman P, , Park AJ, Rubino F, Lamikanra AA, Stark H, Kingston N, Estcourt L, Harvala H, Roberts DJ, Doffinger R, Linterman MA, Matheson NJ, Sheikh A, Farooqi IS, Thaventhiran JED Signalling, Immunology

Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60-1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5-24.9 kg/m). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.

+view abstract Nature medicine, PMID: 37169862

Gerbaux M, Roos E, Willemsen M, Staels F, Neumann J, Bücken L, Haughton J, Yshii L, Dooley J, Schlenner S, Humblet-Baron S, Liston A Immunology

FOXP3 deficiency results in severe multisystem autoimmunity in both mice and humans, driven by the absence of functional regulatory T cells. Patients typically present with early and severe autoimmune polyendocrinopathy, dermatitis, and severe inflammation of the gut, leading to villous atrophy and ultimately malabsorption, wasting, and failure to thrive. In the absence of successful treatment, FOXP3-deficient patients usually die within the first 2 years of life. Hematopoietic stem cell transplantation provides a curative option but first requires adequate control over the inflammatory condition. Due to the rarity of the condition, no clinical trials have been conducted, with widely unstandardized therapeutic approaches. We sought to compare the efficacy of lead therapeutic candidates rapamycin, anti-CD4 antibody, and CTLA4-Ig in controlling the physiological and immunological manifestations of Foxp3 deficiency in mice.

+view abstract Journal of clinical immunology, PMID: 37156988

Soaita I, Megill E, Kantner D, Chatoff A, Cheong YJ, Clarke P, Arany Z, Snyder NW, Wellen KE, Trefely S Signalling, Epigenetics

The ability of cells to store and rapidly mobilize energy reserves in response to nutrient availability is essential for survival. Breakdown of carbon stores produces acetyl-coenzyme-A (AcCoA), which fuels essential metabolic pathways and is also the acyl donor for protein lysine acetylation. Histones are abundant and highly acetylated proteins, accounting for 40% - 75% of cellular protein acetylation. Notably, histone acetylation is sensitive to AcCoA availability and nutrient replete conditions induce a substantial accumulation of acetylation on histones. Deacetylation releases acetate, which can be recycled to AcCoA, suggesting that deacetylation could be mobilized as an AcCoA source to feed downstream metabolic processes under nutrient depletion. While the notion of histones as a metabolic reservoir has been frequently proposed, experimental evidence has been lacking. Therefore, to test this concept directly, we used acetate-dependent ATP citrate lyase-deficient fibroblasts (Acly MEFs) and designed a pulse-chase experimental system to trace deacetylation-derived acetate and its incorporation into AcCoA. We found that dynamic protein deacetylation in Acly MEFs contributed carbons to AcCoA and proximal downstream metabolites. However, deacetylation had no significant effect on acyl-CoA pool sizes, and even at maximal acetylation, deacetylation transiently supplied less than 10% of cellular AcCoA. Together, our data reveal that although histone acetylation is dynamic and nutrient-sensitive, its potential for maintaining cellular AcCoA-dependent metabolic pathways is limited compared to cellular demand.

+view abstract The Journal of biological chemistry, PMID: 37142219

Vijg J, Schumacher B, Abakir A, Antonov M, Bradley C, Cagan A, Church G, Gladyshev VN, Gorbunova V, Maslov AY, Reik W, Sharifi S, Suh Y, Walsh K Epigenetics

Genomes are inherently unstable and require constant DNA repair to maintain their genetic information. However, selective pressure has optimized repair mechanisms in somatic cells only to allow transmitting genetic information to the next generation, not to maximize sequence integrity long beyond the reproductive age. Recent studies have confirmed that somatic mutations, due to errors during genome repair and replication, accumulate in tissues and organs of humans and model organisms. Here, we describe recent advances in the quantitative analysis of somatic mutations in vivo. We also review evidence for or against a possible causal role of somatic mutations in aging. Finally, we discuss options to prevent, delay or eliminate de novo, random somatic mutations as a cause of aging.

+view abstract Trends in molecular medicine, PMID: 37121869

Cicchetto AC, Jacobson EC, Sunshine H, Wilde BR, Krall AS, Jarrett KE, Sedgeman L, Turner M, Plath K, Iruela-Arispe ML, de Aguiar Vallim TQ, Christofk HR Immunology

Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.

+view abstract Cell reports, PMID: 37086408

Balmanno K, Kidger AM, Byrne DP, Sale MJ, Nassman N, Eyers PA, Cook SJ Signalling

Innate or acquired resistance to small molecule BRAF or MEK1/2 inhibitors (BRAFi or MEKi) typically arises through mechanisms that sustain or reinstate ERK1/2 activation. This has led to the development of a range of ERK1/2 inhibitors (ERKi) that either inhibit kinase catalytic activity (catERKi) or additionally prevent the activating pT-E-pY dual phosphorylation of ERK1/2 by MEK1/2 (dual-mechanism or dmERKi).  Here we show that eight different ERKi (both catERKi or dmERKi) drive the turnover of ERK2, the most abundant ERK isoform, with little or no effect on ERK1.  Thermal stability assays show that ERKi do not destabilise ERK2 (or ERK1) in vitro, suggesting that ERK2 turnover is a cellular consequence of ERKi binding.  ERK2 turnover is not observed upon treatment with MEKi alone, suggesting it is ERKi binding to ERK2 that drives ERK2 turnover. However, MEKi pre-treatment, which blocks ERK2 pT-E-pY phosphorylation and dissociation from MEK1/2, prevents ERK2 turnover.  ERKi treatment of cells drives the poly-ubiquitylation and proteasome-dependent turnover of ERK2 and pharmacological or genetic inhibition of Cullin-RING E3 ligases prevents this. Our results suggest that ERKi, including current clinical candidates, act as 'kinase degraders', driving the proteasome-dependent turnover of their major target, ERK2. This may be relevant to the suggestion of kinase-independent effects of ERK1/2 and the therapeutic use of ERKi.

+view abstract The Biochemical journal, PMID: 37018014

Turner M Immunology

Pre-existing but untranslated or 'poised' mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with trans-acting factors that direct poised mRNAs away from or into the ribosome. Here, I discuss mechanisms by which this might be regulated.

+view abstract BioEssays : news and reviews in molecular, cellular and developmental biology, PMID: 37009769

Lemaitre P, Tareen SH, Pasciuto E, Mascali L, Martirosyan A, Callaerts-Vegh Z, Poovathingal S, Dooley J, Holt MG, Yshii L, Liston A Immunology

Cognitive decline is a common pathological outcome during aging, with an ill-defined molecular and cellular basis. In recent years, the concept of inflammaging, defined as a low-grade inflammation increasing with age, has emerged. Infiltrating T cells accumulate in the brain with age and may contribute to the amplification of inflammatory cascades and disruptions to the neurogenic niche observed with age. Recently, a small resident population of regulatory T cells has been identified in the brain, and the capacity of IL2-mediated expansion of this population to counter neuroinflammatory disease has been demonstrated. Here, we test a brain-specific IL2 delivery system for the prevention of neurological decline in aging mice. We identify the molecular hallmarks of aging in the brain glial compartments and identify partial restoration of this signature through IL2 treatment. At a behavioral level, brain IL2 delivery prevented the age-induced defect in spatial learning, without improving the general decline in motor skill or arousal. These results identify immune modulation as a potential path to preserving cognitive function for healthy aging.

+view abstract EMBO molecular medicine, PMID: 36975362

Foster WS, Newman J, Thakur N, Spencer AJ, Davies S, Woods D, Godfrey L, Ross SH, Sharpe HJ, Richard AC, Bailey D, Lambe T, Linterman MA Immunology

Effective vaccines have reduced SARS-CoV-2 morbidity and mortality; however, the elderly remain the most at risk. Understanding how vaccines generate protective immunity, and how these mechanisms change with age is key for informing future vaccine design. Cytotoxic CD8 T cells are important for killing virally infected cells, and vaccines that induce antigen specific CD8 T cells in addition to humoral immunity provide an extra layer of immune protection. This is particularly important in cases where antibody titres are sub-optimal, as can occur in older individuals. Here, we show that in aged mice, spike-epitope specific CD8 T cells are generated in comparable numbers to younger animals after ChAdOx1 nCoV-19 vaccination, although phenotypic differences exist. This demonstrates that ChAdOx1 nCoV-19 elicits a good CD8 T cell response in older bodies, but that typical age-associated features are evident on these vaccine reactive T cells.

+view abstract Immunology and cell biology, PMID: 36975169

Rayon T Epigenetics, Signalling

An overview on the molecular and metabolic mechanisms behind individual cell differences in developmental timing in the segmentation clock and the central nervous system.

+view abstract Science advances, PMID: 36888707

Santos ES, Miranda JGV, Saba H, Skalinski LM, Araújo MLV, Veiga RV, Costa MDCN, Cardim LL, Paixão ES, Teixeira MG, Andrade RFS, Barreto ML Immunology

Arbovirus can cause diseases with a broad spectrum from mild to severe and long-lasting symptoms, affecting humans worldwide and therefore considered a public health problem with global and diverse socio-economic impacts. Understanding how they spread within and across different regions is necessary to devise strategies to control and prevent new outbreaks. Complex network approaches have widespread use to get important insights on several phenomena, as the spread of these viruses within a given region. This work uses the motif-synchronization methodology to build time varying complex networks based on data of registered infections caused by Zika, chikungunya, and dengue virus from 2014 to 2020, in 417 cities of the state of Bahia, Brazil. The resulting network sets capture new information on the spread of the diseases that are related to the time delay in the synchronization of the time series among different municipalities. Thus the work adds new and important network-based insights to previous results based on dengue dataset in the period 2001-2016. The most frequent synchronization delay time between time series in different cities, which control the insertion of edges in the networks, ranges 7 to 14 days, a period that is compatible with the time of the individual-mosquito-individual transmission cycle of these diseases. As the used data covers the initial periods of the first Zika and chikungunya outbreaks, our analyses reveal an increasing monotonic dependence between distance among cities and the time delay for synchronization between the corresponding time series. The same behavior was not observed for dengue, first reported in the region back in 1986, either in the previously 2001-2016 based results or in the current work. These results show that, as the number of outbreaks accumulates, different strategies must be adopted to combat the dissemination of arbovirus infections.

+view abstract Chaos, solitons, and fractals, PMID: 36876054

Richer S, Tian Y, Schoenfelder S, Hurst L, Murrell A, Pisignano G Epigenetics

There is widespread interest in the three-dimensional chromatin conformation of the genome and its impact on gene expression. However, these studies frequently do not consider parent-of-origin differences, such as genomic imprinting, which result in monoallelic expression. In addition, genome-wide allele-specific chromatin conformation associations have not been extensively explored. There are few accessible bioinformatic workflows for investigating allelic conformation differences and these require pre-phased haplotypes which are not widely available.

+view abstract Genome biology, PMID: 36869353

Sharma Y, Galvão AM Epigenetics

At the time of its discovery and characterization in 1994, leptin was mostly considered a metabolic hormone able to regulate body weight and energy homeostasis. However, in recent years, a great deal of literature has revealed leptin's pleiotropic nature, through its involvement in numerous physiological contexts including the regulation of the female reproductive tract and ovarian function. Obesity has been largely associated with infertility, and leptin signalling is known to be dysregulated in the ovaries of obese females. Hence, the disruption of ovarian leptin signalling was shown to contribute to the pathophysiology of ovarian failure in obese females, affecting transcriptional programmes in the gamete and somatic cells. This review attempts to uncover the underlying mechanisms contributing to female infertility associated with obesity, as well as to shed light on the role of leptin in the metabolic dysregulation within the follicle, the effects on the oocyte epigenome, and the potential long-term consequence to embryo programming.

+view abstract Animal reproduction, PMID: 36855701

Fozard JA, Morgan C, Howard M Epigenetics

The shuffling of genetic material facilitated by meiotic crossovers is a critical driver of genetic variation. Therefore, the number and positions of crossover events must be carefully controlled. In , an obligate crossover and repression of nearby crossovers on each chromosome pair are abolished in mutants that lack the synaptonemal complex (SC), a conserved protein scaffold. We use mathematical modelling and quantitative super-resolution microscopy to explore and mechanistically explain meiotic crossover pattering in lines with full, incomplete or abolished synapsis. For mutants, which lack an SC, we develop a coarsening model in which crossover precursors globally compete for a limited pool of the pro-crossover factor HEI10, with dynamic HEI10 exchange mediated through the nucleoplasm. We demonstrate that this model is capable of quantitatively reproducing and predicting experimental crossover patterning and HEI10 foci intensity data. Additionally, we find that a model combining both SC- and nucleoplasm-mediated coarsening can explain crossover patterning in wild-type and in mutants, which display partial synapsis. Together, our results reveal that regulation of crossover patterning in wild-type and SC defective mutants likely act through the same underlying coarsening mechanism, differing only in the spatial compartments through which the pro-crossover factor diffuses.

+view abstract eLife, PMID: 36847348

Begg M, Amour A, Jarvis E, Tang T, Franco SS, Want A, Beerahee M, Fernando D, Karkera Y, Sander C, Southworth T, Singh D, Clark J, Nejentsev S, Okkenhaug K, Condliffe A, Chandra A, Cahn A, Hall EB Immunology

Activated PI3Kδ Syndrome (APDS) is a rare inherited inborn error of immunity caused by mutations that constitutively activate the p110 delta isoform of phosphoinositide 3-kinase (PI3Kδ), resulting in recurring pulmonary infections. Currently no licensed therapies are available. Here we report the results of an open-label trial in which five subjects were treated for 12 weeks with nemiralisib, an inhaled inhibitor of PI3Kδ, to determine safety, systemic exposure, together with lung and systemic biomarker profiles (Clinicaltrial.gov: NCT02593539). Induced sputum was captured to measure changes in phospholipids and inflammatory mediators, and blood samples were collected to assess pharmacokinetics of nemiralisib, and systemic biomarkers. Nemiralisib was shown to have an acceptable safety and tolerability profile, with cough being the most common adverse event, and no severe adverse events reported during the study. No meaningful changes in phosphatidylinositol (3,4,5)-trisphosphate (PIP3; the enzyme product of PI3Kδ) or downstream inflammatory markers in induced sputum, were observed following nemiralisib treatment. Similarly, there were no meaningful changes in blood inflammatory markers, or lymphocytes subsets. Systemic levels of nemiralisib were higher in subjects in this study compared to previous observations. While nemiralisib had an acceptable safety profile, there was no convincing evidence of target engagement in the lung following inhaled dosing and no downstream effects observed in either the lung or blood compartments. We speculate that this could be explained by nemiralisib not being retained in the lung for sufficient duration, suggested by the increased systemic exposure, perhaps due to pre-existing structural lung damage. In this study investigating a small number of subjects with APDS, nemiralisib appeared to be safe and well-tolerated. However, data from this study do not support the hypothesis that inhaled treatment with nemiralisib would benefit patients with APDS.

+view abstract Pulmonary pharmacology & therapeutics, PMID: 36841351

Willemsen M, Barber JS, Van Nieuwenhove E, Staels F, Gerbaux M, Neumann J, Prezzemolo T, Pasciuto E, Lagou V, Boeckx N, Filtjens J, De Visscher A, Matthys P, Schrijvers R, Tousseyn T, O'Driscoll M, Bucciol G, Schlenner S, Meyts I, Humblet-Baron S, Liston A Immunology

Severe congenital neutropenia presents with recurrent infections early in life due to arrested granulopoiesis. Multiple genetic defects are known to block granulocyte differentiation, however a genetic cause remains unknown in approximately 40% of cases.

+view abstract The Journal of allergy and clinical immunology, PMID: 36841265

Sarmad S, Viant MR, Dunn WB, Goodacre R, Wilson ID, Chappell KE, Griffin JL, O'Donnell VB, Naicker B, Lewis MR, Suzuki T, Signalling

Targeted metabolite assays that measure tens or hundreds of pre-selected metabolites, typically using liquid chromatography-mass spectrometry, are increasingly being developed and applied to metabolic phenotyping studies. These are used both as standalone phenotyping methods and for the validation of putative metabolic biomarkers obtained from untargeted metabolomics studies. However, there are no widely accepted standards in the scientific community for ensuring reliability of the development and validation of targeted metabolite assays (referred to here as 'targeted metabolomics'). Most current practices attempt to adopt, with modifications, the strict guidance provided by drug regulatory authorities for analytical methods designed largely for measuring drugs and other xenobiotic analytes. Here, the regulatory guidance provided by the European Medicines Agency, US Food and Drug Administration and International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use are summarized. In this Perspective, we have adapted these guidelines and propose a less onerous 'tiered' approach to evaluate the reliability of a wide range of metabolomics analyses, addressing the need for community-accepted, harmonized guidelines for tiers other than full validation. This 'fit-for-purpose' tiered approach comprises four levels-discovery, screening, qualification and validation-and is discussed in the context of a range of targeted and untargeted metabolomics assays. Issues arising with targeted multiplexed metabolomics assays, and how these might be addressed, are considered. Furthermore, guidance is provided to assist the community with selecting the appropriate degree of reliability for a series of well-defined applications of metabolomics.

+view abstract Nature protocols, PMID: 36828894

Somogyi A, Kirkham ED, Lloyd-Evans E, Winston J, Allen ND, Mackrill JJ, Anderson KE, Hawkins PT, Gardiner SE, Waller-Evans H, Sims R, Boland B, O'Neill C Signalling

Abnormalities in the endosomal-autophagic-lysosomal (EAL) system are an early event in Alzheimer's disease (AD) pathogenesis. However, the mechanisms underlying these abnormalities are unclear. The transient receptor potential channel mucolipin 1(TRPML1), a vital endosomal-lysosomal Ca2+ channel whose loss of function leads to neurodegeneration, has not been investigated with respect to EAL pathogenesis in late onset AD (LOAD). Here, we identify pathological hallmarks of TRPML1 dysregulation in LOAD neurons, including increased perinuclear clustering and vacuolation of endolysosomes. We reveal that iPSC human cortical neurons expressing APOE e4, the strongest genetic risk factor for LOAD, have significantly diminished TRPML1-induced endolysosomal Ca2+ release. Furthermore, we found that blocking TRPML1 function in primary neurons by depleting the TRPML1 agonist PI(3,5)P2. via PIKfyve inhibition, recreated multiple features of EAL neuropathology evident in LOAD. This included increased endolysosomal Ca2+ content, enlargement and perinuclear clustering of endolysosomes, autophagic vesicle accumulation, and early endosomal enlargement. Strikingly, these AD-like neuronal EAL defects were rescued by TRPML1 reactivation using its synthetic agonist ML-SA1. These findings implicate defects in TRPML1 in LOAD EAL pathogenesis and present TRPML1 as a potential therapeutic target.

+view abstract Journal of cell science, PMID: 36825945

Ingelson-Filpula WA, Hadj-Moussa H, Storey KB Epigenetics

The rapid and reversible nature of microRNA (miRNA) transcriptional regulation is ideal for implementing global changes to cellular processes and metabolism, a necessary asset for the freeze-tolerant gray tree frog (Dryophytes versicolor). D. versicolor can freeze up to 42% of its total body water during the winter and then thaw completely upon more favorable conditions of spring. Herein, we examined the freeze-specific miRNA responses in the gray tree frog using RBiomirGS, a bioinformatic tool designed for the analysis of miRNA-seq transcriptomics in non-genome sequenced organisms. We identified 11 miRNAs differentially regulated during freezing (miR-140-3p, miR-181a-5p, miR-206-3p, miR-451a, miR-19a-3p, miR-101-3p, miR-30e-5p, miR-142-3p and -5p, miR-21-5p, and miR-34a-5p). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggests these miRNAs play roles in downregulating signaling pathways, apoptosis, and nuclear processes while enhancing ribosomal biogenesis. Overall, these findings point towards miRNA inducing a state of energy conservation by downregulating energy-expensive pathways, while ribosomal biogenesis may lead to prioritization of critical processes for freeze-tolerance survival.

+view abstract Cell biochemistry and function, PMID: 36823992

Roca CP, Burton OT, Neumann J, Tareen S, Whyte CE, Gergelits V, Veiga RV, Humblet-Baron S, Liston A Immunology

The advent of high-dimensional single-cell data has necessitated the development of dimensionality-reduction tools. t-Distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are the two most frequently used approaches, allowing clear visualization of complex single-cell datasets. Despite the need for quantitative comparison, t-SNE and UMAP have largely remained visualization tools due to the lack of robust statistical approaches. Here, we have derived a statistical test for evaluating the difference between dimensionality-reduced datasets using the Kolmogorov-Smirnov test on the distributions of cross entropy of single cells within each dataset. As the approach uses the inter-relationship of single cells for comparison, the resulting statistic is robust and capable of identifying true biological variation. Further, the test provides a valid distance between single-cell datasets, allowing the organization of multiple samples into a dendrogram for quantitative comparison of complex datasets. These results demonstrate the largely untapped potential of dimensionality-reduction tools for biomedical data analysis beyond visualization.

+view abstract Cell reports methods, PMID: 36814837

Hernandez Mora JR, Buhigas C, Clark S, Del Gallego Bonilla R, Daskeviciute D, Monteagudo-Sánchez A, Poo-Llanillo ME, Medrano JV, Simón C, Meseguer M, Kelsey G, Monk D Epigenetics

During pre-implantation stages of mammalian development, maternally stored material promotes both the erasure of the sperm and oocyte epigenetic profiles and is responsible for concomitant genome activation. Here, we have utilized single-cell methylome and transcriptome sequencing (scM&T-seq) to quantify both mRNA expression and DNA methylation in oocytes and a developmental series of human embryos at single-cell resolution. We fully characterize embryonic genome activation and maternal transcript degradation and map key epigenetic reprogramming events in developmentally high-quality embryos. By comparing these signatures with early embryos that have undergone spontaneous cleavage-stage arrest, as determined by time-lapse imaging, we identify embryos that fail to appropriately activate their genomes or undergo epigenetic reprogramming. Our results indicate that a failure to successfully accomplish these essential milestones impedes the developmental potential of pre-implantation embryos and is likely to have important implications, similar to aneuploidy, for the success of assisted reproductive cycles.

+view abstract Cell reports, PMID: 36763500

Rosspopoff O, Cazottes E, Huret C, Loda A, Collier AJ, Casanova M, Rugg-Gunn PJ, Heard E, Ouimette JF, Rougeulle C Epigenetics

X chromosome inactivation (XCI) is an essential process, yet it initiates with remarkable diversity in various mammalian species. XIST, the main trigger of XCI, is controlled in the mouse by an interplay of lncRNA genes (LRGs), some of which evolved concomitantly to XIST and have orthologues across all placental mammals. Here, we addressed the functional conservation of human orthologues of two such LRGs, FTX and JPX. By combining analysis of single-cell RNA-seq data from early human embryogenesis with various functional assays in matched human and mouse pluripotent stem- or differentiated post-XCI cells, we demonstrate major functional differences for these orthologues between species, independently of primary sequence conservation. While the function of FTX is not conserved in humans, JPX stands as a major regulator of XIST expression in both species. However, we show that different entities of JPX control the production of XIST at various steps depending on the species. Altogether, our study highlights the functional versatility of LRGs across evolution, and reveals that functional conservation of orthologous LRGs may involve diversified mechanisms of action. These findings represent a striking example of how the evolvability of LRGs can provide adaptative flexibility to constrained gene regulatory networks.

+view abstract Nucleic acids research, PMID: 36727460

Han X, Mei Y, Mishra RK, Bi H, Jain AD, Schiltz GE, Zhao B, Sukhanova M, Wang P, Grigorescu AA, Weber PC, Piwinski JJ, Prado MA, Paulo JA, Stephens L, Anderson KE, Abrams CS, Yang J, Ji P Signalling

Myeloproliferative neoplasms (MPNs) are characterized by the activated JAK2-STAT pathway. Pleckstrin-2 (Plek2) is a downstream target of the JAK2-STAT pathway and overexpressed in patients with MPNs. We previously revealed that Plek2 plays critical roles in the pathogenesis of JAK2 mutated MPNs. The non-essential roles of Plek2 under physiologic conditions makes it an ideal target for MPN therapy. Here we identified first-in-class Plek2 inhibitors through an in silico high-throughput screening and cell-based assays followed by the synthesis of analogs. The Plek2 specific small molecule inhibitors showed potent inhibitory effects on cell proliferation. Mechanistically, Plek2 interacts with and enhances the activity of Akt through the recruitment of downstream effector proteins. The Plek2 signaling complex also includes Hsp72 that protects Akt from degradation. These functions were blocked by Plek2 inhibitors via their direct binding to Plek2 DEP domain. The role of Plek2 in activating the Akt signaling was further confirmed in vivo using a hematopoietic specific Pten knockout mouse model. We next tested Plek2 inhibitors alone or in combination with an Akt inhibitor in various MPN mouse models, which showed significant therapeutic efficacies similar to the genetic depletion of Plek2. The Plek2 inhibitor was also effective in reducing proliferation of CD34 positive cells from MPN patients. Our studies reveal a Plek2-Akt complex that drives cell proliferation and can be targeted by a new class of anti-proliferative compounds for MPN therapy.

+view abstract The Journal of clinical investigation, PMID: 36719747