Publications

Ciraku L, Bacigalupa ZA, Ju J, Moeller RA, Le Minh G, Lee RH, Smith MD, Ferrer CM, Trefely S, Izzo LT, Doan MT, Gocal WA, D'Agostino L, Shi W, Jackson JG, Katsetos CD, Wellen KE, Snyder NW, Reginato MJ Epigenetics

Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA and lipid production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA and lipids. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.

+view abstract Oncogene, PMID: 35190642 22 Feb 2022

Trefely S, Huber K, Liu J, Noji M, Stransky S, Singh J, Doan MT, Lovell CD, von Krusenstiern E, Jiang H, Bostwick A, Pepper HL, Izzo L, Zhao S, Xu JP, Bedi KC, Rame JE, Bogner-Strauss JG, Mesaros C, Sidoli S, Wellen KE, Snyder NW Epigenetics

Quantitative subcellular metabolomic measurements can explain the roles of metabolites in cellular processes but are subject to multiple confounding factors. We developed stable isotope labeling of essential nutrients in cell culture-subcellular fractionation (SILEC-SF), which uses isotope-labeled internal standard controls that are present throughout fractionation and processing to quantify acyl-coenzyme A (acyl-CoA) thioesters in subcellular compartments by liquid chromatography-mass spectrometry. We tested SILEC-SF in a range of sample types and examined the compartmentalized responses to oxygen tension, cellular differentiation, and nutrient availability. Application of SILEC-SF to the challenging analysis of the nuclear compartment revealed a nuclear acyl-CoA profile distinct from that of the cytosol, with notable nuclear enrichment of propionyl-CoA. Using isotope tracing, we identified the branched chain amino acid isoleucine as a major metabolic source of nuclear propionyl-CoA and histone propionylation, thus revealing a new mechanism of crosstalk between metabolism and the epigenome.

+view abstract Molecular cell, PMID: 34856123 22 Nov 2021

Campbell S, Mesaros C, Izzo L, Affronti H, Noji M, Schaffer BE, Tsang T, Sun K, Trefely S, Kruijning S, Blenis J, Blair IA, Wellen KE Epigenetics

Tumors frequently exhibit aberrant glycosylation, which can impact cancer progression and therapeutic responses. The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a major substrate for glycosylation in the cell. Prior studies have identified the HBP as a promising therapeutic target in pancreatic ductal adenocarcinoma (PDA). The HBP requires both glucose and glutamine for its initiation. The PDA tumor microenvironment is nutrient poor, however, prompting us to investigate how nutrient limitation impacts hexosamine synthesis. Here, we identify that glutamine limitation in PDA cells suppresses de novo hexosamine synthesis but results in increased free GlcNAc abundance. GlcNAc salvage via N-acetylglucosamine kinase (NAGK) is engaged to feed UDP-GlcNAc pools. expression is elevated in human PDA, and deletion from PDA cells impairs tumor growth in mice. Together, these data identify an important role for NAGK-dependent hexosamine salvage in supporting PDA tumor growth.

+view abstract eLife, PMID: 34844667 30 11 2021

Giblin W, Bringman-Rodenbarger L, Guo AH, Kumar S, Monovich AC, Mostafa AM, Skinner ME, Azar M, Mady AS, Chung CH, Kadambi N, Melong KA, Lee HJ, Zhang L, Sajjakulnukit P, Trefely S, Varner EL, Iyer S, Wang M, Wilmott JS, Soyer HP, Sturm RA, Pritchard AL, Andea AA, Scolyer RA, Stark MS, Scott DA, Fullen DR, Bosenberg MW, Chandrasekaran S, Nikolovska-Coleska Z, Verhaegen ME, Snyder NW, Rivera MN, Osterman AL, Lyssiotis CA, Lombard DB Epigenetics

Cutaneous melanoma remains the most lethal skin cancer, and ranks third among all malignancies in terms of years of life lost. Despite the advent of immune checkpoint and targeted therapies, only roughly half of patients with advanced melanoma achieve a durable remission. Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that regulates metabolism and other biological processes. Germline Sirt5 deficiency is associated with mild phenotypes in mice. Here we showed that SIRT5 was required for proliferation and survival across all cutaneous melanoma genotypes tested, as well as uveal melanoma, a genetically distinct melanoma subtype that arises in the eye and is incurable once metastatic. Likewise, SIRT5 was required for efficient tumor formation by melanoma xenografts and in an autochthonous mouse Braf Pten-driven melanoma model. Via metabolite and transcriptomic analyses, we found that SIRT5 was required to maintain histone acetylation and methylation levels in melanoma cells, thereby promoting proper gene expression. SIRT5-dependent genes notably included MITF, a key lineage-specific survival oncogene in melanoma, and the c-MYC proto-oncogene. SIRT5 may represent a druggable genotype-independent addiction in melanoma.

+view abstract The Journal of clinical investigation, PMID: 33945506 15 06 2021

Yu X, Willmann MR, Vandivier LE, Trefely S, Kramer MC, Shapiro J, Guo R, Lyons E, Snyder NW, Gregory BD Epigenetics

Although eukaryotic messenger RNAs (mRNAs) normally possess a 5' end N-methyl guanosine (mG) cap, a non-canonical 5' nicotinamide adenine dinucleotide (NAD) cap can tag certain transcripts for degradation mediated by the NAD decapping enzyme DXO1. Despite this importance, whether NAD capping dynamically responds to specific stimuli to regulate eukaryotic transcriptomes remains unknown. Here, we reveal a link between NAD capping and tissue- and hormone response-specific mRNA stability. In the absence of DXO1 function, transcripts displaying a high proportion of NAD capping are instead processed into RNA-dependent RNA polymerase 6-dependent small RNAs, resulting in their continued turnover likely to free the NAD molecules. Additionally, the NAD-capped transcriptome is significantly remodeled in response to the essential plant hormone abscisic acid in a mechanism that is primarily independent of DXO1. Overall, our findings reveal a previously uncharacterized and essential role of NAD capping in dynamically regulating transcript stability during specific physiological responses.

+view abstract Developmental cell, PMID: 33290723 11 01 2021

Varner EL, Trefely S, Bartee D, von Krusenstiern E, Izzo L, Bekeova C, O'Connor RS, Seifert EL, Wellen KE, Meier JL, Snyder NW Epigenetics

Lysine lactoylation is a recently described protein post-translational modification (PTM). However, the biochemical pathways responsible for this acylation remain unclear. Two metabolite-dependent mechanisms have been proposed: enzymatic histone lysine lactoylation derived from lactoyl-coenzyme A (lactoyl-CoA, also termed lactyl-CoA), and non-enzymatic lysine lactoylation resulting from acyl-transfer via lactoyl-glutathione. While the former has precedent in the form of enzyme-catalysed lysine acylation, the lactoyl-CoA metabolite has not been previously quantified in mammalian systems. Here, we use liquid chromatography-high-resolution mass spectrometry (LC-HRMS) together with a synthetic standard to detect and validate the presence of lactoyl-CoA in cell and tissue samples. Conducting a retrospective analysis of data from previously analysed samples revealed the presence of lactoyl-CoA in diverse cell and tissue contexts. In addition, we describe a biosynthetic route to generate CN-isotopically labelled lactoyl-CoA, providing a co-eluting internal standard for analysis of this metabolite. We estimate lactoyl-CoA concentrations of 1.14 × 10 pmol per cell in cell culture and 0.0172 pmol mg tissue wet weight in mouse heart. These levels are similar to crotonyl-CoA, but between 20 and 350 times lower than predominant acyl-CoAs such as acetyl-, propionyl- and succinyl-CoA. Overall our studies provide the first quantitative measurements of lactoyl-CoA in metazoans, and provide a methodological foundation for the interrogation of this novel metabolite in biology and disease.

+view abstract Open biology, PMID: 32961073 09 2020

Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, Miller KD, Schug ZT, Snyder NW, Gade TP, Titchenell PM, Rabinowitz JD, Wellen KE Epigenetics

Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease. Fructose intake triggers de novo lipogenesis in the liver, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota, and this supplies lipogenic acetyl-CoA independently of ACLY. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.

+view abstract Nature, PMID: 32214246 03 2020

Trefely S, Lovell CD, Snyder NW, Wellen KE Epigenetics

Many metabolites serve as important signalling molecules to adjust cellular activities and functions based on nutrient availability. Links between acetyl-CoA metabolism, histone lysine acetylation, and gene expression have been documented and studied over the past decade. In recent years, several additional acyl modifications to histone lysine residues have been identified, which depend on acyl-coenzyme A thioesters (acyl-CoAs) as acyl donors. Acyl-CoAs are intermediates of multiple distinct metabolic pathways, and substantial evidence has emerged that histone acylation is metabolically sensitive. Nevertheless, the metabolic sources of acyl-CoAs used for chromatin modification in most cases remain poorly understood. Elucidating how these diverse chemical modifications are coupled to and regulated by cellular metabolism is important in deciphering their functional significance.

+view abstract Molecular metabolism, PMID: 32199817 08 2020

Trefely S, Liu J, Huber K, Doan MT, Jiang H, Singh J, von Krusenstiern E, Bostwick A, Xu P, Bogner-Strauss JG, Wellen KE, Snyder NW Epigenetics

The dynamic regulation of metabolic pathways can be monitored by stable isotope tracing. Yet, many metabolites are part of distinct processes within different subcellular compartments. Standard isotope tracing experiments relying on analyses in whole cells may not accurately reflect compartmentalized metabolic processes. Analysis of compartmentalized metabolism and the dynamic interplay between compartments can potentially be achieved by stable isotope tracing followed by subcellular fractionation. Although it is recognized that metabolism can take place during biochemical fractionation of cells, a clear understanding of how such post-harvest metabolism impacts the interpretation of subcellular isotope tracing data and methods to correct for this are lacking. We set out to directly assess artifactual metabolism, enabling us to develop and test strategies to correct for it. We apply these techniques to examine the compartment-specific metabolic kinetics of C-labeled substrates targeting central metabolic pathways.

+view abstract Molecular metabolism, PMID: 31767181 12 2019

Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE, Potluri P, Tintos-Hernandez JA, Singh LN, Karch KR, Campbell SL, Doan MT, Jiang H, Nissim I, Nakamaru-Ogiso E, Wellen KE, Snyder NW, Garcia BA, Wallace DC Epigenetics

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNA nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 31253706 06 08 2019

Wang W, Ishibashi J, Trefely S, Shao M, Cowan AJ, Sakers A, Lim HW, O'Connor S, Doan MT, Cohen P, Baur JA, King MT, Veech RL, Won KJ, Rabinowitz JD, Snyder NW, Gupta RK, Seale P Epigenetics

The precursor cells for metabolically beneficial beige adipocytes can alternatively become fibrogenic and contribute to adipose fibrosis. We found that cold exposure or β3-adrenergic agonist treatment of mice decreased the fibrogenic profile of precursor cells and stimulated beige adipocyte differentiation. This fibrogenic-to-adipogenic transition was impaired in aged animals, correlating with reduced adipocyte expression of the transcription factor PRDM16. Genetic loss of Prdm16 mimicked the effect of aging in promoting fibrosis, whereas increasing PRDM16 in aged mice decreased fibrosis and restored beige adipose development. PRDM16-expressing adipose cells secreted the metabolite β-hydroxybutyrate (BHB), which blocked precursor fibrogenesis and facilitated beige adipogenesis. BHB catabolism in precursor cells, mediated by BDH1, was required for beige fat differentiation in vivo. Finally, dietary BHB supplementation in aged animals reduced adipose fibrosis and promoted beige fat formation. Together, our results demonstrate that adipocytes secrete a metabolite signal that controls beige fat remodeling.

+view abstract Cell metabolism, PMID: 31155495 02 07 2019