selection (3). Selection on *P. obtusospinosa* colonies may have incorporated induced supersoldier-like anomalies by increasing their frequency through modification of the JH system (fig. S12) and by inhibiting the formation of any wing vestiges (fig. S13 and S14). Army ant raids may have been a selective pressure that incorporated these anomalies, because *P. obtusospinosa* supersoldiers currently use their extra-large heads to defend against these raids (13).

Selection for re-evolving supersoldiers may generally be reduced, because almost all *Pheidole* species lack a supersoldier subcaste (10, 11). *P. hyatti* provides insight into how this selective pressure can be reduced: Although *P. hyatti* retains the developmental potential (Fig. 4) and lives in an ecological environment similar to that of *P. obtusospinosa*, it has not re-evolved a supersoldier subcaste (11). Instead, *P. hyatti* uses nest evacuation behavior when attacked by army ants (21). The retention of this potential in *P. hyatti* and other *Pheidole* species that lack a supersoldier subcaste may therefore be due to a clade-specific constraint (22). This constraint may have arisen from having the same hormone (JH) mediate the determination of both soldiers and supersoldiers in the common ancestor of all *Pheidole*. Soldiers and supersoldiers are both defined by their larval size and the development of their vestigial wing discs, which indicates that their developmental programs share many modules. Therefore, the ancestral potential to produce supersoldiers cannot be lost without compromising the developmental program of soldiers.

Recurrent phenotypes reflecting ancestral potentials have long been recognized as widespread in plants and animals (6, 19, 23–28). Because of the lack of empirical evidence, however, the evolutionary significance of these recurrent phenotypes has been underappreciated (19, 29). We uncovered an ancestral developmental potential to produce a novel supersoldier subcaste that has been retained throughout a hyperdiverse ant genus that evolved ~35 to 60 million years ago (10) (Fig. 4). Our results suggest that the recurrent induction of ancestral developmental potential is an important source of adaptive variation for selection that facilitates the adaptive and parallel evolution of novel phenotypes.

**References and Notes**


**Acknowledgments:** We thank R. Sanwald, R. Johnson, S. Cover, M. Seid, W. Tscharke, and J. Kirk for help with ant collection or identification; Wellmark for methoprene; and M. P. Harris, S. Hassa, M. W. J. Ferguson, J. Fallon, and E. M. Richert for help with ant colony or identification. We also thank K. K. Chauhan for help with statistical analysis.

**Supporting Online Material**

www.sciencemag.org/cgi/content/full/335/6064/79/DC1

Materials and Methods

Figs. S1 to S16

Tables S1 to S2

References (S1–46)

20 July 2011; accepted 22 November 2011

10.1126/science.1211451

---

**Fitness Trade-Offs and Environmentally Induced Mutation Buffering in Isogenic C. elegans**

M. Olivia Casanueva, Alejandro Burga, Ben Lehner

Mutations often have consequences that vary across individuals. Here, we show that the stimulation of a stress response can reduce mutation penetrance in *Caenorhabditis elegans*. Moreover, this induced mutation buffering varies across isogenic individuals because of interindividual differences in stress signaling. This variation has important consequences in wild-type animals, producing some individuals with higher stress resistance but lower reproductive fitness and other individuals with lower stress resistance and higher reproductive fitness. This may be beneficial in an unpredictable environment, acting as a “bet-hedging” strategy to diversify risk. These results illustrate how transient environmental stimuli can induce protection against mutations, how environmental responses can underlie variable mutation buffering, and how a fitness trade-off may make variation in stress signaling advantageous.

A specific mutation can have different consequences in different individuals. For example, even in “Mendelian” human diseases, such as cystic fibrosis, an inherited mutation can result in severe disease in one individual but a milder phenotype in another (1). Incomplete penetrance is also observed in isogenic model organisms and is poorly understood (2–4).

Many mutations have outcomes that depend on the activity of molecular chaperones—proteins that aid the folding of other macromolecules (5–14). More generally, molecular mechanisms that promote environmental robustness (survival after environmental challenges) also tend to increase mutational robustness [the extent to which an organism’s phenotype remains constant in spite of mutation (15–17)].

We investigated whether genetically increasing environmental stress resistance could modify mutation penetrance in the model organism *Caenorhabditis elegans*. We used a transgene to overexpress the transcription factor heat shock factor 1 (HSF-1), a master regulator of the environmental stress response. Transgenic animals are more resistant to a range of environmental challenges (18, 19) and show a delayed age-dependent reduction in protein-folding homeostasis (20). We crossed the hsf-1 transgenic animals with strains carrying diverse mutations that affect development but with outcomes that vary across individuals (table S1).

In 8 out of 11 tested cases, mutation penetrance was reduced in the transgenic animals (Fig. 1, fig. S1, and table S2). Protection was observed for mutations affecting both embryonic (Fig. 1A) and postembryonic (Fig. 1B) development. For example, embryonic lethality caused by a deletion in the intermediate filament protein gene ifdo-1 reduced from 33% to 17% (48% of animals that would have died were protected, P = 5.7 × 10^-12) (Fig. 1, fig. S1, and table S4). The buffered mutations are molecularly diverse and act in distinct
pathways and tissues (table S1). Protection ranged from 18 to 88% in all the cases. All of the buffered mutations had temperature-sensitive outcomes, whereas those refractive to buffering did not, and they likely represent genetic nulls (tables S1 and S5).

These observations suggest that, at least in C. elegans, a stimulated stress response can reduce the penetrance of partial loss-of-function mutations. We next tested whether the environmental stimulation of a stress response can have a similar effect. A mild environmental stimulus induces chaperone expression and promotes survival in subsequent environmental challenges, a response referred to as hormesis (27). We subjected animals to a transient heat shock as larvae to induce a stress response, allowed them to develop to adults, and examined the proportion of individuals affected by late-acting mutations. When a mutation was chaperone-dependent, a mild environmental challenge stimulated a reduction in penetrance (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C). For example, an inactivating mutation in the zinc finger transcription factor LIN-29 caused abnormal male gonad migration (46% of controls but only 30% of animals) (Fig. 1C).

Beyond genetic differences, therefore, a second cause of variation in mutation outcome can be variation in the prior exposure of individuals to transient environmental stimuli (Fig. 1C and fig. S1, C to K). Although severe environmental stress can reduce mutation buffering (8, 9), transient environmental stimuli can promote it.

Isogenic individuals often show substantial variation in their response to a common environmental challenge (21–24). We tested whether this interindividual variation also affects the outcome of mutations. We applied a transient heat shock and sorted animals according to their induction of one of the stress-responsive reporters hsp-16.2p::GFP (green fluorescent protein) or hsp-16.2p::mcherry (22). We found that animals in which a stronger stress response was induced had reduced mutation penetrance (Fig. 2, A and B; fig. S2; and table S6). Quantifying the response in individual animals confirmed this finding: Animals that had a stronger stress...
response were less likely to be affected by an inherited chaperone-dependent mutation (Fig. 2C and table S7).

Isogenic individuals that induce higher chaperone levels are therefore more resistant to the effects of certain inherited mutations. These individuals are also more resistant to heat stress and live longer (22). Why, therefore, is a stronger stress response not induced in all individuals in a population? Mutations that increase stress resistance can also have a pleiotropic effect on fitness: Perturbing the insulin-like signaling pathway in C. elegans can reduce fecundity (25), and increased chaperone expression in Drosophila can be detrimental (26). We reasoned, therefore, that a fitness trade-off might occur across isogenic individuals, with those having a stronger stress response also incurring a fitness cost.

Using the hsp-16.2p::GFP reporter to separate individuals after a heat stress, we observed that, although individuals that had a stronger response were more resistant to a subsequent severe heat stress (fig. S3 and table S8), they had a significantly reduced early fecundity (fig. S3D and table S9). If conditions remain benign, therefore, individuals that have a stronger stress response incur an important fitness cost (fig. S3D and table S9).

In addition to HSF-1, a second key regulator of the stress response is the FOXO transcription factor DAF-16. DAF-16 relocalizes from the cytoplasm to the nucleus after a heat stress and, with HSF-1, induces the expression of target genes, such as hsp-16.2 (27, 28). Using a DAF-16::GFP fusion protein, we observed that the nuclear translocation of DAF-16 is rapid but that variation occurs across individuals in the time that DAF-16 remains in the nucleus (Fig. 3). For example, DAF-16 had been exported from the nucleus in half of animals ~100 min after a 3-hour heat shock (Fig. 3A). Sorting animals according to the nuclear residency time of DAF-16, we found that higher chaperone induction (fig. S4 and table S21), increased stress resistance (Fig. 3C, table S8), and reduced early fecundity (Fig. 3D and table S10) were all associated with prolonged DAF-16 signaling.

We next used a transcriptional reporter for an endogenously expressed chaperone, DAF-21 (Hsp90) to test whether variation in the stress response relates to preexisting variation in chaperone levels. Consistent with this idea, animals with higher daf-21p::mcherry expression before a heat shock developed greater tolerotemperance (fig. S3G and table S8) and incurred a reproductive fitness cost after a mild heat stress (fig. S3H and table S11). Thus, interindividual variation in the response to a heat stress is, at least partially, due to preexisting molecular variation in a population.

We reasoned that this preexisting variation in chaperone expression might also affect the outcome of mutations. We used an RNA interference screen to define the individual chaperone dependence of different mutations: The results of this screen revealed that individual mutations differ in their chaperone dependence and provide a resource for future mechanistic work (fig. S5 and tables S13 to S20). In this screen, we identified the mutation lin-31(n1053) as strongly dependent on daf-21 (Hsp90) activity (fig. S5D). We tested whether endogenous variation in daf-21 expression predicted interindividual variation in the outcome of this mutation, by separating animals as larvae by their expression of the daf-21p::mcherry reporter and after the development of mutant phenotypes. Specifically for the lin-31(n1053) mutation, higher expression of the daf-21 reporter was associated with a reduced mutation penetrance (Fig. 4 and table S22). This illustrates that even in the absence of a macroscopic environmental perturbation there can be predictable interindividual variation in the capacity to buffer mutations.

In summary, we have shown that, after a mild environmental stimulus, a trade-off occurs in C. elegans between the development of stress resistance and reproductive fitness. Preexisting
Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

Fen-Fen Soon,1,2,5 Ley-Moy Ng,1,2,5 X. Edward Zhou,1,4 Graham M. West,3 Amanda Kovach, 1 M. H. Eileen Tan,1,2,5 Kelly M. Suino-Powell,1,5 Yuzhuang He,1,5 Yong Xu,1 Michael J. Chalmers,3 Joseph S. Brunzelle,4 Huiming Zhang,5 Huaiyu Yang,6 Amanda Kovach,1 M. H. Eileen Tan,1,2 Kelly M. Suino-Powell,1 Yuanzheng He,1,2 Fen-Fen Soon,1,2,5

Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snf1-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

Abscisic acid (ABA) is a vital plant hormone and a central regulator that protects plants against abiotic stresses such as drought and salinity. The core of the ABA signaling network comprises a subfamily of type 2C protein phosphatases (PP2Cs) and three Snf1-related kinases, SnRK2.2, 2.3, and 2.6 (J, 2), whose activities are tightly controlled by ABA. In the absence of ABA, SnRK2 kinases are inactivated by PP2Cs, including ABB1, ABl2, and HAB1 (2–5), which physically interact with SnRK2s and dephosphorylate a serine residue in the kinase activation loop (S175 in SnRK2.6) whose phosphorylation is required for kinase activity (Fig. 1A) (6–8). ABA binding to the PYR/PYL/RCAR family of ABA receptors promotes the receptors to bind to the catalytic site of PP2Cs and inhibit their enzymatic activity

References and Notes
10. R. Zhao et al., Cell 120, 715 (2005).

Acknowledgments: We thank the European Research Council (ERC), ICREA, Spanish Ministry of Science and Innovation (MICINN) Plan Nacional grants CTQ2009-13657 and CTQ2012-38383-ERC, and the Spanish National Research Grant Management Agency of Catalonia (AGAUR), ERA-SysBio+, ERA-NET SysBio+, and the EMBL-CRG Systems Biology Program for funding. O.C. was supported by a Beatriz de Pinós Fellowship and A.B. by a Formación de Personal Investigador (FPI)-MICINN fellowship. Some nematode strains and bacterial clones were provided by T. Gidalevitz, C. Silva, A. Chisholm, A. Rougie, and the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). We thank R. Jelis for assistance with statistical analyses and M. Isalan and members of our laboratory for comments on the manuscript.

Supporting Online Material
www.sciencemag.org/cgi/content/full/science.1213491/DC1 Materials and Methods
Figs. S1 to S5
Tables S1 to S22
References (34–48)
12 May 2011; accepted 25 October 2011
Published online 15 December 2011; 10.1126/science.1213491

1Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA. 2Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 119228, Singapore. 3Department of Molecular Therapeutics, Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way No. 2A2, Jupiter, FL 33458, USA. 4Department of Molecular Pharmacology and Biological Chemistry, Life Sciences Collaborative Access Team (LS-CAT), Synchrotron Research Center, Northwestern University, Argonne, IL 60439, USA. 5Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA. 6Department of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. 7Laboratory for Comments, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. 8Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA. 9VARI-SIMM Center, Center for Structure and Function of Drug Targets, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail: eric.xu@vaii.org (H.E.X.); Karsten.Melcher@vaii.org (K.M.)