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Divergent wiring of repressive and active chromatin
interactions between mouse embryonic and
trophoblast lineages
Stefan Schoenfelder 1,2, Borbala Mifsud 3,8, Claire E. Senner2,4, Christopher D. Todd5,

Stephanie Chrysanthou2, Elodie Darbo6,7, Myriam Hemberger 2,4 & Miguel R. Branco 5

The establishment of the embryonic and trophoblast lineages is a developmental decision

underpinned by dramatic differences in the epigenetic landscape of the two compartments.

However, it remains unknown how epigenetic information and transcription factor networks

map to the 3D arrangement of the genome, which in turn may mediate transcriptional

divergence between the two cell lineages. Here, we perform promoter capture Hi-C

experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how

chromatin conformation relates to cell-specific transcriptional programmes. We find that key

TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked

regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are pro-

minent in TSCs are enriched for enhancer–gene contacts involving key TSC transcription

factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our

work shows that the first developmental cell fate decision results in distinct chromatin

conformation patterns establishing lineage-specific contexts involving both repressive and

active interactions.
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Mammalian preimplantation development involves dra-
matic molecular changes that enable the consolidation
of the information carried within the oocyte and sperm

into a novel, and fast-evolving, gene expression programme that
gives rise to the embryo.

Importantly, during preimplantation development the embryo
undergoes the first cell lineage differentiation process, with the
inner cell mass (from which all embryonic tissues are derived)
and trophectoderm (giving rise solely to extraembryonic tissues)
being clearly delineated by the blastocyst stage. This morpholo-
gical event constitutes a strict separation of cell fate, which is
underpinned by the establishment of a strong epigenetic barrier
set up by DNA methylation and histone modifications, such as
H3K9me3, that prevent trans-differentiation from one cell type to
the other1–5.

Our knowledge of the factors that drive the establishment and
maintenance of the trophoblast lineage has greatly benefited from
the ability to culture mouse trophoblast stem cells (TSCs) in a
stable manner, which retain the full differentiative capacity of the
early trophoblast6. Together with in vivo studies using mouse
mutants, this has allowed for a dissection of the signalling events,
transcription factors and epigenetic mechanisms that regulate
the trophoblast lineage, maintaining its cellular identity and
preventing trans-differentiation into embryonic stem cells (ESCs)
7. Key transcription factors such as CDX2, EOMES, ELF5,
TEAD4 and GATA3, among others, are essential for TSC self-
renewal1,8–11. These networks are distinctly different from those
operating in ESCs, which are prominently made up of OCT4,
NANOG, KLF4, ZFP42 and others12. Intriguingly, some tran-
scription factors, such as SOX2 and ESRRB, are seemingly pivotal
in both cell lineages and stem cell types. However, despite this
shared necessity, they operate in diverging protein complexes and
bind to largely non-overlapping genomic loci in both stem cell
types, which endows them with a cell type-specific function13,14.

These stem cell type-specific transcriptional networks are
associated with dramatic differences in the epigenomic landscape
between the trophoblast and the embryonic lineages15. Most
prominently, the DNA in trophoblast cells is found in a globally
hypomethylated state16–19. Interestingly, loss of DNA methyla-
tion in ESCs enhances trans-differentiation into TSCs, which is
due in part to the activation of Elf5 expression1. TSCs are also
characterised by overall low levels of the repressive H3K27me3
mark20, which in ESCs is often found co-localised with the active
H3K4me3 mark at developmental genes, creating an epigenetic
bivalency21. In TSCs, loss of H3K27me3 either enables the
expression of lineage-determining genes such as Cdx2, or triggers
the deposition of alternative repressive marks, namely H3K9me3
and DNA methylation22,23.

Despite this large body of epigenomic data, it remains
unknown how this information is integrated by the three-
dimensional (3D) arrangement of the genome to establish a TSC-
specific gene expression programme. Detailed studies in multiple
cell types, including mouse and human ESCs24,25, have abun-
dantly demonstrated that linear proximity in the genome cannot
predict how localised epigenomic changes will affect gene
expression. Namely, cis-acting enhancer elements can act on
genes lying several hundreds of kilobases (or even megabases)
away26. Interactions associated with repressive marks can also be
detected at long distances within a chromosome or even across
chromosomes, as was recently demonstrated for a large
Polycomb-driven interaction network between Hox gene
clusters27.

Here we investigate the differences in chromosome con-
formation between the embryonic and extraembryonic lineages,
using mouse ESCs and TSCs as models. We integrate these data
with epigenomic information and transcription factor binding

profiles to uncover key regulatory principles governing the reg-
ulation of the TSC-specific transcriptional programme. We find
that TSC-specific genes are associated with: (1) repression in
ESCs involving Polycomb-dependent interactions and (2) the
action of key transcription factors and TET1 at cell-specific
gene–enhancer contacts in TSCs.

Results
Distinct spatial organisation of TSC and ESC genomes. We
used promoter capture Hi-C (PCHi-C)24,28 to gain an in-depth
view of 3D contacts with gene promoters in mouse TSCs and
ESCs. Two replicates of each cell type were performed, yielding
51–75M mapped valid read pairs per replicate and an average of
1730 chimeric reads per captured promoter fragment (Supple-
mentary Fig. 1a). All analyses were performed at the resolution of
single HindIII fragments, with good overall concordance between
replicates up to distances of ~300 kb (Supplementary Fig. 1b),
although strong longer range interactions were also robustly
detected (see examples in Supplementary Fig. 4a). Statistically
significant interactions were identified using GOTHiC29, and
filtered to keep only interactions that were above the background
significance level for each promoter (see Methods). Sex chro-
mosomes were excluded due to sex differences between the cell
lines. This yielded a total of 690,074 and 672,062 interactions (in
TSCs and ESCs, respectively) between promoters and non-
promoter regions (Fig. 1a). We also detected 152,992 and 201,793
(in TSCs and ESCs, respectively) promoter–promoter interactions
using a distinct background model for this purpose (Fig. 1a). To
gauge the degree of similarity between the promoter interactomes
of TSCs and ESCs, we compared the overlap between these cell
lines with that seen between different hematopoietic cell types30.
The overlap between both stem cell types was smaller than that
between any of the hematopoietic lineages, including compar-
isons between vastly different lymphoid and myeloid cell types
(Supplementary Fig. 2a), suggesting that TSCs and ESCs differ
substantially in their 3D arrangement of chromatin.

To identify interaction differences between TSCs and ESCs in a
stringent manner, we developed a statistical model (see Methods)
that performs a direct comparison of the mapped data from both
cell types, yielding a list of statistically significant differential
interactions. These differential interactions also displayed strong
differences in contact frequency in a genome-wide Hi-C dataset
from an independently derived ESC line (Supplementary Fig. 2b)
31. Notably, genes involved in TSC-specific interactions included
a number of essential trophoblast-associated genes such as Tfap2c
(Fig. 1b), Eomes, Tead4, Id2 and Fgfr2. ESC-specific interactions
included various developmental genes such as Six3, Pax1 (Fig. 1b),
Evx1 and Myocd, as well as the Hox gene clusters (Fig. 1c,
Supplementary Fig. 2c). A Hox gene interaction network has
previously been shown to be driven by the action of Polycomb
repressive complex (PRC) 1 in ESCs27. In line with reduced PRC
activity in TSCs20, H3K27me3 levels at Hox gene clusters were
low in TSCs and interactions within each cluster largely reduced
in strength or even absent (Fig. 1c, Supplementary Fig. 2c).

These results show that ESCs and TSCs differ dramatically in
their spatial organisation of the genome, which may contribute to
the distinct cell lineage identity of both stem cell types.

H3K27me3 interactions in ESCs involve TSC-specific genes.
Given the striking difference in interactions at Hox gene clusters,
we asked whether interactions between H3K27me3-marked
regions in ESCs were generally absent in TSCs. Using publicly
available ESC ChIP-seq data, we identified interactions where
both ends are marked by the same histone mark (or by CTCF),
hereafter called homotypic interactions. We found that a
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disproportionally large amount of H3K27me3 homotypic inter-
actions were ESC-specific (p < 2.2E-16, Chi-squared test; Fig. 2a).
With the exception of H3K9me3, all other homotypic interactions
involved a much smaller fraction of ESC-specific contacts
(Fig. 2a). Notably, 29% of the ESC-specific H3K27me3 homotypic
interactions were between gene promoters, whereas
promoter–promoter interactions accounted for only 3% of
H3K9me3 interactions. Thus, ESCs are characterised by a parti-
cular enrichment for H3K27me3-associated promoter–promoter
interactions that are absent from TSCs. The reverse was not true,
as TSC-specific interactions were rarely associated with
H3K27me3, involving only five genes.

We then asked whether ESC-specific homotypic interactions
were epigenetically distinct from interactions that are shared
between the two cell types. Promoters involved in H3K27me3
homotypic interactions in ESCs lacked this mark in TSCs,
irrespective of whether these interactions were ESC-specific or
not (Fig. 2b). However, we noticed that H3K27me3 peaks
associated with ESC-specific interactions were larger (median
901 bp vs. 471 bp for all interactions; Supplementary Fig. 3a) and
displayed lower levels of H3K4me3 when compared against all
homotypic interactions (Fig. 2b, Supplementary Fig. 3a). Among
the shared interactions, even the broader H3K27me3 domains
were characterised by lower H3K4me3 (Supplementary Fig. 3a).
ESC-specific interactions are therefore characterised by a broad

deposition of H3K27me3 and depletion of H3K4me3. At
H3K9me3 homotypic interactions, peaks associated with ESC-
specific interactions were indistinguishable from the total pool of
H3K9me3 interactions (Fig. 2c, Supplementary Fig. 3b).

We then hypothesised that ESC-specific H3K27me3 interac-
tions maintained repression of TSC genes. Indeed, the cohort of
genes associated with ESC-specific H3K27me3 interactions
exhibited lower expression levels in ESCs compared to TSCs
(Fig. 2d), and this was not due to the broad deposition of
H3K27me3 at these genes (Supplementary Fig. 3c). By compar-
ison, no such difference was observed when including all genes
involved in H3K27me3 homotypic interactions or genes that are
not involved in homotypic interactions (Fig. 2d). This effect was
exclusive to H3K27me3-associated interactions, as no significant
expression differences were seen for H3K9me3- or CTCF-
associated genes (Fig. 2d, Supplementary Fig. 3d). Moreover,
the skewed TSC/ESC expression ratio at ESC-specific interactions
cannot be explained by promoter H3K27me3 occupancy alone,
but strictly required both interacting ends to be marked by
H3K27me3 (Supplementary Fig. 3e).

We then focused specifically on TSC-expressed genes that were
involved in H3K27me3 homotypic interactions in ESCs. Strik-
ingly, among these we uncovered an ESC-specific long-range
interaction between Gata3 and Sfmbt2 (Fig. 2e, Supplementary
Fig. 4a). Gata3 encodes a key transcription factor involved in the
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establishment of the trophoblast lineage11, and Sfmbt2 is an
imprinted gene essential for maintenance of the trophoblast
lineage32. Other examples of TSC-expressed genes that are
involved in such long-range repressive interactions in ESCs
included Nfatc1 and the homeobox genes Irx1, Irx2 and Six2
(Fig. 2f, Supplementary Fig. 4a). These interactions could also be
robustly detected in a genome-wide Hi-C dataset (Supplementary
Fig. 4b)31.

These results suggest that H3K27me3 homotypic interactions,
coupled with low H3K4me3 levels, may help maintain a repressed
state of trophoblast genes in ESCs.

ESC-specific H3K27me3 homotypic interactions require PRC1.
Given that interactions within and across Hox gene clusters in

ESCs depend on PRC1 (ref. 27), we asked whether PRC1 is indeed
necessary for all the ESC-specific homotypic interactions identi-
fied above. For this purpose, we analysed published PCHi-C data
from a Ring1A knockout (KO) ESC line that also allows for
tamoxifen-inducible deletion of Ring1B, thus generating Ring1A/
B double knockout (DKO) cells27. We found that, compared to
KO cells, DKO cells had substantially fewer of the H3K27me3
ESC-specific interactions that we identified (p= 2E-10, propor-
tions test; Fig. 3a), and those that were retained were generally
weaker (Fig. 3b). In contrast, there was a similar number of
CTCF- and H3K9me3-associated interactions of comparable
strength (Fig. 3a, b). ChIP-seq data from the same cell lines33

showed that all H3K27me3 homotypic interaction sites displayed
a loss of H3K27me3 in DKO cells, as well as reduced binding of
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PRC1 (RING1B) and PCR2 (EZH2 and SUZ12) proteins (Sup-
plementary Fig. 5a). This reduced PRC binding was even more
pronounced when focussing on those loci involved in ESC-
specific interactions (Supplementary Fig. 5b).

To test whether loss of interactions in Ring1A/B DKO cells was
coupled to expression changes, we analysed RNA-seq data from
the same cell lines. The expression of genes involved in
H3K27me3 homotypic interactions was elevated in DKO cells
when compared to KO cells, and this was particularly
pronounced for ESC-specific interactions (Fig. 3c). In contrast,
expression of genes involved in CTCF-associated interactions
remained unchanged (Fig. 3c). Importantly, the upregulation of
H3K27me3-associated genes was not restricted to Hox genes, but
also involved multiple other genes (Supplementary Fig. 5c).

Focusing on the same examples as before (Fig. 2e, f), we found
loss or clear weakening of interactions at TSC-expressed genes
that were marked by H3K27me3, including Sfmbt2 and Gata3
(Fig. 3d, Supplementary Fig. 6). Moreover, all TSC-expressed
genes involved in these interactions were upregulated in DKO
cells, although they did not reach the same expression levels seen
in TSCs (Fig. 3e), presumably due to differences in transcription
factor availability. These results indicate that PRC1 is required to
establish repressive interactions that are associated with silencing
of trophoblast lineage genes in ESCs.

TSC-specific interactions involve TET1-regulated enhancers.
We then focused on interactions between gene promoters and
non-promoter regions. To find out which epigenetic signatures

predominate at non-promoter ends of cell-specific interactions,
we used the above ChIP-seq data and further defined three
groups of enhancer elements: active (H3K4me1+H3K27ac),
poised (H3K4me1+H3K27me3) and intermediate (H3K4me1
alone). Interactions with CTCF sites, as well as with intermediate
and active enhancers, were enriched in TSC-specific interactions
(Fig. 4a). This is strikingly distinct from the pattern seen for ESC-
specific interactions, which predominantly involve H3K27me3
and poised enhancers (Fig. 4a), similar to what is seen for
homotypic interactions. Indeed, 82% of interacting poised
enhancers contact at least one promoter marked by H3K27me3 in
ESCs. Loss of PRC1 in ESCs is associated with an enhancer switch
from poised to active and upregulation of interacting genes27.
Notably, we found that a subset of ESC poised enhancers (82 out
of 490; 17%) are found in the active state in TSCs (Supplementary
Fig. 7a, b). These enhancers are associated with higher expression
of interacting genes in TSCs (Supplementary Fig. 7c), which
include Cdx2, Eomes and Dlx3, suggesting that a number of key
TSC enhancers may be kept repressed by Polycomb-driven
interactions in ESCs.

To investigate in more detail interactions with active TSC
enhancers, we first defined a more stringent set of active
enhancers by incorporating chromatin accessibility data (see
Methods). As expected, genes interacting with at least one active
TSC enhancer displayed higher expression than those with no
active enhancer interactions (Supplementary Fig. 8a). These genes
also had higher relative expression in TSCs when compared to
ESCs, in particular if at least one of those gene–enhancer
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interactions was TSC-specific (Fig. 4b). These results suggest that
enhancer-driven gene activation in TSCs involves the action of
both newly wired interactions and the emergence of enhancer
activity at established interactions.

We next sought to link enhancer–gene interactions with
binding of key TSC transcription factors and epigenetic modifiers.
We therefore processed TSC ChIP-seq data for CDX2, ELF5,
EOMES, ESRRB, LSD1, NR0B1, SOX2, TET1 and
TFAP2C13,14,34–36. Out of these, ELF5, ESRRB, LSD1, SOX2,
TET1 and TFAP2C had a large proportion (25–36%) of peaks

overlapping our stringent list of active enhancers (Supplementary
Fig. 8b). We therefore focused on these transcription factors and
epigenetic modifiers to evaluate their putative gene regulatory
effect via enhancers. Interestingly, compared to LSD1-bound
enhancers (which represent 54% of all active enhancers), TET1-
bound enhancers were strongly associated with a higher TSC/ESC
expression ratio, with ELF5 and ESRRB also displaying a
significant but milder effect (Fig. 4c). To further dissect the
association between TSC gene expression and transcription factor
or epigenetic modifier action at enhancers, we analysed
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transcriptomic data from differentiating TSCs35 together with
ESC and TSC data. We grouped genes into seven clusters based
on their expression profile (Fig. 4d) and then asked which
proteins are bound to enhancers interacting with these genes.
Interestingly, genes in clusters 2 and 5, which display high
expression in undifferentiated TSCs, were enriched for enhancers
bound by multiple proteins (Fig. 4e). Particularly prominent was
the enrichment of TET1-bound enhancers interacting with
cluster 2 genes. As expected, TET1-bound enhancers were
associated with DNA hypomethylation in TSCs (Supplementary
Fig. 9). To test for a functional relationship between enhancer
binding and gene regulation, we analysed transcriptomic data
from Esrrb or Elf5 knockdowns14 and from Tet1 knockout
TSCs36. We restricted our analysis to genes interacting with
enhancers bound by the respective transcription factor. In ELF5-
and ESRRB-depleted cells, expression changes were not limited to
genes in clusters 2 and 5, and generally followed a similar pattern
to that seen in differentiated TSCs (Supplementary Fig. 8c),
suggesting that gene de-regulation in these cells is directly and
indirectly affected by transcription factor depletion. However, in
Tet1 KO cells there was a clear preference for downregulation of
genes associated with cluster 2 (Fig. 4f), in line with the enriched
binding of TET1 to enhancers controlling these genes.

Notable examples of TSC-relevant genes that were affected by
Tet1 KO and that interact with TET1-bound enhancers include
Eomes, Satb1 (Fig. 4g), Itga7, Elf5, Fgfr2 and Itgav. Of particular
note, Eomes establishes a TSC-specific interaction with a TET1-
bound enhancer located 85 kb upstream of its promoter (Fig. 4g).
These results suggest that TET1 modulates TSC-specific gene
expression through regulation of enhancer activity, which partly
requires stem cell type-specific chromatin folding.

Discussion
Differentiation between the embryonic and extraembryonic
lineages involves the concerted effort of signalling cues, cell-
specific activation of transcription factors, and remodelling of the
epigenetic landscape. Here we have shown that the first cell
lineage decision is also accompanied by pronounced reshaping of
the 3D chromatin conformation, which reflects and possibly
reinforces the reprogramming barrier imposed by other layers of
gene regulation. While our study was limited to stem cell line
models, ESC Hi-C data strongly resemble that from ICM cells
and post-implantation epiblast19,37, and the TSC gene regulatory
landscape has been extensively validated in vivo (see e.g.
refs. 1,23,38).

The chromatin folding features that differentiate ESCs and
TSCs are: (1) an enrichment for repressive interactions in
ESCs, mainly between gene promoters, but also involving
H3K27me3-marked enhancers and (2) an enrichment for active
enhancer–gene interactions in TSCs. Similar observations have
recently been made during neuronal differentiation of ESCs,
wherein PRC1-associated interactions are disrupted and
enhancer–gene contacts become progressively more abundant31.
Increased enhancer connectivity is also seen in foetal liver cells
when compared with ESCs24. These different 3D chromatin
arrangements probably reflect a switch from a transcriptionally
poised state of developmental genes in pluripotent ESCs to the
activation of specific subsets of these genes in more devel-
opmentally restricted lineages. However, unlike the neuronal
lineage, the trophoblast lineage is not derived from the plur-
ipotent state represented by ESCs, which does not have the
potential to form extraembryonic tissues. An obvious question is
therefore how the genome is spatially arranged in the lead up to
the separation of these two lineages in the blastocyst. Recent work
in preimplantation embryos has suggested that the 3D chromatin

architecture undergoes a progressive maturation during early
development, starting out with weak topologically associating
domains and a global depletion of long-range interactions after
fertilisation that become progressively stronger or more promi-
nent as development progresses37. However, it remains unclear
how finer scale gene–gene and gene–enhancer contacts develop
during this period and into the separation of the embryonic and
extraembryonic lineages. Future work on this question could
explore the use of single-cell Hi-C technology39 to profile indi-
vidual blastomeres as they acquire expression of key TSC markers
such as CDX2.

We have found that homotypic interactions between
H3K27me3-marked loci in ESCs are associated with the repres-
sion of TSC-expressed genes. Interestingly, although virtually all
of the genes involved in these interactions are devoid of
H3K27me3 in TSCs (Fig. 2b), only differentially interacting genes
display higher expression in TSCs (Fig. 2d). The same holds true
when analysing PRC1-deficient ESCs, suggesting that expression
of TSC-specific genes is particularly affected by the loss of PRC1-
associated interactions. Repressive chromatin conformations may
therefore represent a critical layer in silencing trophoblast genes
in the embryonic lineage. Accordingly, TSCs are globally depleted
for H3K27me3 (ref. 20) and extraembryonic tissues are far less
affected than embryonic tissues in mutants of the PRC2 catalytic
subunit Ezh2 (ref. 40). H3K27me3 deposition increases through-
out preimplantation development, with the majority of bivalent
domains being established during the morula-to-blastocyst tran-
sition38, but it remains to be seen how this is integrated by the 3D
arrangement of the genome to enable control of trophoblast-
specific genes throughout this period. Notably, long-range inter-
actions between PcG-bound regions similar to the ones we
detected here in primed (serum-grown) ESCs are not present in
ground-state (2i-grown) pluripotent ESCs41. Thus, PcG-
dependent chromosomal interactions appear to be established
in post-implantation pluripotent stem cells, and are then dis-
rupted during cell fate specification during development31, most
likely facilitating the activation of key germ layer genes.

We also found that TSCs bear a higher proportion of cell-
specific interactions between genes and active enhancers when
compared to ESCs. Our data suggest that the key TSC tran-
scription factors ELF5 and ESRRB may play particularly impor-
tant roles in the enhancer-driven regulation of TSC gene
expression. Additionally, the DNA methylation oxidising enzyme
TET1 also seems to play a key role, similar to what has been
observed at other tissue-specific enhancers42. Therefore, similar
to ESRRB14, TET1 is a factor shared by both ESCs and TSCs that
gains context-specific functions, and our data suggest that the
tissue-specific 3D conformation of the genome helps to enact
such functions. Alternatively, it is the action of TET1 that mod-
ulates gene–enhancer contacts in TSCs. Interestingly, in gliomas
with gain of function IDH mutations, interfering with TET
function leads to aberrant gene expression, at least in part due to
an increase in DNA methylation that impairs the binding of the
methylation-sensitive chromosomal insulator protein CTCF43.
DNA methylation of CTCF binding sites has also been shown to
control enhancer–promoter interactions at the imprinted H19
locus44,45. Furthermore, in concert with other epigenetic
mechanisms, DNA methylation has been shown to facilitate46 or
weaken47 enhancer–promoter contacts at specific loci. It is
therefore likely that proteins involved in DNA (de)methylation
direct enhancer–promoter communication not only by altering
the methylation status at enhancers and promoters themselves,
but also through the establishment or disruption of spatial
chromosomal domains that dictate the access of regulatory
sequences to target genes. The precise role of DNA methylation in
shaping ESC genome topology and promoter–enhancer
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interactions to maintain stem cell identity and to protect against
trans-differentiation into TSCs1 remains a subject for future
studies.

Taken together, we describe here the distinctly different 3D
chromatin organisation in TSCs compared to ESCs and identify a
highly TSC-specific set of TET1-bound enhancers that drive
expression of key TSC genes.

Methods
Cell culture. Chimera-competent TS-EGFP cells (mixed ICR×129 background;
kind gift from Dr. Janet Rossant)6 were cultured under routine conditions (20%
foetal bovine serum, 1 mM Na-pyruvate, Pen/Strep, 50 μM 2-mercaptoethanol, 25
ng/ml bFGF and 1 μg/ml heparin in RPMI1640, with 70% of the medium
pre-conditioned on embryonic feeder cells). J1 ESCs (129S4/SvJae; ATCC SCRC-
1010)48 were expanded on irradiated primary embryonic fibroblasts under stan-
dard pluripotent conditions (15% foetal bovine serum) on tissue culture plates
coated with 0.1% gelatin. To harvest the cells and remove contaminating feeder
cells, ESCs were trypsinized and feeders allowed to re-attach for 30 min before
collecting non-attached ESCs—this procedure was performed twice.

Promoter capture Hi-C. PCHi-C experiments were performed in duplicate for
each cell line. Thirty to 40 million ESCs or TSCs were fixed in 2% formaldehyde
(Agar Scientific) for 10 min at room temperature, and Hi-C libraries were prepared
as described49, with minor modifications. Briefly, crosslinked chromatin was
digested with HindIII (NEB), and restriction fragment ends were labelled using
biotin-14-dATP (Life Technologies) and DNA Polymerase I (Large Klenow
Fragment; NEB). After ligation in nuclei50 (5 h at 16 °C with T4 DNA ligase; Life
Technologies), the crosslinks were reversed by Proteinase K digest (65 °C over-
night), and the DNA was purified using phenol/chloroform (Sigma-Aldrich)
extraction. After removal of biotin from unligated DNA ends, the DNA was
sonicated (Covaris E220) to an average size of around 400 base pairs, and end-
repaired using DNA Polymerase I (Large Klenow Fragment), T4 DNA
polymerase, and T4 DNA polynucleotide kinase (all NEB). dATP was added to the
3′ ends of the DNA (using Klenow Fragment (3′ → 5′ exo−); NEB), and the DNA
was subjected to double-sided SPRI bead size selection (AMPure XP beads;
Beckman Coulter). Biotin-marked ligation products were isolated using MyOne
Streptavidin C1 Dynabeads (Life Technologies), and after adapter ligation (Illu-
mina PE adapter with T4 DNA ligase; NEB) the bead-bound Hi-C DNA was
amplified with seven PCR amplification cycles using PE PCR 1.0 and PE PCR 2.0
primers (Illumina).

Promoter Capture Hi-C was performed as described24, using a custom-made
RNA capture bait system (Agilent Technologies) consisting of 39,021 individual
biotinylated RNAs targeting the ends of 22,225 promoter-containing mouse
HindIII restriction fragments. The Hi-C library DNA (500–750 ng) was mixed with
hybridisation blockers (Agilent Technologies) and denatured for 5 min at 95 °C,
then incubated with hybridisation buffer and the RNA capture bait system at 65 °C
for 24 h (in a MJ Research PTC-200 PCR machine). After the hybridisation
incubation, DNA/biotin-RNA was isolated using MyOne Streptavidin T1
Dynabeads (Life Technologies), following the manufacturer’s instructions
(SureSelect Target Enrichment; Agilent Technologies). After the final wash in
wash buffer 2 (Agilent Technologies), the beads were resuspended in 300 µl
NEBuffer 2 (NEB), isolated on a DynaMag-2 magnet (Life Technologies), and
resuspended in a final volume of 30 µl NEBuffer 2. After a post-capture PCR (four
amplification cycles using Illumina PE PCR 1.0 and PE PCR 2.0 primers), the
Promoter CHi-C libraries were purified with AMPure XP beads (Beckman Coulter)
and paired-end sequenced (HiSeq 1000, Illumina) at the Babraham Institute
Sequencing Facility.

PCHi-C data processing. Raw sequencing reads were processed using the HiCUP
pipeline (v0.5.8), which maps the ditags against the mouse genome (mm10), filters
experimental artefacts, such as circularised reads and religations, and removes
duplicate reads51. For read yields and quality control metrics see Supplementary
Fig. 1. To maintain the statistical power even between the two cell types, reads from
the TSC dataset were randomly subset to match the number of reads in the ESC
dataset.

Significant promoter–genome interactions were called using the GOTHiC
BioConductor package (v1.14.0). To exclude low frequency contacts, which are
likely to be non-functional or have a role only in a very small proportion of cells,
we established stringent q-value thresholds that ensured only visibly strong
contacts with a given promoter were kept—based on empirical assessment of
4C-like tracks. To formally define this threshold, for each promoter we first plotted
the cumulative distribution of the significance levels (−log10 q-value) of its
interactions. We then used the inflection point of the first derivative of this
cumulative significance curve to define a promoter-specific significance threshold.
To take into account differences in biases affecting promoter–promoter
interactions, these were called with GOTHiC using a modified logit background
distribution as described in ref. 24.

Significant differential interactions were identified by a modified version of the
GOTHiC pipeline, where two conditions are directly compared and the expected
values are the number of reads observed in the reference condition. For scaling, the
number of total captured reads per condition is used. To enable logarithmic
transformation of data, for those interactions where no reads were detected for one
of the cell types, we added 1 in the cell type with the missing value. For multiple
testing correction we use Independent Hypothesis Weighting (IHW v.1.6.0) and a
false discovery rate of 5%.

For the sole purpose of comparing our interactions with CHiCAGO-processed
PCHi-C data from human blood cell types30 (Supplementary Data 1) we also
identified ESC and TSC interactions using the CHiCAGO Bioconductor package
(v1.6.0)52. Interactions were merged from biological replicates using CHiCAGO
and those with score >5 were considered in our analysis.

For Ring1A KO and Ring1A/B DKO PCHi-C data27 (Supplementary Data 1),
processed GOTHiC calls were downloaded and lifted over from mm9 to mm10.
For genome-wide ESC Hi-C data31 (Supplementary Data 1), Knight-Ruiz
normalised matrices for regions of interest were extracted using Juicer53.

ChIP-seq and DNase-seq data processing. Fastq files from publicly available
datasets (Supplementary Data 1) were downloaded via the EMBL-EBI European
Nucleotide Archive. Reads were trimmed using Trim_galore! and aligned to the
mm10 genome assembly using Bowtie2 v2.1.0 (ref. 54), followed by filtering of
uniquely mapped reads. ChIP-seq peak detection was performed using MACS2
v2.1.1 (ref. 55) with −q 0.05; for histone marks the option --broad was used.
DNase-seq peak detection was performed using F-seq v1.84 (ref. 56) with options
−f 0 −t 6.

ChIP-seq signal densities were calculated by normalising read counts at each
peak by the total read counts and peak length. The MatchIt R library was used to
identify matched peaks (in length and ChIP-seq signal density) between ESC-
specific interactions and shared interactions.

Enhancers were first defined based on the H3K4me1 peaks in each cell type: (1)
H3K4me1 peaks overlapping H3K27ac but not H3K27me3 were classified as active
enhancers, (2) those overlapping H3K27me3 as poised and (3) those overlapping
neither mark as intermediate. Peaks within 1 kb of RefSeq transcriptional start sites
were excluded. A second list of active enhancers in TSCs was defined by finding the
intersection between DNase I, H3K4me1 and H3K27ac peaks, merging enhancers
within 300 bp of each other, and filtering out particularly small (<100 bp) or large
(>3 kb) enhancers.

RNA-seq data processing. Fastq files from publicly available datasets (Supple-
mentary Data 1) were downloaded via the EMBL-EBI European Nucleotide
Archive. Reads were trimmed using Trim_galore! and aligned the mm10 genome
assembly with Tophat v2.0.9 (ref. 57) using a transcriptome index from Illumina’s
iGenomes. For Ring1A KO and Ring1A/B DKO RNA-seq, mapped bam files
were directly downloaded from the respective data repository. Transcript FPKM
(fragments per kilobase of transcript per million mapped reads) values were
extracted using Seqmonk.

To exclude low-expressing, high-variance transcripts when evaluating
differences in expression, a minimum expression threshold was employed based on
the distribution of log2 FPKM values (−3 for Ring1 KO data, −1 for the
remaining). K-means clustering of expression data was performed using this
minimum expression threshold, with the number of clusters (n= 7) decided
empirically.

Code availability. Custom scripts used to analyse the data in this study are
available from the authors upon request. The differential interaction calling algo-
rithm will be included in the next release of GOTHiC, available from Bioconductor
(http://bioconductor.org).

Data availability
The PCHi-C data that support the findings of this study have been deposited in
ArrayExpress with the accession code E-MTAB-6585.
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