Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Mikl MC, Watt IN, Lu M, Reik W, Davies SL, Neuberger MS, Rada C Epigenetics

The activation-induced deaminase/apolipoprotein B-editing catalytic subunit 1 (AID/APOBEC) family comprises four groups of proteins. Both AID, a lymphoid-specific DNA deaminase that triggers antibody diversification, and APOBEC2 (function unknown) are found in all vertebrates examined. In contrast, APOBEC1, an RNA-editing enzyme in gastrointestinal cells, and APOBEC3 are restricted to mammals. The function of most APOBEC3s, of which there are seven in human but one in mouse, is unknown, although several human APOBEC3s act as host restriction factors that deaminate human immunodeficiency virus type 1 replication intermediates. A more primitive function of APOBEC3s in protecting against the transposition of endogenous retroelements has, however, been proposed. Here, we focus on mouse APOBEC2 (a muscle-specific protein for which we find no evidence of a deaminating activity on cytidine whether as a free nucleotide or in DNA) and mouse APOBEC3 (a DNA deaminase which we find widely expressed but most abundant in lymphoid tissue). Gene-targeting experiments reveal that both APOBEC2 (despite being an ancestral member of the family with no obvious redundancy in muscle) and APOBEC3 (despite its proposed role in restricting endogenous retrotransposition) are inessential for mouse development, survival, or fertility.

+view abstract Molecular and cellular biology , PMID: 16055735 2005

Senis YA, Atkinson BT, Pearce AC, Wonerow P, Auger JM, Okkenhaug K, Pearce W, Vigorito E, Vanhaesebroeck B, Turner M, Watson SP Immunology

We have investigated the function of the p110delta catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase) in platelets using p110delta knock-out (p110delta(-/-)) mice and p110delta knock-in (p110delta(D910A/D910A)) mice, which express a catalytically inactive form of the enzyme. Aggregation to threshold concentrations of the GPVI-specific agonist, CRP, was partially reduced in p110delta(-/-) and p110delta(D910A/D910A) platelets. This inhibition was overcome by higher concentrations of CRP. The degree of inhibition was considerably weaker than that induced by LY294002 and wortmannin, which inhibit all isoforms of PI 3-kinase. p110delta(-/-) platelets showed decreased spreading on fibrinogen- or von Willebrand factor (VWF)-coated surfaces under static conditions, whereas they spread normally on collagen. LY294002 had a more pronounced inhibitory effect on spreading on all three surfaces. Adhesion and aggregate formation of p110delta(-/-) platelets to collagen or fibrinogen/VWF at intermediate/high rates of shear were normal. This study demonstrates a minor role for the p110delta catalytic subunit in mediating platelet activation by the collagen receptor GPVI and integrin alphaIIbeta3. The more pronounced inhibitory effect of LY294002 and wortmannin indicates that other isoforms of PI 3-kinase play a more significant role in signalling by the two platelet glycoprotein receptors.

+view abstract Platelets , PMID: 16011964 0

Liston A, Goodnow CC Immunology

The cause of common polygenic autoimmune diseases is poorly understood because of genetic and cellular complexity in humans and animals. We have investigated the mechanisms of two genetic causes of organ-specific autoimmunity by tracking the fate of high avidity organ-specific CD4 T cells using a transgenic mouse model. Firstly, we have found that an Idd-associated duster of loci from the NOD strain causes a T cell intrinsic failure to delete during in vivo encounter with high-avidity autoantigen, a trait distinguished by the failure to induce the pro-apoptotic gene Bim. Secondly, we have found that inactivation of the autoimmune regulator (Aire) gene reduces the level of thymic expression of organ-specific genes, in a gene-dose dependent manner. In this paper we describe a model relating efficiency of thymic deletion and susceptibility to autoimmunity. Using this model, subtle quantitative trait loci can have an additive effect on each of the parameters of thymic deletion, and the result of interaction between subtle modifications in the multiple parameters can result in large changes in the susceptibility to autoimmunity.

+view abstract Novartis Foundation symposium , PMID: 15999807 2005

Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, Bowdin SC, Riccio A, Sebastio G, Bliek J, Schofield PN, Reik W, Macdonald F, Maher ER Epigenetics

Beckwith-Wiedemann Syndrome (BWS) results from mutations or epigenetic events involving imprinted genes at 11p15.5. Most BWS cases are sporadic and uniparental disomy (UPD) or putative imprinting errors predominate in this group. Sporadic cases with putative imprinting defects may be subdivided into (a) those with loss of imprinting (LOI) of IGF2 and H19 hypermethylation and silencing due to a defect in a distal 11p15.5 imprinting control element (IC1) and (b) those with loss of methylation at KvDMR1, LOI of KCNQ1OT1 (LIT1) and variable LOI of IGF2 in whom there is a defect at a more proximal imprinting control element (IC2). We investigated genotype/epigenotype-phenotype correlations in 200 cases with a confirmed molecular genetic diagnosis of BWS (16 with CDKN1C mutations, 116 with imprinting centre 2 defects, 14 with imprinting centre 1 defects and 54 with UPD). Hemihypertrophy was strongly associated with UPD (P<0.0001) and exomphalos was associated with an IC2 defect or CDKN1C mutation but not UPD or IC1 defect (P<0.0001). When comparing birth weight centile, IC1 defect cases were significantly heavier than the patients with CDKN1C mutations or IC2 defect (P=0.018). The risk of neoplasia was significantly higher in UPD and IC1 defect cases than in IC2 defect and CDKN1C mutation cases. Kaplan-Meier analysis revealed a risk of neoplasia for all patients of 9% at age 5 years, but 24% in the UPD subgroup. The risk of Wilms' tumour in the IC2 defect subgroup appears to be minimal and intensive screening for Wilms' tumour appears not to be indicated. In UPD patients, UPD extending to WT1 was associated with renal neoplasia (P=0.054). These findings demonstrate that BWS represents a spectrum of disorders. Identification of the molecular subtype allows more accurate prognostic predictions and enhances the management and surveillance of BWS children such that screening for Wilms' tumour and hepatoblastoma can be focused on those at highest risk.

+view abstract European journal of human genetics : EJHG , PMID: 15999116 2005

B Maqueira, H Chatwin, PD Evans

Insect octopamine receptors carry out many functional roles traditionally associated with vertebrate adrenergic receptors. These include control of carbohydrate metabolism, modulation of muscular tension, modulation of sensory inputs and modulation of memory and learning. The activation of octopamine receptors mediating many of these actions leads to increases in the levels of cyclic AMP. However, to date none of the insect octopamine receptors that have been cloned have been convincingly shown to be capable of directly mediating selective and significant increases in cyclic AMP levels. Here we report on the identification and characterization of a novel, neuronally expressed family of three Drosophila G-protein coupled receptors that are selectively coupled to increases in intracellular cyclic AMP levels by octopamine. This group of receptors, DmOct beta1R (CG6919), DmOct beta2R (CG6989) and DmOct beta3R (CG7078) shows homology to vertebrate beta-adrenergic receptors. When expressed in Chinese hamster ovary cells all three receptors show a strong preference for octopamine over tyramine for the accumulation of cyclic AMP but show unique pharmacological profiles when tested with a range of synthetic agonists and antagonists. Thus, the pharmacological profile of individual insect tissue responses to octopamine might vary with the combination and the degree of expression of the individual octopamine receptors present.

+view abstract Journal of neurochemistry , PMID: 15998303 2005

DP Srivastava, EJ Yu, K Kennedy, H Chatwin, V Reale, M Hamon, T Smith, PD Evans

Nongenomic response pathways mediate many of the rapid actions of steroid hormones, but the mechanisms underlying such responses remain controversial. In some cases, cell-surface expression of classical nuclear steroid receptors has been suggested to mediate these effects, but, in a few instances, specific G-protein-coupled receptors (GPCRs) have been reported to be responsible. Here, we describe the activation of a novel, neuronally expressed Drosophila GPCR by the insect ecdysteroids ecdysone (E) and 20-hydroxyecdysone (20E). This is the first report of an identified insect GPCR interacting with steroids. The Drosophila melanogaster dopamine/ecdysteroid receptor (DmDopEcR) shows sequence homology with vertebrate beta-adrenergic receptors and is activated by dopamine (DA) to increase cAMP levels and to activate the phosphoinositide 3-kinase pathway. Conversely, E and 20E show high affinity for the receptor in binding studies and can inhibit the effects of DA, as well as coupling the receptor to a rapid activation of the mitogen-activated protein kinase pathway. The receptor may thus represent the Drosophila homolog of the vertebrate "gamma-adrenergic receptors," which are responsible for the modulation of various activities in brain, blood vessels, and pancreas. Thus, DmDopEcR can function as a cell-surface GPCR that may be responsible for some of the rapid, nongenomic actions of ecdysteroids, during both development and signaling in the mature adult nervous system.

+view abstract The Journal of neuroscience : the official journal of the Society for Neuroscience , PMID: 15987944 2005

Zoller H, McFarlane I, Theurl I, Stadlmann S, Nemeth E, Oxley D, Ganz T, Halsall DJ, Cox TM, Vogel W Mass Spectrometry

Ferroportin disease (hemochromatosis type 4) is a recently recognized disorder of human iron metabolism, characterized by iron deposition in macrophages, including Kupffer cells. Mutations in the gene encoding ferroportin 1, a cellular iron exporter, are responsible for this iron storage disease, inherited as an autosomal dominant trait. We present clinical, histopathological, and radiological findings in a family with the most common ferroportin mutation, V162del. In the index case, the disorder is characterized by abundant deposition of hemosiderin in all tissues investigated (mesenteric lymph node, liver, gastric and duodenal mucosa, and also in squamous cell carcinoma of the lung). The radiological findings indicated the presence of excess iron in bone marrow and spleen. Despite a significant burden of iron, no features of chronic liver disease were found in affected members of the family, including individuals aged up to 80 years. Hyperferritinemia greater than 1,000 microg/L was a penetrant biochemical finding before the second decade in life and was associated with significantly increased serum concentrations of pro-hepcidin that correlated positively with urinary hepcidin concentrations. In conclusion, the systemic iron burden in ferroportin disease is not a sufficient cause for chronic liver disease. In patients with most, but not all, ferroportin mutations, retention of iron in macrophages of the liver and other organs may protect against damage to parenchymal cells. Finally, macrophage iron storage in ferroportin disease is associated with elevated serum pro-hepcidin levels.

+view abstract Hepatology (Baltimore, Md.) , PMID: 15986403 2005

Powner DJ, Payne RM, Pettitt TR, Giudici ML, Irvine RF, Wakelam MJ Signalling

Cellular adhesion can be regulated by, as yet, poorly defined intracellular signalling events. Phospholipase D enzymes generate the messenger lipid phosphatidate and here we demonstrate that suppression of this reaction inhibits cellular adhesion. This effect was reversed by the addition of cell-permeable analogues of either phosphatidate or phosphatidylinositol 4,5-bisphosphate. By contrast, neither diacylglycerol nor lysophosphatidic acid were able to reverse this effect suggesting that phosphatidate itself acts directly on a target protein(s) to regulate adhesion rather than as the result of its conversion to either of these metabolite lipids. Antibodies that block beta1 and beta2 integrin-substrate interactions inhibited adhesion stimulated by both phosphatidate and phosphatidylinositol 4,5-bisphosphate indicating that these lipids regulate beta1 and beta2 integrin-mediated adhesion. In vivo, these lipids can be generated by phospholipase D2 and phosphatidylinositol 4-phosphate 5-kinase Igamma b, respectively, and over-expression of catalytically-functional forms of these enzymes dose-dependently stimulated adhesion while siRNA depletion of PLD2 levels inhibited adhesion. Furthermore the ability of over-expressed phospholipase D2 to stimulate adhesion was inhibited by a dominant-negative version of phosphatidylinositol 4-phosphate 5-kinase Igamma b. Consistent with this, phosphatidylinositol 4-phosphate 5-kinase Igamma b-mediated adhesion was dependent upon phospholipase D2's product, phosphatidate indicating that phosphatidylinositol 4-phosphate 5-kinase Igamma b is downstream of, and necessary for, phospholipase D2's regulation of adhesion. It is likely that this phospholipase D2-generated phosphatidate directly stimulates phosphatidylinositol 4-phosphate 5-kinase Igamma b to generate phosphatidylinositol 4,5-bisphosphate as this mechanism has previously been demonstrated in vitro. Thus, our data indicates that during the initial stages of adhesion, phospholipase D2-derived phosphatidate stimulates phosphatidylinositol 4-phosphate 5-kinase Igamma b to generate phosphatidylinositol 4,5-bisphosphate and that consequently this inositol phospholipid promotes adhesion through its regulation of cell-surface integrins.

+view abstract Journal of cell science , PMID: 15976455 2005

Cook SJ, Wakelam M Signalling

+view abstract Current opinion in pharmacology , PMID: 15961343 2005

R Ley, KE Ewings, K Hadfield, SJ Cook Signalling

+view abstract Cell death and differentiation , PMID: 15947788 2005

Vigorito E, Gambardella L, Colucci F, McAdam S, Turner M Immunology

Mice lacking all 3 Vav proteins fail to produce significant numbers of recirculating follicular or marginal zone B cells. Those B cells that do mature have shortened lifespans. The constitutive nuclear factor-kappaB (NF-kappaB) activity of resting naive B cells required Vav function and expression of cellular reticuloendotheliosis (c-Rel). Rel-A was reduced in Vav-deficient B cells. Furthermore, expression of the NF-kappaB-regulated antiapoptotic genes A1 and Bcl-2 was reduced in mature Vav-deficient B cells. Overexpression of Bcl-2 restored the number of mature follicular B cells in the spleens of Vav-deficient mice. When activated by B-cell receptor (BCR) cross-linking, Vav-deficient B cells failed to activate NF-kappaB. Vav proteins thus regulate an NF-kappaB-dependent survival signal in naive B cells and are required for NF-kappaB function after BCR cross-linking.

+view abstract Blood , PMID: 15941910 2005

J LaCava, J Houseley, C Saveanu, E Petfalski, E Thompson, A Jacquier, D Tollervey Epigenetics

The exosome complex of 3'-5' exonucleases participates in RNA maturation and quality control and can rapidly degrade RNA-protein complexes in vivo. However, the purified exosome showed weak in vitro activity, indicating that rapid RNA degradation requires activating cofactors. This work identifies a nuclear polyadenylation complex containing a known exosome cofactor, the RNA helicase Mtr4p; a poly(A) polymerase, Trf4p; and a zinc knuckle protein, Air2p. In vitro, the Trf4p/Air2p/Mtr4p polyadenylation complex (TRAMP) showed distributive RNA polyadenylation activity. The presence of the exosome suppressed poly(A) tail addition, while TRAMP stimulated exosome degradation through structured RNA substrates. In vivo analyses showed that TRAMP is required for polyadenylation and degradation of rRNA and snoRNA precursors that are characterized exosome substrates. Poly(A) tails stimulate RNA degradation in bacteria, suggesting that this is their ancestral function. We speculate that this function was maintained in eukaryotic nuclei, while cytoplasmic mRNA poly(A) tails acquired different roles in translation.

+view abstract Cell , PMID: 15935758 2005

Baumforth KR, Flavell JR, Reynolds GM, Davies G, Pettit TR, Wei W, Morgan S, Stankovic T, Kishi Y, Arai H, Nowakova M, Pratt G, Aoki J, Wakelam MJ, Young LS, Murray PG Signalling

A proportion of patients with Hodgkin lymphoma carry Epstein-Barr virus (EBV), an oncogenic herpesvirus, in their tumor cells. Although it is generally assumed that EBV contributes to the malignant phenotype of Hodgkin lymphoma cells, direct evidence in support of this is lacking. Here we show that EBV infection of Hodgkin lymphoma cells results in the induction of autotaxin, a secreted tumor-associated factor with lysophospholipase-D activity. Up-regulation of autotaxin increased the generation of lysophosphatidic acid (LPA) and led to the enhanced growth and survival of Hodgkin lymphoma cells, whereas specific down-regulation of autotaxin decreased LPA levels and reduced cell growth and viability. In lymphoma tissues, autotaxin expression was mainly restricted to CD30+ anaplastic large-cell lymphomas and Hodgkin lymphoma; in the latter, high levels of autotaxin were strongly associated with EBV positivity (P = .006). Our results identify the induction of autotaxin and the subsequent generation of LPA as key molecular events that mediate the EBV-induced growth and survival of Hodgkin lymphoma cells and suggest that this pathway may provide opportunities for novel therapeutic intervention.

+view abstract Blood , PMID: 15933052 2005

Christophorou MA, Martin-Zanca D, Soucek L, Lawlor ER, Brown-Swigart L, Verschuren EW, Evan GI

To investigate the functions of the p53 tumor suppressor, we created a new knock-in gene replacement mouse model in which the endogenous Trp53 gene is substituted by one encoding p53ER(TAM), a p53 fusion protein whose function is completely dependent on ectopic provision of 4-hydroxytamoxifen. We show here that both tissues in vivo and cells in vitro derived from such mice can be rapidly toggled between wild-type and p53 knockout states. Using this rapid perturbation model, we define the kinetics, dependence, persistence and reversibility of p53-mediated responses to DNA damage in tissues in vivo and to activation of the Ras oncoprotein and stress in vitro. This is the first example to our knowledge of a new class of genetic model that allows the specific, rapid and reversible perturbation of the function of a single endogenous gene in vivo.

+view abstract Nature genetics , PMID: 15924142

L Erlandsson, S Licence, F Gaspal, P Lane, AE Corcoran, IL Mårtensson

During B cell development, proliferative expansion takes place after expression of the pre-BCR. At this pre-BII cell stage, the IL-7Ralpha is also expressed. Some in vitro studies suggest that pre-BCR-dependent expansion relies on the IL-7Ralpha, and others that it does not. It has also been suggested that the pre-BCR mediates down-regulation of the IL-7Ralpha. However, the in vivo relationship between the pre-BCR and the IL-7Ralpha has not been previously examined. Here, we have investigated this by establishing mice lacking both receptors. Our results show that in the absence of the IL-7Ralpha, the pre-BII population is reduced, as previously seen in mice lacking the pre-BCR, demonstrating that the IL-7Ralpha is important at this stage. A deficiency in both receptors results in a further reduction of the pre-BII cell population. We conclude that both the IL-7Ralpha and the pre-BCR are required for optimal pre-BII cell expansion. Furthermore, IL-7Ralpha expression levels are normal in pre-BCR-deficient mice, suggesting that the pre-BCR does not mediate its down-regulation. As a consequence of the absence of both receptors, the peripheral B cell pool is severely depleted, resulting in atypical splenic B cell structures and reduced serum Ig levels.

+view abstract European journal of immunology , PMID: 15909309 2005

I Nadra, JC Mason, P Philippidis, O Florey, CD Smythe, GM McCarthy, RC Landis, DO Haskard Signalling

Basic calcium phosphate (BCP) crystal deposition underlies the development of arterial calcification. Inflammatory macrophages colocalize with BCP deposits in developing atherosclerotic lesions and in vitro can promote calcification through the release of TNF alpha. Here we have investigated whether BCP crystals can elicit a proinflammatory response from monocyte-macrophages. BCP microcrystals were internalized into vacuoles of human monocyte-derived macrophages in vitro. This was associated with secretion of proinflammatory cytokines (TNFalpha, IL-1beta and IL-8) capable of activating cultured endothelial cells and promoting capture of flowing leukocytes under shear flow. Critical roles for PKC, ERK1/2, JNK, but not p38 intracellular signaling pathways were identified in the secretion of TNF alpha, with activation of ERK1/2 but not JNK being dependent on upstream activation of PKC. Using confocal microscopy and adenoviral transfection approaches, we determined a specific role for the PKC-alpha isozyme. The response of macrophages to BCP crystals suggests that pathological calcification is not merely a passive consequence of chronic inflammatory disease but may lead to a positive feed-back loop of calcification and inflammation driving disease progression.

+view abstract Circulation research , PMID: 15905460 2005

Petry CJ, Ong KK, Barratt BJ, Wingate D, Cordell HJ, Ring SM, Pembrey ME, Reik W, Todd JA, Dunger DB, Epigenetics

Common genetic variation at genes that are imprinted and exclusively maternally expressed could explain the apparent maternal-specific inheritance of low birthweight reported in large family pedigrees. We identified ten single nucleotide polymorphisms (SNPs) in H19, and we genotyped three of these SNPs in families from the contemporary ALSPAC UK birth cohort (1,696 children, 822 mothers and 661 fathers) in order to explore associations with size at birth and cord blood IGF-II levels.

+view abstract BMC genetics , PMID: 15885138 2005

Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, Miles J, Osborne C, Fraser P

The beta-globin genes have become a classical model for studying regulation of gene expression. Wide-ranging studies have revealed multiple levels of epigenetic regulation that coordinately ensure a highly specialised, tissue- and stage-specific gene transcription pattern. Key players include cis-acting elements involved in establishing and maintaining specific chromatin conformations and histone modification patterns, elements engaged in the transcription process through long-range regulatory interactions, transacting general and tissue-specific factors. On a larger scale, molecular events occurring at the locus level take place in the context of a highly dynamic nucleus as part of the cellular epigenetic programme.

+view abstract Progress in molecular and subcellular biology , PMID: 15881896 2005

AM Condliffe, K Davidson, KE Anderson, CD Ellson, T Crabbe, K Okkenhaug, B Vanhaesebroeck, M Turner, L Webb, MP Wymann, E Hirsch, T Ruckle, M Camps, C Rommel, SP Jackson, ER Chilvers, LR Stephens, PT Hawkins Immunology

It is well established that preexposure of human neutrophils to proinflammatory cytokines markedly augments the production of reactive oxygen species (ROS) to subsequent stimuli. This priming event is thought to be critical for localizing ROS to the vicinity of the inflammation, maximizing their role in the resolution of the inflammation, and minimizing the damage to surrounding tissue. We have used a new generation of isoform-selective phosphoinositide 3-kinase (PI3K) inhibitors to show that ROS production under these circumstances is regulated by temporal control of class I PI3K activity. Stimulation of tumor necrosis factor-alpha (TNF-alpha)-primed human neutrophils with N-formyl-methionyl-leucyl-phenylalanine (fMLP) results in biphasic activation of PI3K; the first phase is largely dependent on PI3Kgamma, and the second phase is largely dependent on PI3Kdelta. The second phase of PI3K activation requires the first phase; it is this second phase that is augmented by TNF-alpha priming and that regulates parallel activation of ROS production. Surprisingly, although TNF-alpha-primed mouse bone marrow-derived neutrophils exhibit superficially similar patterns of PI3K activation and ROS production in response to fMLP, these responses are substantially lower and largely dependent on PI3Kgamma alone. These results start to define which PI3K isoforms are responsible for modulating neutrophil responsiveness to infection and inflammation.

+view abstract Blood , PMID: 15878979 2005

Sinnecker D, Voigt P, Hellwig N, Schaefer M Epigenetics

Color variants of green fluorescent protein (GFP) are increasingly used for multicolor imaging, fluorescence resonance energy transfer (FRET), and fluorescence recovery after photobleaching (FRAP). Here we show that experimental settings commonly used in these imaging experiments may induce an as yet uncharacterized reversible photobleaching of fluorescent proteins, which is more pronounced at acidic pH. Whereas the reversible photobleaching spectrum of eCFP corresponds to its absorption spectrum, reversible photobleaching spectra of yellow variants resemble absorption spectra of their protonated states. Fluorescence intensities recover spontaneously with time constants of 25-58 s. The recovery of eCFP can be further accelerated by illumination. The resulting steady-state fluorescence reflects a variable equilibrium between reversible photobleaching, spontaneous recovery, and light-induced recovery. These processes can cause significant artifacts in commonly applied imaging techniques, photobleach-based FRET determinations, and FRAP assays.

+view abstract Biochemistry , PMID: 15865453

PJ Rugg-Gunn, AC Ferguson-Smith, RA Pedersen Epigenetics

We examined the allele-specific expression of six imprinted genes and the methylation profiles of three imprinting control regions to assess the epigenetic status of human embryonic stem cells. We identified generally monoallelic gene expression and normal methylation patterns. During prolonged passage, one cell line became biallelic with respect to H19, but without loss of the gametic methylation imprint. These data argue for a substantial degree of epigenetic stability in human embryonic stem cells.

+view abstract Nature genetics , PMID: 15864307 2005

David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, Ravid R, Dröse S, Brandt U, Müller WE, Eckert A, Götz J Signalling

Transgenic mice overexpressing the P301L mutant human tau protein exhibit an accumulation of hyperphosphorylated tau and develop neurofibrillary tangles. The consequences of tau pathology were investigated here by proteomics followed by functional analysis. Mainly metabolism-related proteins including mitochondrial respiratory chain complex components, antioxidant enzymes, and synaptic proteins were identified as modified in the proteome pattern of P301L tau mice. Significantly, the reduction in mitochondrial complex V levels in the P301L tau mice revealed using proteomics was also confirmed as decreased in human P301L FTDP-17 (frontotemporal dementia with parkinsonism linked to chromosome 17) brains. Functional analysis demonstrated a mitochondrial dysfunction in P301L tau mice together with reduced NADH-ubiquinone oxidoreductase activity and, with age, impaired mitochondrial respiration and ATP synthesis. Mitochondrial dys-function was associated with higher levels of reactive oxygen species in aged transgenic mice. Increased tau pathology as in aged homozygous P301L tau mice revealed modified lipid peroxidation levels and the up-regulation of antioxidant enzymes in response to oxidative stress. Furthermore, P301L tau mitochondria displayed increased vulnerability toward beta-amyloid (Abeta) peptide insult, suggesting a synergistic action of tau and Abeta pathology on the mitochondria. Taken together, we conclude that tau pathology involves a mitochondrial and oxidative stress disorder possibly distinct from that caused by Abeta.

+view abstract The Journal of biological chemistry , PMID: 15831501

Reik W, Lewis A Epigenetics

Recent studies have revealed mechanistic parallels between imprinted X-chromosome inactivation and autosomal imprinting. We suggest that neither mechanism was present in ancestral egg-laying mammals, and that both arose when the evolution of the placenta exerted selective pressure to imprint growth-related genes. We also propose that non-coding RNAs and histone modifications were adopted for the imprinting of growth suppressors on the X chromosome and on autosomes. This provides a unified hypothesis for the evolution of X-chromosome inactivation and imprinting.

+view abstract Nature reviews. Genetics , PMID: 15818385 2005

Mead KI, Zheng Y, Manzotti CN, Perry LC, Liu MK, Burke F, Powner DJ, Wakelam MJ, Sansom DM Signalling

CTLA-4 is an essential protein in the regulation of T cell responses that interacts with two ligands found on the surface of APCs (CD80 and CD86). CTLA-4 is itself poorly expressed on the T cell surface and is predominantly localized to intracellular compartments. We have studied the mechanisms involved in the delivery of CTLA-4 to the cell surface using a model Chinese hamster ovary cell system and compared this with activated and regulatory human T cells. We have shown that expression of CTLA-4 at the plasma membrane (PM) is controlled by exocytosis of CTLA-4-containing vesicles and followed by rapid endocytosis. Using selective inhibitors and dominant negative mutants, we have shown that exocytosis of CTLA-4 is dependent on the activity of the GTPase ADP ribosylation factor-1 and on phospholipase D activity. CTLA-4 was identified in a perinuclear compartment overlapping with the cis-Golgi marker GM-130 but did not colocalize strongly with lysosomal markers such as CD63 and lysosome-associated membrane protein. In regulatory T cells, activation of phospholipase D was sufficient to trigger release of CTLA-4 to the PM but did not inhibit endocytosis. Taken together, these data suggest that CTLA-4 may be stored in a specialized compartment in regulatory T cells that can be triggered rapidly for deployment to the PM in a phospholipase D- and ADP ribosylation factor-1-dependent manner.

+view abstract Journal of immunology (Baltimore, Md. : 1950) , PMID: 15814706 2005