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Abstract

Background: Alternative splicing is a key regulatory mechanism in eukaryotic cells and increases the effective
number of functionally distinct gene products. Using bulk RNA sequencing, splicing variation has been studied
across human tissues and in genetically diverse populations. This has identified disease-relevant splicing events, as
well as associations between splicing and genomic features, including sequence composition and conservation.
However, variability in splicing between single cells from the same tissue or cell type and its determinants remains
poorly understood.

Results: We applied parallel DNA methylation and transcriptome sequencing to differentiating human induced
pluripotent stem cells to characterize splicing variation (exon skipping) and its determinants. Our results show that
variation in single-cell splicing can be accurately predicted based on local sequence composition and genomic
features. We observe moderate but consistent contributions from local DNA methylation profiles to splicing
variation across cells. A combined model that is built based on genomic features as well as DNA methylation
information accurately predicts different splicing modes of individual cassette exons. These categories include the
conventional inclusion and exclusion patterns, but also more subtle modes of cell-to-cell variation in splicing.
Finally, we identified and characterized associations between DNA methylation and splicing changes during cell
differentiation.

Conclusions: Our study yields new insights into alternative splicing at the single-cell level and reveals a previously
underappreciated link between DNA methylation variation and splicing.
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Background
RNA splicing enables efficient gene encoding and contrib-
utes to gene expression variation by alternative exon usage
[1]. Alternative splicing is pervasive and affects more than
95% of human genes [2]. Splicing is known to be regulated
in a tissue-specific manner [3, 4], and alternative splicing
events have been implicated in human diseases [5]. Bulk
RNA sequencing (RNA-seq) of human tissues and cell

lines has been applied to identify and quantify different
splicing events [6], where in particular exon skipping at
cassette exons, the most prevalent form of alternative spli-
cing [1], has received considerable attention.
Different factors have been linked to splicing of cassette

exons, including sequence conservation [7] and genomic
features such as the local sequence composition as well as
the length of the exon and flanking introns [5, 8].
Although there is some evidence for a role of DNA
methylation in splicing regulation, this relationship is not
fully understood and alternative models have been pro-
posed [9–11]. The transcriptional repressor CTCF has
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been shown to slow down RNA polymerase II (Pol II),
resulting in increased exon inclusion rates. By inhibiting
CTCF binding, DNA methylation can cause reduced exon
inclusion rate [9]. Alternatively, increased DNA methyla-
tion of the MeCP2 pathway has been associated with in-
creased exon inclusion rates. MeCP2 recruits histone
deacetylases in methylated contexts that wrap the DNA
more tightly around the histones. This interplay between
MeCP2 and DNA methylation slows down Pol II, thus
leading to an increased exon inclusion rate [10]. Finally,
HP1, which serves as an adapter between DNA methyla-
tion and transcription factors, increases the exon inclusion
rate if it is bound upstream of the alternative exon. Bind-
ing of HP1 to the alternative exon leads to increased exon
skipping [11]. These alternative mechanisms point to a
complex regulation of splicing via an interplay between
DNA sequence and DNA methylation, both in proximal
as well as distal contexts of the alternative exon.
Technological advances in single-cell RNA-seq have

enabled investigating splicing variation at a single-cell
resolution [8, 12, 13]. We here leverage recent protocols
for parallel sequencing of RNA and bisulfite-treated DNA
from the same cell (single-cell methylation and transcrip-
tome sequencing; scM&T-seq [14]) to study single-cell
splicing while accounting for cell-specific DNA methy-
lome profiles. We apply our approach to investigate the
associations between single-cell splicing variation and
DNA methylation at two states of human induced pluri-
potent stem (iPS) cell differentiation.

Results
Single-cell splicing variation during endoderm
differentiation
We applied parallel single-cell methylation and transcrip-
tome sequencing (scM&T-seq) to differentiating induced
pluripotent stem (iPS) cells from one cell line (joxm_1) of
the Human Induced Pluripotent Stem Cell Initiative
(HipSci) [15, 16]. We profiled 93 cells from 2 different cell
types, namely cells in the iPS state (iPS) and cells follow-
ing 3 days of differentiation towards definitive endoderm
(endoderm). After quality control, this resulted in 84 and
57 cells, respectively (the “Methods” section), which were
used for analysis. In each cell, we quantified cassette exon
inclusion rates (the “Methods” section, Additional file 1:
Table S1, Additional file 2: Table S2). We quantified spli-
cing rates for between 1386 and 4917 cassette exons in
each cell (minimum coverage of 5 reads), estimating spli-
cing rates (PSI) as the fraction of reads that include the al-
ternative exon versus the total number of reads at the
cassette exon (the “Methods” section). Differences in se-
quencing depth and cell type explained most of the differ-
ences in the number of quantified splicing events between
cells (Additional file 3: Figure S1, Additional file 1: Table
S1, Additional file 2: Table S2). DNA methylation profiles

were imputed using DeepCpG [17], yielding on average
23.1M CpG sites in iPS and 21.6M CpG sites in endo-
derm cells. We considered 6265 iPS and 3873 endoderm
cassette exons that were detected in at least 10 cells for
further analysis.
Initially, we explored whether individual cells express

only a single splice isoform (“cell model”; the “Methods”
section), or whether multiple isoforms are present in a
given cell (“gene model”; the “Methods” section, Fig. 1a),
a question that has previously been investigated in bulk
and single-cell data [18, 19]. Specifically, we compared
the observed distribution of splicing rates PSI in our
data to the expected values when assuming a binomial
distribution according to the cell model [18], as well as
the expected distribution according to the gene model
(the “Methods” section, Fig. 1a). Globally, our data rule
out the cell model; however, we also observed deviations
from the gene model, in particular for exons with inter-
mediate levels of splicing (0.2 < PSI < 0.8, Fig.1b).

Methylation heterogeneity across cells is associated with
splicing variability
Next, to identify locus-specific correlations between
DNA methylation heterogeneity and variation in splicing
across cells, we tested for associations between differ-
ences in imputed DNA methylation levels across cells
and splicing rates (Spearman correlation; the “Methods”
section).
For each cassette exon, we tested for associations be-

tween the splicing rate (PSI) and variation in DNA
methylation in each of 7 sequence contexts: the up-
stream, alternative, and downstream exons, and the 5′
and 3′ end of the 2 introns (the “Methods” section,
Fig. 1c). Genome-wide, this identified 424 cassette exons
with a methylation-splicing associations in iPS cells (out
of 5564 tested cassette exons, Q < 0.05, Additional file 3:
Figure S2a, Additional file 4: Table S3) and 245 associa-
tions in endoderm cells (out of 2811 tested, Q < 0.05,
Additional file 3: Figure S2a, Additional file 4: Table S3).
The majority of these associations were observed in the
upstream alternative exon (~ 75%), with approximately
equal numbers of positive (increased DNA methylation
is linked to increased alternative exon inclusion) and
negative (increased DNA methylation is linked to de-
creased alternative exon inclusion) associations. In iPSC,
58% of correlations are positive, and 55% of the correla-
tions are positive in endoderm cells. Most associations
could be detected significantly in more than 1 context
for a given exon with consistent effect directions (Add-
itional file 3: Figure S2b, c). Similarly, we observed
largely concordant associations across the 2 cell types in
our data. Among the exons that are expressed in both
iPS and endoderm (n = 3743), 77% of the associations
identified in iPS were nominally replicated in endoderm
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cells (P < 0.05, with a consistent effect direction), and
89% of the associations identified in endoderm were also
observed in iPS cells (P < 0.05, with a consistent effect
direction). Genes with negative associations between
DNA methylation in the 3 upstream regions and PSI
were enriched for HOXA2 transcription factor binding
sites (iPS—78/118 query genes linked to HOXA2, ad-
justed P = 6.02 × 10−4; endoderm—60/90 query genes
linked to HOXA2, adjusted P = 9.03 × 10−3; enrichment
based on g:Profiler [20]).

Prediction of splicing at the single-cell level
To gain insights into the global determinants of splicing,
we trained regression models to predict genome-wide

cassette exon splicing rates in individual cells using local
genomic and epigenetic features (Fig. 1c). Briefly, for
each cell type, we combined splicing rates across all cas-
sette exons and cells and trained global regression model
using alternative sets of input features (assessed using
tenfold cross-validation; the “Methods” section). Initially,
we considered models based on a set of 607 “genomic”
features derived from local sequence composition (based
on k-mers), sequence conservation, and the length of the
seven sequence contexts of each cassette exon (“gen-
omic” features, the “Methods” section, Additional file 5:
Table S4). Notably, the performance that was similar to
previous approaches to predict splicing rates using bulk
[5] and single-cell [8] RNA-seq (r2 = 0.704, r2 = 0.668;

a

b

c

Fig. 1 Single-cell splicing and considered features for modeling splicing rates. a Two canonical splicing models. The “cell model” assumes that
splicing variation is due to the differential splicing between cells, with each cell expressing one of two splice isoforms. The “gene model”
corresponds to the assumption that both splice isoforms can be expressed in the same cells. b Mean-variance relationships of splicing rates in
iPS cells. Shown is the standard deviation of splicing rates across cells for the same cassette exon (standard deviation of PSI) as a function of the
average inclusion rate of the cassette exons across cells, considering 84 iPS cells. Solid lines correspond to the expected relationship when either
assuming a “cell model” (black line) or when assuming the “gene model” (red line). c Illustration of the considered features and genomics
contexts for predicting splicing variation. “A” denotes the alternative exon; “I1” and “I2” correspond to the upstream and downstream flanking
introns, respectively; and “C1” and “C2” to the upstream and downstream flanking exons, respectively. The 5′ and 3′ ends (300 bp) of the flanking
introns are considered separately
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assessed using tenfold cross-validation (CV); Fig. 2a,
Additional file 3: Figure S3). To facilitate the comparison
with previous studies using bulk RNA-seq, we also con-
sidered a model that was trained using aggregate splicing
rates across cells (“pseudo-bulk PSI”, bPSI), which re-
sulted in similar prediction accuracies (r2 = 0.745 and r2

= 0.733 for iPS and endoderm cells, respectively, Add-
itional file 3: Figure S4).
Next, we considered using an extended feature set in

the linear models, using up to 826 DNA methylation
features, including a k-mer alphabet that takes the
methylation status of cytosines into account, as well as
the DNA methylation rate and variance across CpG sites
in each of 7 sequence contexts of a cassette exon (the
“Methods” section). We considered 2 strategies to aggre-
gate the methylation features, either (i) to capture pat-
terns of methylation in individual cells (“genomic and
cell methylation” features) or (ii) using averaged methy-
lation features across all cells (“genomic and mean
methylation” features; Additional file 5: Table S4, Fig. 1c).
The inclusion of either type of methylation features into
the model yielded an increased prediction accuracy,
where larger gains in prediction accuracy were observed

when accounting for DNA methylation information in
individual cells (“genomic and cell methylation” versus
“genomic and mean methylation”). Notably, the inclu-
sion of DNA methylation features did not improve the
accuracy of models for average splicing rates (“pseudo-
bulk” models; Additional file 3: Figure S4). This observa-
tion in combination with the results from the association
analysis between methylation and splicing indicates that
DNA methylation can primarily explain the cell-to-cell
variation in splicing at individual loci, whereas genomic
features by design explain the variation across loci. These
findings were consistent across iPS and endoderm cells,
and we observed analogous benefits of accounting for
DNA methylation when applying the same models to pre-
vious scMT-seq datasets from mouse embryonic stem
(ES) cells [14] (the “Methods” section, Additional file 3:
Figure S3 & S4).
Next, to assess the relevance of the considered fea-

tures, we considered regression models based on indi-
vidual features trained in individual cells. Consistent
with previous bulk studies [5, 7], this identified features
derived from the alternative exon and its neighboring
contexts, namely the 3′ end of the upstream intron and

a b

c d

Fig. 2 Regression-based prediction of single-cell splicing variation. a Prediction accuracy of alternative regression models for predicting splicing
rates in single cells. Shown are out of sample r2 (based on tenfold cross-validation) in iPS cells (left) and endoderm cells (right). The genomic
model (genomic, dark blue) was trained using sequence k-mers, conservation scores and the length of local contexts (size of the cassette exon,
length of flanking introns) as input features. Other models consider additional features that capture average methylation features aggregated
across cells (genomic and mean methylation, blue) or cell-specific methylation features (genomic and cell methylation, light blue). Error bars
denote ± 1 standard deviation across four repeat experiments. b Relevance of individual features for predicting splicing rates, quantified using
correlation coefficients between individual features and splicing rates. Shown are the average feature importance scores across all cells with error
bars denoting ± 1 standard deviation across cells. Features are ranked according to absolute correlation coefficient with methylation features
shown in gray. c Principal component analysis on the feature relevance profiles as in b across all cells. d Weights of the ten most important
features that underpin the first principal component in c (shown are the five features with the largest positive and negative weight respectively),
which include k-mers with methylation information of the downstream intron I2. Methylation features are shown in gray
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the 5′ end of the downstream intron, as most inform-
ative (Additional file 6: Table S5). Within these contexts,
sequence conservation of the alternative exon was the
most relevant individual feature. Other relevant features
included the k-mers CT, CTC, and CCT of the alterna-
tive exon (Fig. 2b), sequence patterns that show a close
resemblance to CTCF-binding motifs. Although CTCF
or CTCF-like motifs have previously been implicated
splicing, these previous studies identified motifs up-
stream [9] or downstream [21] of the alternative exon as
associated with increased splicing, whereas the k-mers in
our model are located in the alternative exon and associ-
ated with decrease the inclusion rate [9, 21].
The relevance of the cell-specific features for splicing

prediction as quantified by regression weights was
markedly consistent across iPS and endoderm cells.
This consistency extends to the mouse ES cell dataset,
where again features of the alternative exon and se-
quence conservation scores were identified as the most
relevant predictors for splicing (Additional file 6: Table
S5, Additional file 3: Figure S5). Despite the overall
consistency in feature relevance (r2 = 0.79, average cor-
relation between weights across all iPS and endoderm
cells), principal component analysis (PCA) applied to
the feature relevance matrix across all cells identified
subtle coordinated axes of variation of the feature rele-
vance (Fig. 2c). The first two principal components
(PC) clearly separate iPS from endoderm cells, differ-
ences that are primarily attributed to k-mers of the
downstream intron (I2) that contain methylated and
unmethylated cytosine bases (Fig. 2d, Additional file 7:
Table S6). Consistent with this, a single-cell methyla-
tion model trained on endoderm cells yielded only
moderate prediction accuracy in iPS cells (r2 = 0.52),
highlighting the cell-type specificity of splicing models
that account for DNA methylation information. This
points towards a combination of differences in sequence
composition, potentially transcription factor activity, and
DNA methylation as the main determinants of cell-type
specific splicing regulation.
Finally, we considered more complex regression

models based on convolutional neural networks to pre-
dict single-cell splicing based on DNA sequence and an
extended genomics alphabet including base-level DNA
methylation information (deposited at kipoi [22], the
“Methods” section). We observed only limited benefits
when including DNA methylation information (Add-
itional file 3: Supplementary Results and Figure S6).
These results line up with the locus-specific DNA
methylation and the linear regression results, supporting
the hypothesis that global splicing information is primarily
encoded by DNA sequence and conservation, and
DNA methylation is linked to splicing in a locus-specific
manner.

Prediction of splicing modes for individual exons
Next, we set out to study the differences between differ-
ent exons and their splicing patterns. We classified cas-
sette exons into five categories, using a scheme similar
to that of Song et al. [12]: (1) excluded, (2) included, and
three intermediate splicing categories: (3) overdispersed,
(4) underdispersed, and (5) multimodal (Fig. 3a, b,
Additional file 8: Table S7, the “Methods” section). We
trained multinomial regression models (the “Methods”
section) and assessed their classification performance
(using four tenfold cross-validations) using analogous fea-
ture sets as considered for the regression models on
single-cell splicing (Additional file 5: Table S4). A model
based on genomic features yielded a macro-average AUC
of 0.85 in iPS (Fig. 3c) and 0.84 in endoderm cells (Add-
itional file 3: Figure S7), where again sequence conserva-
tion in different contexts was the most informative feature
(Additional file 9: Table S8). Interestingly, we observed dif-
ferences in the feature relevance across splicing categories:
(i) included and excluded exons, where the most relevant
features were located in the alternative exon, and (ii) the
intermediate splicing categories, where features of the
flanking exons were most informative. In general, predic-
tions for the included and excluded categories were most
accurate (AUC= 0.96 for both in iPS, AUC= 0.94 for in-
cluded in endoderm, AUC= 0.96 for excluded in endo-
derm cells, Fig. 3d, Additional file 3: Figure S7a). These
prediction accuracies exceed previously reported results in
bulk data [5]. Even higher accuracies were achieved when
training a model to discriminate between included and ex-
cluded exons only (AUC= 0.99 in iPS), whereas the ability
to discriminate intermediate splicing categories only was
generally lower (AUC= 0.7–0.9, Additional file 9: Table
S8). Notably, in contrast to the prediction of splicing rates,
the inclusion of the DNA methylation features did not im-
prove the prediction performance of these categorical
models (Fig. 3d, Additional file 3: Figure S8a).
We found that a model based on DNA methylation

alone did not yield accurate predictions although methyla-
tion contained some information for identifying underdis-
persed cassette exons (Fig. 3d, Additional file 3: Figure
S8b). Given this, we investigated the distribution of DNA
methylation patterns across splicing categories, observing
distinct distributions of DNA methylation in the upstream
exon of underdispersed cassette exons (Fig. 3e). This effect
was consistent, although less pronounced, in other se-
quence contexts (decreasing from the upstream to the
downstream exon, Additional file 3: Figure S9a-b).
We assessed the consistency of these results across iPS

and endoderm cells, as well as in mouse ES cells. To do
this, we trained the genomic model on endoderm cas-
sette exons and assessed this model’s predictions on
iPS-specific cassette exons, which resulted in a prediction
accuracy that was similar to the within cell-type prediction
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performance (macro-AUC = 0.82, Additional file 3:
Figure S10a). However, the inclusion of the DNA
methylation features into the model resulted in a decline
in the cross-prediction performance (macro-AUC= 0.54,
Additional file 3: Figure S10b). As in the linear model
cross-replication analysis, this finding emphasizes the im-
portance of cell type-specific DNA methylation for accur-
ately predicting splicing. Next, we observed that the
performance for splicing category prediction in mouse ES
cells was very similar to the performance in the endoderm
and iPS cells (macro-AUC= 0.82, in the genomic and the
genomic and methylation model). We observed the same
distinct distributions of DNA methylation in the upstream
exon of underdispersed cassette exons (Additional file 3:
Figure S9c). However, the relationship between the DNA
methylation levels and underdispersed cassette exons
category could not be replicated in the mouse ES cells
(Additional file 3: Figure S7b).

Splicing category switches across cell differentiation
Finally, we assessed the changes in the splicing category
switches between cell types. Similar to previous observa-
tions in the context of neuronal iPS differentiation [12],
we observed that a majority (88%) of the cassette exons
retained their category during differentiation (Fig. 4a).
We also observed no cassette exon that switched from
included to excluded or vice versa. Instead, most (55%)
of the switching events were observed within the three
intermediate splicing categories. The most prevalent
switch events were changes to the multimodal category;
51% of the underdispersed and nearly 45% of the over-
dispersed cassette exons in iPS cells switched to multi-
modal at the endoderm state.
After observing the category switches between the cell

types, we set out to build a final set of logistic ridge
regression models based on genomic and methylation
features to predict category switching ability of cassette

a

c

e

b

d

Fig. 3 Classification of cassette exons based on single-cell splicing patterns in iPS cells. a Single-cell splicing rate (PSI) distributions of the 5
splicing categories (inspired by Song et al. [12]) in 84 iPS cells. Intermediate splicing categories that can only be defined based on single-cell
information are framed by a gray box. b Variation of PSI (standard deviation) across cells as a function of the average inclusion rate of cassette
exons across 84 iPS cells, colored according to their respective splicing category as defined in a. The solid black line denotes the LOESS fit across
all cassette exons. c Performance of logistic regression models for predicting splicing categories based on genomic features. Shown is the
receiver operating characteristics for each splicing category and the macro-average (area under the curve, AUC). d Prediction performance of
alternative regression models for each splicing category, either considering a model trained using genomic features (“genomic,” left), genomic
and all DNA methylation features (“genomic and methylation,” center) as well as only DNA methylation features (“methylation,” right). The
genomic model includes k-mers, conservation scores, and region lengths (see Fig. 1c). The genomic and methylation model additionally includes
DNA methylation features. The methylation model includes average DNA methylation features per sequence context. Splicing categories are
coded in color as in a. Error bars denote ± 1 standard deviation across 4 repeat experiments. e Distribution of DNA methylation levels in the
upstream exon (C1) per splicing category. Methylation is decreased in underdispersed exons
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exons during differentiation (Fig. 4c for prediction perform-
ance, Additional file 10: Table S9). This model had limited
power to predict category switches (AUCs 0.51–0.64), and

DNA methylation did not significantly improve the predic-
tion of any category although moderately higher predictions
can be seen for the switching behavior of over- and under-
dispersed cassette exons.
Lastly, we assessed if DNA methylation changed within

the cassette exons switching between the cell types. The
DNA methylation levels of cassette exons that switched
category only changed minimally (Additional file 3: Figure
S11). However, we observed that DNA methylation of the
alternative exon of switching cassette exons differed from
non-switching cassette exons at the iPS state (Fig. 4b).
DNA methylation of both switching included and switch-
ing excluded cassette exons was increased around C1 in
comparison to their relevant non-switching counterparts.
In the case of switching overdispersed cassette exons, we
observed higher DNA methylation levels within and in the
vicinity of the alternative exon.

Discussion
Here, we present the first analysis of alternative splicing in
single cells that considers both genomic and epigenetic
factors. Our study focuses on the variation of splicing in
cassette exons at two different states of cell differentiation.
We show that splicing events do not strictly follow the
previously suggested cell or gene models of splicing pat-
terns, but instead, we find a substantial proportion of
exons that are better described by an intermediate model
(Fig. 1b).
We show that single-cell splicing of cassette exons is in-

fluenced by genomic features as previously assessed in
bulk data, but also by DNA methylation differences. We
observe that DNA methylation is related to splicing phe-
notypes, with the strongest link to single-cell splicing ra-
tios. When assessing splicing variation in bulk populations
(pseudo-bulk), most of the information encoded in DNA
methylation is lost. A reason for this might be the strong
correlation between genomic and methylation features, in
particular between DNA methylation and cytosine-related
features. Additionally, our results indicate that the rela-
tionship between splicing and DNA methylation is
locus-specific (Additional file 3: Figure S2). This may also
explain why DNA methylation has limited benefits when
prediction average splicing rates across cells or splicing
quantified using bulk RNA-seq.
Besides the sequence conservation, a feature that has

previously been described in bulk studies [7], the most
relevant features to predict splicing were the k-mers CTC,
CT, and CCT within the alternative exon (Additional file 3:
Figure S2b). These k-mers point towards involvement of
CTCF. Previous work has shown that CTCF motifs within
introns are linked to splicing by slowing down RNA poly-
merase II, thereby leading to a higher chance of exon in-
clusion [9]. Interestingly, there is a known link between
DNA methylation and CTCF motifs [9]. Methylation of

a

b

c

Fig. 4 Comparison of splicing category distributions between iPS
and endoderm cells. a Pie chart showing the number of category
switches between iPS and endoderm cells (left panel). The zoom-in
(right panel) shows details of different category switches. The outer
pie chart shows the splicing category of each cassette exon at the
iPS state and the internal pie chart shows the respective category at
endoderm state. Non-annotated slices in the pie chart reflect ~ 1%
of the data. b DNA methylation changes associated with the
observed category switches. The top panel shows the iPS and
endoderm splicing categories colored according to a. The bottom
panel shows DNA methylation levels within the seven sequence
contexts of a cassette exon as compared to the DNA methylation
levels of the cassette exons that do not switch in their splicing
category. Significant changes (Q < 0.05) are marked with a star. DNA
methylation of the alternative exon and its vicinity is increased in
cassette exons that switch from the underdispersed category.
Cassette exons that switch from either included or excluded to any
other splicing category show increased DNA methylation of the
upstream exon (C1). c Performance of logistic ridge regression
models that predict the absence/presence of switching splicing
categories between iPS and endoderm states. DNA methylation
information improves the prediction of the under- and
overdispersed cassette exons. The categories are colored according
to a. Error bars denote ± 1 standard deviation across four
repeat experiments

Linker et al. Genome Biology           (2019) 20:30 Page 7 of 14



CTCF-binding sites can block CTCF and thereby result in
decreased inclusion rates of an exon. As the methylated
k-mer equivalents were less predictive of splicing, we sug-
gest a more complex involvement of DNA methylation in
alternative splicing, potentially by locus-specific effects,
which our current models are not able to capture.
In addition to modeling splicing ratios, we also consid-

ered categorical models of splicing to gain insights into
the variability of splicing across cells (Fig. 3). The cat-
egories considered in our model reflect both the overall
splicing rate and splicing variability across cells. Exons
with included versus excluded splicing states could be
accurately predicted. In contrast, the intermediate spli-
cing categories which are reflective of single-cell variabil-
ity could only be predicted with a lower accuracy. This
might be due to the lower number of cassette exons
assigned to these categories (multimodal n = 506, over-
dispersed n = 427, underdispersed n = 110, versus in-
cluded n = 3278 and excluded n = 1944 in iPS cells) or
reflect increased vulnerability to assay noise or more
complex regulatory dependencies. As in the linear re-
gression models, we observed that DNA sequence con-
servation scores were the most informative features for
predicting splicing categories (Additional file 6: Table
S5). Interestingly, for intermediate categories, the gen-
omic information in the vicinity of the alternative exon
rather than of the exon itself seemed to be predictive of
splicing variability. Whereas DNA methylation did not
contribute to improving the splicing prediction, we ob-
serve that DNA methylation levels of underdispersed
cassette exons were significantly reduced in all genomic
contexts, most significantly in the upstream exon. We
hypothesize that the lower DNA methylation levels of
underdispersed cassette exons give the sequence motifs
more power to control splicing levels, i.e., increased
DNA methylation levels lead to more stochasticity in
splicing. This hypothesis is supported by the effect direc-
tion of methylation features, which are opposite between
overdispersed and underdispersed cassette exons. We fi-
nally observe that the methylation k-mers are on average
less informative of splicing than non-methylation fea-
tures, potentially further supporting our hypothesis.
By leveraging data from two cell types, we were able to

assess the consistency of splicing prediction across cell
types and the relevant genomic and methylation features
(Fig. 2c). The differences between features predictive of
splicing between iPS and endoderm cells were primarily
observed within the (methylated) k-mers, which are con-
sistent with the known alteration of transcription factor
activity and DNA methylation differences between cell
types. Next, we were able to confirm the findings from
Song et al. [12] that only a limited number of cassette
exons switch splicing categories between cell types
(Fig. 4a). Additionally, as previously described in the

context of neural differentiation [12], switches between
included and excluded categories were not observed.
Most of the category switches were observed within the
three intermediate splicing categories. Hereby, DNA
methylation differences seemed to predate the switching
ability. Using ridge regression, we were able to predict if
a cassette exon would switch its splicing category between
the cell types. Again, DNA methylation seemed to be par-
ticularly informative of intermediate splicing. It improved
the predictability of switching in over- and underdispersed
categories.
The novelties of our analyses also represent their

main limitations. Single-cell sequencing intrinsically de-
livers fewer reads to assess gene expression and DNA
methylation levels. Especially the genome coverage of
the bisulfite-treated DNA sequencing remains low due
to the low quantities of starting material. Using compu-
tational imputation, we were able to mitigate this effect
to some extent. However, imputation strategies have
limitations and in particular, loci that lack methylation
information cannot be recovered.
The intrinsic properties of single-cell data also affect

the accuracy of the estimated splicing ratios per cassette
exon. We opted for a lenient threshold on read depth to
determine splicing ratio, which delivered more cassette
exons to train our models, but also rendered splicing ra-
tios less accurate in comparison to deep-sequenced bulk
data. The low read depth increases the chance of missing
an isoform or cassette exon, an effect known as a drop-
out. Dropouts in single-cell RNA-seq data can have a
strong impact on the fit of the cell or gene model. If one
of the isoforms was completely unobserved, this would
decrease the fit of the gene model. On the contrary,
sequencing multiple cells at once would decrease the fit
of the cell model. Given that our results are robust
across cassette exons, cell types, and species, the overall
findings we report are however not likely to be affected.

Conclusions
In summary, we showed for the first time that alterna-
tive splicing and splicing variability across cells can be
predicted with genomic and DNA methylation informa-
tion in single cells. We assessed the impact of DNA
methylation and cellular features on cassette exon spli-
cing and were able to replicate our findings in two hu-
man cell types and mouse ES cells. We investigated the
stability and variance of splicing between the two cell
types, and importantly, we showed that DNA methyla-
tion primes splicing switches during differentiation.

Methods
Single-cell transcription and methylation data was gener-
ated from a single donor from the Human Induced
Pluripotent Stem Cells Initiative (HipSci) [15, 16], using
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the previously described protocol for single-cell methy-
lation and transcriptome sequencing in the same cells
(scM&T-seq) (see [14] for details). Line joxm_1, an in-
duced pluripotent stem cell (iPSC) line derived from
fibroblasts cells from HipSci project, was cultured and
triggered into differentiation towards endoderm. scM&T-
seq data was generated for 93 cells (together with 1 empty
well as negative control and two 15-cell and 50-cell posi-
tive controls) at the undifferentiated time point (iPS) and
the definitive endoderm time point (endoderm), yielding
186 cells for analysis.

Cell handling and differentiation
The joxm_1 IPSC line was cultured in Essential 8 (E8)
media (LifeTech) according to the manufacturer’s instruc-
tions. For dissociation and plating, cells were washed × 1
with DPBS and dissociated using StemPro Accutase (Life
Technologies, A1110501) at 37 °C for 3–5min. Colonies
were fully dissociated through gentle pipetting. Cells were
washed × 1 with MEF medium [23] and pelleted gently by
centrifuging at 285×g for 5min. Cells were re-suspended
in E8 media, passed through a 40-μm cell strainer, and
plated at a density of 60,000 cells per well of a gelatin/
MEF-coated 12-well plate in the presence of 10 μM Rock
inhibitor—Y27632 [10mM] (Sigma, Cat # Y0503—5mg).
Media was replaced with fresh E8 free of Rock inhibitor
every 24 h post-plating. Differentiation into definitive
endoderm commenced 72 h post-plating as previously de-
scribed [23].

FACS preparation and analysis of cells
During all staining steps, cells were protected from light.
Cells were dissociated into single cells using Accutase and
washed × 1 with MEF medium as described above. Ap-
proximately 1 × 106 cells were resuspended in 0.5 mL of
differentiation state-specific medium containing 5 μL of 1
mg/mL Hoechst 33342 (Thermo Scientific). Staining with
Hoechst was carried out at 37 °C for 30min. Unbound
Hoechst dye was removed by washing the cells with 5mL
PBS + 2% BSA + 2mM EDTA (FACS buffer); BSA and
PBS were nuclease-free. For the staining of cell surface
markers Tra-1-60 (BD560380) and CXCR4 (eBioscience
12-9999-42), cells were resuspended in 100 μL of FACS
buffer with enough antibodies to stain 1 × 106 cells ac-
cording to the manufacturer’s instructions and were
placed on ice for 30min. Cells were washed with 5mL of
FACS buffer, passed through a 35-μM filter to remove
clumps, and re-suspended in 250 μL of FACS buffer for
live cell sorting on the BD Influx Cell Sorter (BD Biosci-
ences). Live/dead marker 7AAD (eBioscience 00-6993)
was added just prior to analysis according to the manufac-
turer’s instructions, and only living cells were considered
when determining the differentiation capacities. Living

cells stained with Hoechst but not Tra-1-60 or CXCR4
were used as gating controls.

scM&T-seq
As previously described in Angermeuller et al. [14],
scM&T-seq library preparation was performed following
the published protocols for G&T-seq [24] and scBS-seq
[25], with minor modifications as follows. G&T-seq
washes were performed with 20 μl volumes, reverse tran-
scription and cDNA amplification were performed using
the original Smart-seq2 volumes [26], and Nextera XT
libraries were generated from 100 to 400 pg of cDNA,
using 1/5 of the published volumes. RNA-seq libraries
were sequenced as 96-plexes on a HiSeq 2000 using v4
chemistry and 125 bp paired-end reads. BS-seq libraries
were sequenced as 24-plexes using the same machine
and settings, which yielded a mean of 7.4 M raw reads
after trimming.

Gene expression quantification
For single-cell RNA-seq data, adapters were trimmed
from reads using Trim Galore! [27–29], using default
settings. Trimmed reads were mapped to the human
reference genome build 37 using STAR [30] (version:
020201) in two-pass alignment mode, using the defaults
proposed by the ENCODE consortium (STAR manual).
Expression quantification was performed separately
using Salmon [31] (version: 0.8.2), using the “--seqBias,”
“--gcBias,” and “VBOpt” options on transcripts derived
from ENSEMBL 75. Transcript-level expression values
were summarized at the gene level (estimated counts)
and quality control of scRNA-seq data was performed
using scater [32]. Cells with the following features were
retained for analysis: (i) at least 50,000 counts from en-
dogenous genes, (ii) at least 5000 genes with non-zero
expression, (iii) less than 90% of counts are assigned to
the top 100 expressed genes per cell, (iv) less than 20%
of counts are assigned to ERCC spike-in sequences, and
(v) a Salmon mapping rate of at least 40%. These filters
jointly removed 9 iPS cells and 36 endoderm cells from
our analysis.

Splicing quantification
Of the 186 cells, 84 (iPS) and 57 (endoderm) cells passed
QC on gene expression data as described above. Exon
splicing rates in individual cells were quantified using
the data-dependent module of BRIE [8]. BRIE calls spli-
cing at predefined cassette exons and quantifies splicing
using exon reads in single-cell data. By default, BRIE
combines informative prior learned from sequence fea-
tures and a likelihood calculated from RNA-seq reads by
a mixture modeling framework that is similar to MISO
[33]. As our aim is to model the local and global deter-
minants of splicing, we used splicing rate estimates
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based on the observed data at individual exons only. We
detected and quantified splicing for between 1386 and
4917 exons per cell (minimum coverage 5 reads, in total
considered 6265 (iPS) and 3873 (endoderm) cassette
exons that were detected in at least 10 cells for further
analysis.
The following settings were used to quantify splicing

with BRIE: exons have to be located on autosomes and
input chromosomes and should not be overlapped by
any other alternatively spliced exon. The surrounding
introns have to be longer than 100 bp, the length of the
alternative exon regions has to be between 50 and 450
bp with a minimum distance of 500 bp from the next
TSS or TTS, and the exon has to be surrounded by
AG-GT. The default annotation file gencode.v19.annota-
tion.gtf and the reference genome GRCh37.p13.genome.fa
were downloaded from https://www.gencodegenes.org/
human/release_19.html (May 2018) and used for subse-
quent analyses.
We used three different measurements to quantify

splicing ratios (PSI), namely single-cell splicing ratios,
pseudo-bulk splicing ratios, and variance of splicing ra-
tios. To calculate single-cell PSI per cassette exon per
cell, we only considered splicing events that were sup-
ported by at least five reads and limited the analysis to
cassette exons which were observed in at least ten cells.
To derive pseudo-bulk PSI per cassette exon, we aggre-
gated the single-cell PSI values per cassette exon. The
variance of PSI per cassette exon was defined as the
standard deviation of PSI across single cells.

DNA methylation pre-processing and quantification
For DNA methylation data, single-cell bisulfite sequen-
cing (scBS-seq) data was processed as previously de-
scribed [25]. Reads were trimmed with Trim Galore!
[27–29], using default settings for DNA methylation
data and additionally removing the first 6 bp. Subse-
quently, Bismark [34] (v0.16.3) was used to map the bi-
sulfite data to the human reference genome (build 38),
in single-end non-directional mode, which was followed
by de-duplication and DNA methylation calling using
default settings. We removed cells with low alignment
rates (alignment rate < 15%) and cells with a library size
of less than 1M reads, resulting in 84 iPS cells and 53
endoderm cells with RNA and DNA methylation
information.
To mitigate typically low coverage of scBS-seq profiles

(20–40%; [17]), we applied DeepCpG [17] to impute
unobserved methylation states of individual CpG sites.
DNA methylation profiles in iPS and endoderm cells
were imputed separately. The cell type-specific models
were built using CpG and genomic information accord-
ing to DeepCpG’s setup of a joint model (see [17] for de-
tails and default values; see Additional file 1: Table S1

for imputation accuracy as measured on a validation set
per sample).
Predicted methylation states were binarized according

to DeepCpG probability outputs as follows: sites with a
probability of equal to or lower than 0.3 were set to 0
(un-methylated base), all methylation sites with a prob-
ability of greater than 0.7 were set to 1 (methylated base).
Intermediate methylation levels were handled as missing.
After imputation the methylation data was aligned back to
human genome version 37 to match the expression data,
using the UCSC lift-over tool [35].
We integrated the imputed methylation information

into the DNA sequence by distinguishing methylated
(M) and un-methylated (U) cytosines. Cytosines with-
out methylation information after imputation were
assigned the value of the closest cytosine with methyla-
tion information. If there was no methylation informa-
tion within 900 bp around the cytosine, its state was set
to un-methylated.

Cell and gene model assumptions
To assess if our PSI variation patterns follow the gene or
the cell model [18], we compared the distribution of
splicing rates to a binomial distribution that is expected
according to the cell model and to the expected distribu-
tion according to the gene model.
The cell model assumes that each individual cell ex-

presses only a single splice isoform, and hence models PSI
variation as a bimodal distribution at the single cell level.
The alternative gene model assumes splicing regulation
on the gene level. The mean PSI of a gene is determined
by the sequence. Each time a gene is transcribed, the
probability of exon inclusion equals mean PSI. However,
the limited number of transcripts leads to fluctuation in
the observed PSI, and the binomial distribution is re-
strained by the upper boundary of the standard deviation.
To obtain this upper boundary, we simulated the PSI of
each cell as a binomial distribution and calculated the
standard deviation across the cells. We only considered
genes that were covered by at least 5 reads per cell in least
10 cells. To obtain the mean standard deviation, we re-
peated this simulation 400 times.

Sequence features
The genomic features used to predict the splicing ratios
and its variance were based on the features described by
BRIE and Xiong et al. [5, 8]. As these features were
specifically designed to study exon skipping events at
cassette exons, they capture sequence variation around
the alternatively spliced exon. This region is first split in
five genomic contexts: the alternative exon itself, the two
neighboring exons and the introns between the exons.
Logarithmic length, relative length, and the strength of the
splice site motifs at the exon-intron boundaries were
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calculated per genomic context. The strength of the splice
site was defined as the similarity between this splice site
and known splice motives. Additional features were calcu-
lated on seven genomic contexts, the three exons and the
5′ and 3′ boundaries of the two introns. Only the two
boundary contexts of the introns (300 bp length) were
used since intron length is highly variable and the bound-
aries are found to be the most relevant contexts for
splicing.
Altogether, 607 features were calculated for these gen-

omic contexts per cassette exon: PhastCons scores [36] that
describe sequence conservation, length of the sequence
contexts, and sequence composition-based k-mer frequen-
cies (with k ≤ 3) (“genomic” features, the “Methods” section,
Additional file 5: Table S4). The k-mers reflect the percent-
age of nucleotides in the context that match the respective
specific motif. The PhastCons scores were retrieved for
alignments of 99 vertebrate genomes with the human gen-
ome from hg19.100way.phastCons.bw from UCSC (May
2018) [35].
In addition to the genomic features, we defined up to

826 DNA methylation features derived from the imputed
DNA methylation information, including an extended
k-mer alphabet that takes the methylation status into ac-
count, as well as DNA methylation average and variance
(across CpG sites), in each of the 7 sequence contexts of a
cassette exon. Methylation features describe the methyla-
tion patterns of either individual cells (“genomic and cell
methylation” features) or averaged across cells (“genomic
and mean methylation” features; Additional file 5: Table
S4). More specifically, for the single-cell PSI model, we
considered cell-specific methylation levels; the k-mer
features were extended by including un-methylated (U)
and methylated (M) cytosine into the alphabet as follows:
Cytosines without methylation information after imput-
ation were assigned the value of the closest cytosine with
methylation information. If there was no methylation in-
formation within 900 bp around the cytosine, its state was
set to un-methylated. For the bPSI model, we included the
mean frequencies of the k-mers that contained “M” or “U”
across cells and the averaged methylation values as de-
scribed above.

Splicing categories
In bulk RNA-seq data, splicing events can be broadly
categorized into two major categories: included and ex-
cluded. Leveraging the single-cell information, we de-
fined more fine-grained splicing categories that reflect
both splicing rates and splicing variability across cells (in-
spired by Song et al. [12]): (1) excluded (mean PSI < 0.2),
(2) included (mean PSI > 0.8), (3) overdispersed, (4) under-
dispersed, and (5) multimodal (Fig. 3a). The latter three
categories categorize the extent of splicing variation across
cells, since cassette exons with intermediate average

splicing rates (here 0.2 ≤mean PSI ≤ 0.8, Fig. 1) exhibit
substantial differences in splicing variance. To characterize
cells into these three categories, we calculated the dis-
tribution of the distance between the observed and the
expected variation per cell type. The expected variation
was calculated by a scaled binomial standard deviation,
where the scaling factor and the mean splice rate of the
alternative exon [18] are fit to all data points. We then
defined the overdispersed cassette exons as those for
which the deviation from the expected PSI was higher
than the third quartile plus 1.5x interquartile range
(IQR) (corresponding to > 0.016 in iPS and > 0.022 in
endoderm). Likewise, for the definition of the underdis-
persed cassette exons, we used the first quartile minus
1.5x IQR as the threshold (corresponding to less than
− 0.032 in iPS and less than − 0.039 in endoderm cells).
The remaining cassette exons were assigned to the
multimodal category.

Relating DNA methylation heterogeneity and splicing
We applied Spearman correlation to link splicing at a
single locus to variation in DNA methylation observed
between cells. The test was performed per sequence
context of the cassette exon (Fig. 1c). We only consid-
ered cassette exons where variation in splicing and vari-
ation of DNA methylation of the relevant context were
observed. In total, 5280 iPS and 2622 endoderm cassette
exons were tested. The P values were adjusted for
multiple testing using the Q value [37, 38] package in R.
The gene enrichment across the cassette exons was
performed using g:Profiler [20] (version: 2017-10-25,
g:Profiler Ensembl 90), using all observed cassette exons
per cell type as background. Multiple testing correction
for the enrichments was performed within g:Profiler.

Prediction of PSI and categories
We applied linear ridge regression to model single-cell
and pseudo-bulk PSI and (multi-class) logistic ridge re-
gression to model PSI categories. The models are based
on only the genomic features or on both genomic and
DNA methylation features. The performance of linear
models was evaluated using Pearson r2 between pre-
dicted and observed splicing rates. For the multi-class
prediction models, we applied a one-versus-rest scheme
and report the per-category and the macro-average area
under the receiver operating curves (AUC). To deter-
mine the most relevant individual features, we addition-
ally trained regression models based on each single
feature. Per feature, we report, in the case of the linear
models, Pearson correlation (r, r2) and, in the case of the
logistic models, the absolute weight multiplied by the
standard deviation of the feature and the AUC. We
assessed the performance and parameters of the models
by using a tenfold cross validation (CV) with fixed
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training-validation splits. To assess the variability of pre-
diction performances, we repeated the CV procedure
four times with different CV splits. Error bars indicate ±
1 standard deviation of the respective statistic (AUC, r2).

Replication cohort
To replicate our results, we processed the mouse ES
single-cell scM&T-seq data (n = 80) presented in Anger-
mueller et al. [14]. We reprocessed the aligned RNA and
DNA methylation data to quantify splicing following the
same protocols that were applied to the human data, with
the following changes: GRCm38 was used as a reference
for imputation, genome and transcriptome annotations
were based on gencode v18 (“GRCm38.p6.genome.fa” as
genomic, “gencode.vM18.annotation.gff3” as transcrip-
tomic reference, available at ftp://ftp.ebi.ac.uk/pub/data-
bases/gencode/Gencode_mouse/release_M18/ [August
2018]), and conservation scores were taken from
“mm10.60way.phastCons.bw” downloaded from UCSC
[35] (August 2018).
Out of the 80 cells, in total, 12 cells did not pass qual-

ity control on the transcriptome data, Cells with less
than 500,000 sequenced reads or had less than 80% of
the reads aligned to the genome were removed. Add-
itionally, 4 cells did not pass quality on the DNA methy-
lome data. Cells with less than 1 million reads aligned
and bismark mapping efficiency below 7% were dis-
carded. The filters yielded 68 cells that were used for the
splicing analysis and 64 that are used for the analyses
including DNA-methylation data. In these cells, we
quantified between 649 and 1433 cassette exons per
mouse ES cell (minimum coverage of 5 reads); in the
replication analysis, we considered 2194 exons that were
supported by at least 1 cells.

Availability of source code
Python and R were used for data processing, modeling, and
visualization of the results. All regression models are based
on implementations available in the package scikit-learn
[39]. Software and scripts are available as jupyter notebooks
at https://github.com/PMBio/scmt_splicing [40].
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