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SUMMARY

Conventional human embryonic stem cells are
considered to be primed pluripotent but can be
induced to enter a naive state. However, the tran-
scriptional features associated with naive and
primed pluripotency are still not fully understood.
Here we used single-cell RNA sequencing to charac-
terize the differences between these conditions. We
observed that both naive and primed populations
were mostly homogeneous with no clear lineage-
related structure and identified an intermediate sub-
population of naive cells with primed-like expression.
We found that the naive-primed pluripotency axis is
preserved across species, although the timing of
the transition to a primed state is species specific.
We also identified markers for distinguishing human
naive and primed pluripotency as well as strong co-
regulatory relationships between lineage markers
and epigenetic regulators that were exclusive to
naive cells. Our data provide valuable insights into
the transcriptional landscape of human pluripotency
at a cellular and genome-wide resolution.

INTRODUCTION

Human and mouse embryonic stem cells (ESCs) are both

derived from the inner cell mass (ICM) of the pre-implantation

epiblast but differ in transcriptomic, epigenetic, and morpholog-

ical features that correspond to consecutive stages of ontogeny.

Mouse ESCs (mESCs) are marked by early developmental char-

acteristics such as expression of the core pluripotency network,

including Oct4, Klf4, or Dppa3; the activity of both X chromo-

somes in females; global DNA hypomethylation; and apolar
Cell Re
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morphology of the dome-shaped mESC colonies and, therefore,

show the characteristics of naive pluripotency (Boroviak and

Nichols, 2017). In contrast, primed or conventional human

ESCs (hESCs) are developmentally more advanced and

resemble murine post-implantation epiblast or mouse epiblast

stem cells, thus they are considered to be primed pluripotent

(Brons et al., 2007; Tesar et al., 2007).

Several groups have aimed to capture naive pluripotency in

humans and to establish culture conditions closely recapitulating

the signature of human ICM cells. These studies attempted to

induce a naive state in hESCs by reprogramming primed hESCs

with cytokines or small molecules (Gafni et al., 2013; Hanna

et al., 2010; Takashima et al., 2014; Theunissen et al., 2014;

Ware et al., 2014) or by directly culturing hESCs isolated from

pre-implantation ICM cells under conditions that favor naive

stemness (Guo et al., 2016). Among these, the stimulation of

NANOG and KLF2 expression in 2 inhibitors (PD0325901 and

CHIR99021) + Leukemia inhibitory factor (2i+Lif) conditions (inhi-

bition of mitogen-activated protein extracellular signal-regulated

kinase [ERK] and glycogen synthase kinase-3 beta) and subse-

quent restriction of protein kinase C (PKC) activity yielded hESCs

with a close resemblance to the human blastocyst (Guo et al.,

2017; Huang et al., 2014; Takashima et al., 2014). These reprog-

rammed naive hESCs express naive pluripotency markers,

including OCT4, SOX2, and KLF2 and KLF4 (Boroviak and Nich-

ols, 2017), and their metabolic and epigenetic profiles resemble

the phenotype of mESCs rather than the primed state of conven-

tional hESCs (Takashima et al., 2014).

There is still incomplete understanding of the transcriptional

features that drive naive and primed pluripotency in ESCs

(Ware, 2017; Weinberger et al., 2016). Studies exploring tran-

scriptional identity and heterogeneity in mESCs have found sig-

nificant variability associatedwith different states of pluripotency

(Klein et al., 2015; Kolodziejczyk et al., 2015; Kumar et al.,

2014). In a recent in vivo study of early mouse development

(Mohammed et al., 2017), transcriptional noise was suggested
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to contribute to cell fate decision-making. However, although

certain key pluripotency genes are much less variably expressed

in the naive state (e.g., NANOG), single-cell RNA sequencing

(scRNA-seq) suggests that overall heterogeneity in gene expres-

sion in mESC lines is independent of the respective culture con-

dition and pluripotency state (Kolodziejczyk et al., 2015).

Our understanding of in vivo lineage commitment in humans

is much more limited. By studying transcriptional profiles of

developmental stages embryonic day 3 (E3) to E7 of human

preimplantation embryos, the first lineage decisions between

trophectoderm, primitive endoderm, and epiblast have been

described (Petropoulos et al., 2016; Stirparo et al., 2018).

Furthermore, a recent study has investigated the primed-to-

naive cellular state transition process and found that genes

related to hemogenic endothelium development were overrepre-

sented in naive hESCs, resulting in higher differentiation potency

into hematopoietic lineages (Han et al., 2018). Nonetheless, the

extent and details of hESC heterogeneity have not been system-

atically characterized, and it is unclear whether the variability in

gene expression is important for differentiation. To address

these questions, we performed scRNA-seq of primed hESCs

and reprogrammed naive hESCs to investigate the heterogeneity

within each subpopulation and to compare their molecular phe-

notypes with in vivo transcriptome studies of embryogenesis.

RESULTS

Weassayed the transcriptomes of single primed and naive hESCs

(WiCell WA09-NK2) to investigate gene expression heterogeneity

and to identify potential subpopulations within different human

pluripotency states. In total, we collected 480 hESCs grown under

naı̈ve titrated 2 inhibitors (PD0325901 and CHIR99021) + Leuke-

mia inhibitory factor + inhibitor Gö6983 (t2iL+Gö) conditions (Ta-

kashima et al., 2014) and 480 hESCs grown under primed (E8)

culture conditions (Chen et al., 2011). Single cells were separated

and collected using fluorescence-activated cell sorting (FACS),

and full-length cDNAswereprepared using the switchmechanism

at the 50 end of RNA templates (Smart-seq2) protocol (Picelli et al.,

2014), followed by Nextera XT library preparation (Figure 1A). We

removed low-quality cells and normalized for cell-specific bias

prior to further analyses (STAR Methods; Figure S1A).

Naive and Primed hESCs Form Distinct Phenotypic
Clusters
To confirm that scRNA-seq can recapitulate known differences

between naive and primed conditions, we performed dimension-

ality reductiononall cells in thedataset usingprincipal-component

analysis (PCA) on highly variable genes (STAR Methods). We

observed strong separation between naive and primed cells on

the first principal component (Figure 1B), indicating that the differ-

encebetweenconditions is thedominant factor of variation.Differ-

ential expression analysis between naive and primed conditions

identified a number of genes that were strongly upregulated under

each condition (Figure 1C). This included the previously reported

naive pluripotency and ground state marker genes KLF17,

DPPA5,DNMT3L,GATA6,TBX3, IL6ST,DPPA3, andKLF5 (Blake-

ley et al., 2015; Dunn et al., 2014; Guo et al., 2017; Shahbazi et al.,

2016; Theunissen et al., 2016; Yan et al., 2013). AlthoughKLF4has
816 Cell Reports 26, 815–824, January 22, 2019
been described as amarker for both naive and primed cells (Ware,

2017), we only observed its expression in naive hESCs, consistent

with other studies (Weinberger et al., 2016). In primed hESCs, we

observedupregulation of establishedmarker genes of primedplu-

ripotency, such as CD24, ZIC2, and SFRP2, but not OTX2 or TFT

(Buecker etal., 2014;Guoetal., 2016;Shakibaetal., 2015).Shared

pluripotency markers, including SOX2, OCT4, and NANOG, did

not significantly differ between the naive and primed population.

We also identified additional (and only recently suggested;

Collier et al., 2017) markers of naive and primed hESCs (Table 1;

Figure S1B; Table S1). The naive markers included genes that

have been implicated in germ cell function (e.g., HORMAD1 for

meiotic progression; Chen et al., 2005); KHDC3L as a regulator

of imprinting (Parry et al., 2011); the alkaline phosphatases

ALPP and ALPPL2, which are generally used as markers of

pluripotent cells (Martı́ et al., 2013); as well as putative regulatory

genes such as ZNF729. Some of these are also expressed in the

early embryo; e.g., TRIM60 (Choo et al., 2002) and HORMAD1

(Chen et al., 2005). Primed markers included a number of genes

related to later developmental stages; e.g., SOX11 for neuronal

development (Bergsland et al., 2006),CYTL1 for chondrogenesis

and expressed at implantation (Ai et al., 2016),HMX2 (an NK-like

[NKL] homeobox gene) for organogenesis (Wang et al., 2001),

and THY1 for hematopoietic stem cells (Majeti et al., 2007).

We also found regulators of key signaling pathways, such as

DUSP6 (a negative regulator of mitogen-activated protein kinase

[MAPK] signaling) (Muda et al., 1996) and the receptor tyrosine

phosphatase PTPRZ1 (Levy et al., 1993). We validated a number

of these genes at the protein level using proteomics (Figure S1C)

and in bulk RNA-seq data of the hESC lines UCLA1, WIBR3, and

SHEF6 under naive and primed conditions (Table 1; Figure S1D;

Pastor et al., 2016; Theunissen et al., 2016; Guo et al., 2017).

Identification of a Subcluster in the Naive hESCs
Population
We observed a small group of naive cells between the main naive

and primed clusters (Figure 1B). We identified these cells by hier-

archical clusteringwithin the naive population, yielding a separate

cluster of 9 cells. Despite being labeled as naive, this cluster was

distinguishable from the other cells in the naive population as well

as from the primed population (Figure 2A). These cells expressed

some naive markers (DPPA3 and TFCP2L1; Figure 2B) but also

exhibited primed-like characteristics (downregulation of KLF4

and KLF7) (Figure S2A); thus we labeled them ‘‘intermediate.’’

This subpopulation does not consist of doublets from the sin-

gle-cell sorting procedure because they uniquely express genes

that are absent in the primed population and other naive cells.

One question is whether this intermediate population arises

from primed cells that were not fully transformed into the naive

state or from naive cells that have acquired a more primed state.

To investigate this, we specifically examined the expression of

imprinted genes such as MEG3, PEG3, and SNRPN. Loss of

imprinting has been reported under all current naive hESCs cul-

ture conditions, whereas conventional hESCs rarely show

imprinting defects (Guo et al., 2017, 2016; Pastor et al., 2016).

When lost, imprinting cannot be restored in non-germline cells,

which can directly affect the expression level of the imprinted

genes. We found similar expression of imprinted genes in the



Figure 1. Naive and Primed Human ESCs Exhibit Strong Differences in Gene Expression

(A) Naive and primed human ESCs were cultured in N2B27 supplemented with t2iL+Gö or in E8 medium, dissociated into single cells, and sorted into 96-well

plates loaded with RLT lysis buffer and External RNAControls Consortium (ERCC) spike-ins. RNA-seq libraries were prepared using the SmartSeq2 protocol and

submitted for sequencing.

(B) PCA plot of hESC expression profiles, constructed from batch-corrected and normalized log expression values of highly variable genes detected across the

entire dataset. Cells are colored by their condition, and the percentage of variance explained by the first two principal components is shown.

(C) Smear plot of log2-fold changes in expression between the naive and primed conditions, where differential expression (DE) genes were detected using edgeR

at a false discovery rate (FDR) of 5%.

See also Figure S1 and Table S1.
intermediate cluster compared with naive hESCs (Figure S2B),

indicating that the subpopulation cells originate from the naive

cells rather than being reprogramming-refractory remnants of

the primed population that would not yet have undergone global

DNA demethylation and loss of imprinting.

A number of genes were also uniquely upregulated in the inter-

mediate population compared with both the naive and primed

population. This includes ABCG2, CLDN4, VGLL1, GATA2,

GATA3, and ERP27 (Figure S2C; see Table S2 for the full list),

with significant over-representation of genes involved in

morphological structure formation, development, and signaling

(see Figure S2D for the Gene Ontology [GO] analysis). This sug-

gests that the intermediate population is a separate state from

the naive and primed conditions. Indeed, the transcription of
NANOGwas strongly downregulated in the intermediate popula-

tion compared with both naive and primed cells (Figure 2B). In

this respect, the subpopulation state shares some transcrip-

tional features with the recently proposed state of formative plu-

ripotency (Smith, 2017). Immunofluorescence staining based on

high expression of ABCG2 and low expression of DPPA5 sup-

ported the existence of the intermediate population within the

naive condition (Figures 2C and 2D).

Subclusters with Lineage-Specific Gene Expression
Profiles Are Not Present in Naive or Primed hESCs
To study transcriptional heterogeneity within the naive and

primed conditions, we applied t-distributed stochastic neighbor

embedding (t-SNE) (van der Maaten and Hinton, 2008) to the
Cell Reports 26, 815–824, January 22, 2019 817



Table 1. Markers of Naive and Primed Pluripotency in hESCs

Naive

logFC

(WA09-NK2)

logFC*

(UCLA1)a
logFC*

(WIBR3)b
logFC*

(SHEF6)c Primed

logFC*

(WA09-NK2)

logFC*

(UCLA1)a
logFC*

(WIBR3)b
logFC*

(SHEF6)c

KHDC1L 14.49 8.82 13.23 9.36 DUSP6 �13.88 �6.29 �9.69 �7.09

FAM151A 14.13 7.57 10.49 9.20 FAT3 �9.80 �8.44 �10.76 �7.65

HORMAD1 15.03 7.09 10.94 10.25 THY1 �13.60 �8.78 �8.47 �6.26

ALPPL2 20.17 7.32 11.26 8.82 STC1 �11.82 �8.79 �12.14 �7.57

ZNF729 14.07 4.25 11.15 4.83 KLHL4 �12.58 �7.10 �13.17 �5.09

KHDC3L 19.58 6.88 12.78 9.54 ZDHHC22 �15.53 �9.02 �7.86 �9.44

TRIM60 18.53 7.90 12.19 8.33 NEFM �13.20 �4.64 �7.33 �5.26

MEG8 17.57 8.23 8.89 not DE HMX2 �10.58 not DE not DE not DE

OLAH 10.80 7.58 12.87 7.97 PLA2G3 �15.29 �6.31 �5.74 �8.07

LYZ 17.31 5.47 7.94 4.70 PTPRZ1 �10.55 �8.33 �12.72 �9.63

HYAL4 17.01 5.92 9.13 5.66 CYTL1 �14.54 �7.60 �9.43 �9.09

ALPP 16.58 4.55 10.03 9.29 SOX11 �10.20 �6.33 �8.60 �4.97

*Log fold change between the primed and naive population; adjusted p < 0.005 for all shown DE genes.
aPastor et al. (2016)
bTheunissen et al. (2016)
cGuo et al. (2017)
cells under each condition after removing all intermediate popu-

lation cells from the naive condition. We did not observe any

distinct clustering within each condition; instead, themajor driver

of heterogeneity in each conditionwas the cell cycle (Figure S3A).

To focus only on heterogeneity related to embryonic develop-

ment, we constructed the t-SNE plots using only a set of 184

endoderm-, ectoderm-, and mesoderm-specific markers (Table

S3). The aim was to enrich for any weak population structure

related to early fate commitment. However, we still did not

observe any clusters corresponding to the different germ layers

in either the naive or primed populations (Figures 3A, 3B, and

S3B). This suggests that the primed cells remain in a mostly ho-

mogeneous undifferentiated state and have yet to begin the pro-

cess of committing to differentiate into the germ layers.

The homogeneity of both the naive and primed conditions sug-

gests that it is possible to explore co-regulatory relationships via

gene-gene correlations within each population. In particular, we

focused on epigenetic modulators because of their importance

in controlling cellularmemory and their relevance for early embry-

onic development.Within each condition, we computed pairwise

correlations between the expression profiles of 704 epigenetic

modulators with a set of 94 developmental markers (Table S4;

Figure S3C). We observed strong correlations in the naive popu-

lation (Figure 3C) thatweremuchweaker in theprimedpopulation

(Figure 3D). This indicates that the expression of the epigenetic

machinery is more distinctly linked to the naive gene expression

network andparticularly to regulators related todenovoDNAand

histone methylation (e.g., DNMT3A/B and EHMT1).

A Naive-to-Primed Axis Can Identify Pluripotency
Transitions in Other Species
To integrate our data with previous in vivo studies, we defined a

naive-to-primed axis based on empirically defined marker genes

that were strongly differentially expressed between the two con-

ditions (STAR Methods). Cells from other scRNA-seq datasets

were mapped onto this axis based on the proportion of naive-
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primed markers (or homologous equivalents in non-human

data) they expressed. As a proof of concept, we mapped the

previously described intermediate population onto the naive-

to-primed signature map (Figure S4A). The subpopulation

hESCs were located close to the naive axis but expressed a

lower proportion of signature markers than the residual naive

population. This is consistent with our hypothesis that the inter-

mediate population originates from naive cells but has lost some

features of naive pluripotency.

Next we mapped published scRNA-seq datasets of pre-

implantation embryos from mice (Mohammed et al., 2017),

cynomolgusmonkeys (Nakamura et al., 2016), and humans (Pet-

ropoulos et al., 2016) onto our naive-to-primed axis. For mouse

and monkey embryos, we observed a gradual loss of naive

marker expression and an increase in primed marker expression

(Figures 4A and 4B). This is consistent with the transition from

naive to primed pluripotency and suggests that the relevant

genes are conserved across species. Equal proportions of

naive-primed markers were expressed at approximately E5

(mice) and E9–E13 (monkeys). In contrast, we did not observe

any clear shift to primed pluripotency in humans before E7 (Fig-

ure 4C), consistent with the similarity of in vivo naive pluripotency

with in vitro reprogrammed naive pluripotency under the applied

culture conditions (Takashima et al., 2014).

We also defined a naive-to-intermediate axis using the identi-

fied uniquemarkers of our intermediate population instead of the

primed markers. We observed a shift from the naive expression

pattern to that of the intermediate population after E5 in the

human data (Figure S4B). This suggests that the intermediate

population may also be present in vivo and relevant to human

embryonic development.

DISCUSSION

By sequencing the transcriptomes of single naive and primed

hESCs, we identified discrete expression signatures of the two



Figure 2. The Naive Subpopulation Is Transcriptionally Distinct from the Other Naive and Primed Cells

(A) Heatmap of the top 50 genes with the strongest differential expression between the naive and intermediate cells (top) or between the intermediate and primed

cells (bottom). The box for each cell (column) and gene (row) is colored according to the log2-fold change from the average expression for each gene.

(B) Log2 expression profiles of selected marker genes across cells in the naive, intermediate, and primed populations. Each point represents a cell in the

corresponding population.

(C) Normalized protein expression of DPPA5 against ABCG2 in naive and primed hESCs. Protein expression was determined using immunofluorescence staining

of cytospin-fixed cells.

(D) Representative immunofluorescence images of naive and primed hESCs using DPPA5 and ABCG2 antibodies. The scale bar represents 20 mm.

See also Figure S2 and Table S2.
pluripotency states. In addition to recovering existing markers

(Ware, 2017; Weinberger et al., 2016), we defined genes that

are highly specific to each population. These expressionmarkers

are well conserved across species, as we were able to show by

mapping mouse, monkey, and human sequencing data onto our

naive-to-primed signature axis.

Another aim of this study was to clarify the heterogeneity and

developmental progression of each pluripotency state in

hESCs. We found that both naive and primed states of cultured

hESCs were comparably homogeneous, except for a small

subpopulation of cells in the naive state with transcriptional

features of primed pluripotency. This was surprising because

the primed state was expected to be more differentiated and

possibly showing signatures of early lineage commitments, as
suggested by in vivo work in mice (Mohammed et al., 2017).

However, the comparably low levels of heterogeneity of naive

and primed pluripotency in vitro have also been observed in

mESC lines (Kolodziejczyk et al., 2015) and could be a reflec-

tion of the medium favoring one particular cellular phenotype.

Therefore, these artificial states may be a misleading represen-

tation of primed pluripotency, which is more heterogeneous

in vivo.

We observed that cell cycle-related effects were the most

prominent source of variability within both the naive and the

primed population. It is possible that specific cell cycle states

may play a major role in contributing to cell fate decisions by

introducing transcriptional noise. We also found that naive

hESCs showed stronger correlations of pluripotency and
Cell Reports 26, 815–824, January 22, 2019 819
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Figure 3. Naive and Primed Populations Do Not Exhibit Lineage-Associated Structure, but Correlations between Lineage Markers and

Epigenetic Regulators Are Stronger under the Naive Condition

(A and B) Gene expression of germ layer-specific marker genes in the (A) naive and (B) primed population, visualized using tSNE on the batch-corrected

normalized log expression values. Each point in the scatterplot represents a cell, which is colored by the expression of respective mesoderm (SNAI1), ectoderm

(ITGA6), or endoderm (PAF1) markers.

(C and D) Heatmaps of the strongest correlation values between selected pluripotency and lineagemarkers (rows) and epigenetic markers (columns) for the naive

(C) and the primed (D) population. The correlation values were bound at [�0.5, 0.5].

See also Figure S3 and Tables S3 and S4.
lineage markers to epigenetic regulators than primed hESCs.

Given the major epigenetic resetting observed during early em-

bryonic development (i.e., from fertilization to the formation of

the naive ICM cells; Iurlaro et al., 2017), the naive transcriptional

state may have a unique need to be tightly coupled to the

expression of the epigenetic machinery. In contrast, primed

hESCs represent a later developmental stage in which the

epigenetic machinery may be less strictly controlled as the

epigenome is re-established in a more heterogeneous and cell

type-specific manner. Future work exploring the epigenetic

dynamics in early mouse and human embryonic development

by single-cell epigenomics will help to dissect these mecha-

nisms in more detail.

We also identified a subpopulation of naive hESCs that

showed both features of naive and primed states. Indeed, we

assume that the naive state in hESCs is temporally limited and

that cells are prone to exit it. The existence of ‘‘formative’’ plu-

ripotency has recently been suggested (Smith, 2017). This state
820 Cell Reports 26, 815–824, January 22, 2019
may represent a cellular phase where cells acquire differentia-

tion competency and are marked by the expression of early

post-implantation factors such as OTX2, SOX3, and POU3F1

and the transient loss of NANOG expression. Interestingly,

the intermediate population is characterized by significantly

decreased NANOG transcription, although we did not detect

significant upregulation of OTX2, SOX3, and POU3F1. It re-

mains to be seen whether this subpopulation corresponds to

cells exiting naive pluripotency toward formative pluripotency

and whether this represents a real in vivo state or arises

because of culture-specific conditions.

Our study provides important insights into the transcriptomic

heterogeneity of naive and primed hESCs. The identification of

specific markers may contribute to studying the reprogramming

dynamics during the primed-to-naive transitions and delineate

key transcriptional events leading to human naive pluripo-

tency. Finally, we catalog and compare pluripotency identity

across species to characterize transitions between different
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pluripotency states that mark specific temporal windows of em-

bryonic development.
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TeSR-E8 STEMCELL Technologies 05990

B27 Thermo Fisher Scientific 17504044

N2 Stem Cell Institute, Cambridge N/A
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Neurobasal Thermo Fisher Scientific 21103049

Accutase STEMCELL Technologies 07920

Triton X-100 Sigma-Aldrich T9284

Tween20 Sigma-Aldrich P9416

DAPI Thermo Fisher Scientific 62248

RNase Inhibitor Clontech 2313A

ERCC RNA Spike-In Mix Ambion 4456740

dNTPs Thermo Fisher Scientific 10319879

Critical Commercial Assays

AMPure XP beads Beckman Coulter A63880

Nextera XT DNA Sample Preparation Kit Illumina FC-131-1096

Nextera XT Index Kit Illumina FC-131-1001

Superscript II reverse transcriptase Invitrogen 18064-014

Deposited Data

Raw sequence data and count tables This study E-MTAB-6819

Experimental Models: Cell Lines

Human WA09 Embryonic stem cells Takashima et al., 2014 N/A

Oligonucleotides

Oligo-dT30VN Picelli et al., 2014 N/A

AAGCAGTGGTATCAACGCAGAGTACT30VN

Template Switching Oligo Picelli et al., 2014 N/A

AAGCAGTGGTATCAACGCAGAGTACATrGrG+G

ISPCR oligo Picelli et al., 2014 N/A

AAGCAGTGGTATCAACGCAGAGT

Software and Algorithms

R version 3.5.1 (Feather Spray) The R Project https://www.r-project.org

scran Lun et al., 2016b https://bioconductor.org/packages/release/

bioc/html/scran.html

scater McCarthy et al., 2017 https://bioconductor.org/packages/release/

bioc/html/scater.html
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rtsne van der Maaten and Hinton, 2008 https://cran.r-project.org/web/packages/

Rtsne/index.html

edgeR Robinson et al., 2010 https://bioconductor.org/packages/release/

bioc/html/edgeR.html

subread Liao et al., 2013 http://subread.sourceforge.net

Rsubread Liao et al., 2014 https://bioconductor.org/packages/release/

bioc/html/Rsubread.html

limma Ritchie et al., 2015 https://bioconductor.org/packages/release/

bioc/html/limma.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Wolf Reik

(wolf.reik@babraham.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HumanWA09-NK2 ESCs (Takashima et al., 2014) were kindly provided by Austin Smith and grown under naive or primed conditions.

METHOD DETAILS

Cell culture and collection
Naive hESCswere grown in 6-well dishes onmouse embryonic fibroblasts in N2B27 supplementedwith human LIF, 1mMChiron, 1mM

PD03 and 2mM Gö6983. 1 passage before sorting, cells were plated on 6-well plates coated with Matrigel (growth-factor reduced).

Primed hESCs were grown in 6-well dishes coated with Vitronectin in E8 media. For collection, hESCs were dissociated with Accu-

tase and sorted in 96 well plates containing lysis buffer on a BD Aria Cell sorter, gating for cell size and granularity. In each plate,

4 wells were left empty as negative controls. Plates were immediately spun down and frozen at �80�C until subsequent processing.

This was performed in two batches – the first batch contained 96 cells from each condition, while the second batch contained

384 cells from each condition (480 cells in total per condition).

Library preparation and sequencing
Single-cells were sorted in 2uL of Lysis Buffer (0.2% v/v Triton X-100 (Sigma-Aldrich, cat. no. T9284) with 2U/ul RNase Inhibitor

(Clontech, cat. no. 2313A)) in 96 well plates, spun down and immediately frozen at�80�C. cDNA from sorted single cells was prepared

following the SmartSeq2protocol (Picelli et al., 2014).Briefly,oligo-dTprimer,dNTPs (ThermoFisher, cat. no.10319879) andERCCRNA

Spike-InMix (1:25,000,000final dilution, Ambion, cat. no. 4456740)wereadded to the single-cell lysates, andReverse Transcription and

PCRwereperformed. The cDNA libraries for sequencingwerepreparedusingNexteraXTDNASamplePreparationKit (Illumina, cat. no.

FC-131-1096), according to the protocol supplied by Fluidigm (PN 100-5950B1). Libraries from96 single cellswere pooled and purified

using AMPure XP beads (Beckman Coulter). Pooled samples were sequenced on an Illumina HiSeq 2500 instrument, using paired-end

100-bp reads. On average, we obtained 2.13 106 reads per cell in batch 1 and 0.53 106 reads per cell in batch 2.

Immunofluorescence Analysis
Antibody staining was performed as previously described (Santos et al., 2003). Briefly, hESCs were cytospun, after fixation with 2%

PFA for 30 minutes at room temperature. Cells were permeabilised with 0.5% Triton X-100 in PBS for 1h; blocked with 1% BSA in

0.05%Tween20 in PBS (BS) for 1h; incubation of the appropriate primary antibody diluted in BS; followed by wash in BS and

secondary antibody. Secondary antibody was Alexa Fluor conjugated (Molecular Probes) diluted 1:1000 in BS and incubated for

30 minutes. Incubations were performed at room temperature unless otherwise stated. DNA was counterstained with 5 mg/mL

DAPI in PBS. Single optical sections were captured with a Zeiss LSM780 microscope (63x oil-immersion objective). Fluorescence

semi-quantification analysis was performed with Volocity 6.3 (Improvision).

QUANTIFICATION AND STATISTICAL ANALYSIS

Alignment and read counting
Read pairs were aligned to a reference consisting of the hg38 build of the human genome as well sequences for the ERCC spike-in

transcripts. This was performed using the subread aligner v1.6.0 (Liao et al., 2013) in paired-end mode with unique alignment. Each
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read pair was then assigned to a gene in the Ensembl GRCh38 v91 annotation or to the spike-in transcripts. This was done using the

featureCountsfunction in the Rsubread package v1.28.1 (Liao et al., 2014). Only reads with mapping quality scores above 10 were

used for counting. Read counts from technical (sequencing) replicates of the same cell were added together prior to further analysis.

On average, over 71% of reads mapped to the genome with over 59% mapped to exons.

Quality control on cells and genes
A range of quality metrics were computed for each cell (Figure S1A) using the calculateQCMetrics function in the scater package

v1.6.3 (McCarthy et al., 2017). For each metric, outlier values were identified as those that were more than three median absolute

deviations from the median. Low quality cells were identified in each batch, as those with small outlier values for the log-transformed

total count; small outliers for the log-transformed number of expressed genes; large outliers for the proportion of read pairs assigned

to mitochondrial genes; or large outliers for the proportion of read pairs assigned to spike-in transcripts. These cells were removed

from the dataset prior to further analysis, leaving 414 naive and 423 primed cells remained for downstream analysis.

The cell cycle phase for each cell was identified using the cyclone classifier (Scialdone et al., 2015) implemented in the scran pack-

age v1.6.9. This was performed with a set of human marker genes, identified by training the classifier on a pre-existing hESC dataset

(Leng et al., 2015).

Normalization of cell-specific biases
For the endogenous genes, cell-specific size factors were computed using the deconvolution method (Lun et al., 2016a) with pre-

clustering. For each gene, the count for each cell was divided by the appropriate size factor. A pseudo-count of 1 was added,

and the value was log2-transformed to obtain log-normalized expression values. This was repeated using the spike-in transcripts,

where the size factor for each cell was proportional to the sum of counts for all spike-in transcripts (Lun et al., 2017).

Feature selection and dimensionality reduction
Feature selection was performed by computing the variance of the normalized log-expression values across cells for each endog-

enous gene or spike-in transcript. To represent technical noise, a mean-dependent trend was fitted to the variances of the spike-in

transcripts using the trendVar function in the scran package (Lun et al., 2016b). This was done separately for each batch of cells to

ensure that large variances were not driven by uninteresting batch effects. The decomposeVar function was used to obtain the bio-

logical component of the variance by subtracting the fitted value of the trend (i.e., the technical component) from the total variance of

each gene. The combineVar function was then used to consolidate statistics across batches.

Batch effects were removed from the log-expression matrix using the removeBatchEffects function from the limma package

v3.34.9 (Ritchie et al., 2015). This involved performing a linear regression on the log-expression profile of each gene and setting

the blocking term for the batch to zero, whichwas possible for this data due to the balanced naive-primed composition of each batch.

Principal component analysis was applied to the corrected expression matrix, only using the genes with positive biological compo-

nents. This was performed with the denoisePCA function from scran to determine the number of principal components to retain.

t-SNE was performed on the retained PCs using the Rtsne package v0.13.

Testing for differential expression between conditions
Counts for the naive and primed cells within each batch were pooled to obtain four sets of pseudo-bulk counts (Lun and Marioni,

2017). Low-abundance genes with average counts below 5 were removed and normalization was performed on the remainders

with the trimmed mean of M-values method (Robinson and Oshlack, 2010). Genes were tested for differential expression (DE)

between naive and primed conditions using the quasi-likelihood framework in the edgeR package v3.20.9 (Y. Chen et al., 2016).

The experimental design was parameterized using an additive design containing a condition term and the batch blocking factor.

DE genes were defined as those with significant differences between conditions at a FDR of 5%.

To validate the identified marker genes, DE genes in three different bulk RNA-seq datasets (Pastor et al., 2016; Theunissen et al.,

2016; Guo et al., 2017) were identified using the quasi-likelihood framework. This used the procedure described above with the only

difference being that DE genes were defined as having absolute log-fold changes significantly greater than 0.5 at a FDR of 5%

(McCarthy and Smyth, 2009). This ensured that the DE analysis focused on genes with strong differences in expression. The results

of the analysis for each dataset were visualized using volcano plots. For comparison, we highlighted the top 200 naive markers and

the top 200 primed markers from our single-cell data (ranked by p value) on each plot.

Detecting the intermediate population
Dimensionality reduction was performed as previously described using only the cells in the naive condition. The retained principal

components were used for hierarchical clustering of the cells with the hclust function in R, using Ward linkage on the Euclidean dis-

tances. Clusters of cells were identified using a simple tree cut, where the optimal number of clusters was determined by maximizing

the average silhouette width. The cluster of cells located between the bulk of cells from the naive and primed conditions in the PCA

plot was denoted as the intermediate population.
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The intermediate population was characterized by testing for differential expression relative to the other naive cells or to the primed

cells. This was done using t tests on the log-expression values (Soneson and Robinson, 2018) after blocking on the batch. For each

contrast, several candidates were chosen from the top set of DE genes for further validation by immunofluorescence staining.

Exploring lineage-related heterogeneity
Dimensionality reduction was performed for each condition as previously described. For the naive condition, cells in the intermediate

population were removed. PCA plots were colored according to the expression of CDK1 to represent cell cycle activity (Figure S3A).

Dimensionality reduction in each condition was also repeated using only genes that were specific for the germ layers (Table S3) to

detect potential early lineage commitment. Again, cells in the intermediate population were excluded. The resulting t-SNE plots were

colored by expression of the mesoderm marker SNAI1 (Evseenko et al., 2010), the ectoderm marker ITGA6 (Brafman et al., 2013) or

the endodermmarker PAF1 (Ponnusamy et al., 2009) to visualize any lineage-related substructure and by the expression of cell-cycle

marker CDK1 (Figure S3C).

Correlations with epigenetic modulators
Pairwise correlations of selected lineage and pluripotency markers to epigenetic modulators (Table S4) were calculated using the

correlatePairs function from the scran package. This involved computing Spearman’s rank correlation coefficients between the

log-expression profiles of lineage marker genes (endoderm, ectoderm, mesoderm, trophectoderm, core pluripotency, naive plurip-

otency, formative pluripotency, primed pluripotency and germline) and genes comprising the epigenetic machinery. P-values for all

pairs were combined and corrected for multiple testing.

To visualize the correlations, we computed the average absolute correlation across naive and primed conditions for each gene pair.

We then selected the top 25 lineage/pluripotency markers and the top 25 epigenetic modifiers with the largest average absolute cor-

relations. For each condition, a heatmap of the correlation values between all pairs of the selected genes was constructed using the

pheatmap function from the pheatmap package v1.0.8.

Mapping temporal trajectories in early embryos
Naive marker genes were defined from our data as those that were DE relative to primed cells (using the pseudo-bulk statistics,

above) at a FDR of 5% and with a log2-fold change of 10; were present in at least 25% of naive cells; and were present in no

more than 5% of primed cells. Similarly, primed marker genes were defined as those that were DE relative to naive cells at a FDR

of 5% and with a log2-fold change of �10; were present in at least 25% of primed cells; and were present in no more than 5% of

naive cells.

A marker gene was considered to be expressed in a cell from a different dataset if its (normalized) count was greater than 10. For

each cell, we calculated the proportion of naive markers that were expressed. This was repeated for the primed markers. Cells were

mapped onto the ‘‘naı̈ve-primed axis’’ based on these proportions. Large naive proportions and small primed proportions indicate

that the cell is naive, and vice versa for primed cells.

Mapping onto the naive-primed axis was performed for cells collected from human pre-implantation embryos (Petropoulos et al.,

2016), mouse embryos (Mohammed et al., 2017), and cynomolgus monkey embryos (Nakamura et al., 2016). Mouse homologs for

the marker genes were identified using the getLDS function from the biomaRt package (Durinck et al., 2005), using the homology

relationships predicted by Ensembl. Monkey homologs for marker genes were identified as those with the same gene symbol. As

a control, we also performed remapping using the naive, primed and intermediate population cells in our own dataset.

To assess the expression of intermediate population genes in the human pre-implantation embryos (Petropoulos et al., 2016), an

intermediate-naive axis was constructed similarly to the naive-primed axis. Intermediate population marker genes were considered

uniquely expressed in the subpopulation by a log2-fold change of 5 against both the naive and the primed population at a FDR of 5%,

and by their presence in less than 25% of the naive and the primed cells.

DATA AND SOFTWARE AVAILABILITY

Code availability
All analysis code is available at https://github.com/MarioniLab/NaiveHESC2016.

Deposition of sequencing data
The accession number for the scRNA-seq data reported in this paper is ArrayExpress: E-MTAB-6819.
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