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SUMMARY

Pluripotency is accompanied by the erasure of
parental epigenetic memory, with naı̈ve pluripotent
cells exhibiting global DNA hypomethylation both
in vitro and in vivo. Exit from pluripotency and prim-
ing for differentiation into somatic lineages is associ-
ated with genome-wide de novo DNA methylation.
We show that during this phase, co-expression of
enzymes required for DNA methylation turnover,
DNMT3s and TETs, promotes cell-to-cell variability
in this epigenetic mark. Using a combination of sin-
gle-cell sequencing and quantitative biophysical
modeling, we show that this variability is associated
with coherent, genome-scale oscillations in DNA
methylation with an amplitude dependent on CpG
density. Analysis of parallel single-cell transcriptional
and epigenetic profiling provides evidence for oscil-
latory dynamics both in vitro and in vivo. These ob-
servations provide insights into the emergence of
epigenetic heterogeneity during early embryo devel-
opment, indicating that dynamic changes in DNA
methylation might influence early cell fate decisions.

INTRODUCTION

In mammalian embryonic development, the segregation of line-

ages giving rise to different somatic tissues is associated with
Cell Systems 7, 63–76
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large-scale changes in DNA methylation (5-methylcytosine).

Following fertilization, global loss of DNA methylation from

both the maternal and paternal genomes is tightly linked with

the acquisition of naı̈ve pluripotency in the inner cell mass

of the blastocyst (Lee et al., 2014). During the transition toward

the primed pluripotent state, de novo methylation results in a

global gain of this epigenetic mark (Auclair et al., 2014; Seisen-

berger et al., 2012; Smith et al., 2012; Wang et al., 2014).

A similar event occurs in vitro when embryonic stem cells

(ESCs) transition from naı̈ve to primed states, before their exit

from pluripotency (Ficz et al., 2013; Habibi et al., 2013; Leitch

et al., 2013; Takashima et al., 2014; von Meyenn et al., 2016).

During this transition, not only are the de novo methyltrans-

ferases (DNMT3A/B) dramatically upregulated but the hydroxy-

lases that initiate removal of DNA methylation (ten-eleven trans-

locase [TET1/2]) also remain highly expressed. This paradoxical

observation suggests a dynamic system, with a constant

turnover of cytosine modifications (Lee et al., 2014). This

could lead to the development of heterogeneous epigenetic

states, with potential consequences for gene expression and

cell phenotype.

DNA methylation and chromatin dynamics have been

modeled quantitatively in various genomic contexts in bulk

data and in exquisite detail at single loci of biological significance

(Atlasi and Stunnenberg, 2017; Berry et al., 2017; Bintu et al.,

2016; Haerter et al., 2014). However, the recent availability of

methylome information from single-cell whole genome bisulfite

sequencing (scBS-seq, Farlik et al., 2015; Smallwood et al.,

2014) provides an unprecedented opportunity to study DNA

methylation dynamics in the whole genome in cells undergoing

a biological transition. Indeed, scBS-seq studies have already
, July 25, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 63
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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revealed profound methylation heterogeneity in ESCs, particu-

larly in enhancers (Farlik et al., 2015; Smallwood et al., 2014).

Here, we combine single-cell sequencing with biophysical

modeling to study how DNA methylation heterogeneity arises

during the transition from naı̈ve to primed pluripotency, using

both in vitro and in vivo assays. We find evidence for genome-

scale oscillatory dynamics of DNAmethylation during this transi-

tion, with a link to primary transcripts, suggesting that heteroge-

neity can be created bymolecular processes, not only locally but

also on the genome scale.

RESULTS

Heterogeneous Methylation Distributions in
Primed ESCs
To studyDNAmethylationduring thephaseof lineagepriming,we

began by considering ESCs, which serve as a powerful in vitro

model for cells transiting from naı̈ve through primed pluripotency

and into early cell fate decision making (Kalkan et al., 2017). Ex-

tending previous reports (Smallwood et al., 2014), we analyzed

scBS-seq data separately for ESCs cultured under naı̈ve (‘‘2i’’)

and primed (‘‘serum’’) conditions (STAR Methods). We found

that primed ESCs had increased variance at several genomic an-

notations associated with active enhancer elements (Figures 1A

and Figure S1A), including H3K4me1 and H3K27ac sites

(Creyghton et al., 2010) as well as low methylated regions

(LMRs) (Stadler et al., 2011). Taking published H3K4me1 chro-

matin immunoprecipitation sequencing (ChIP-seq) data from

primed ESCs (Creyghton et al., 2010) as a broad definition of

enhancer elements, we found that individual primed ESCs had

average DNA methylation levels varying between 17% and 86%

at enhancers (Figures 1B and 1C). Notably, single ESCswere iso-

lated from the G0/G1 phase (Smallwood et al., 2014), suggesting

that DNA methylation variance is not explained by the cell cycle

stage. Correlating global DNA methylation with replication timing

obtained from previously published repli-seq data (Hiratani et al.,

2010) confirmed that late-replicating regions did not have lower

DNA methylation than early-replicating regions (Figure S1B). In

contrast to primed ESCs, naı̈ve ESCs showed minimal cell-to-

cell variability at enhancers (Figures 1B and 1C, Figures S1C

and S1D), and DNA methylation heterogeneity was resolved

upon differentiation to embryoid bodies (Figures S2A and S2B).
Figure 1. Correlated Heterogeneity in DNA Methylation

(A) DNA methylation variance in naı̈ve and primed ESCs compared for 3 kb tiles

H3K4me1 ChIP-seq data (Creyghton et al., 2010). The difference between serum a

precision).

(B and C) Analysis of DNA methylation at H3K4me1 sites in individual naı̈ve and p

shaded triangles indicate where the same cell is shown in (B) and (C).

(D) Left: Correlation heatmap for DNA methylation in different genomic features (T

for each genomic feature. Correlations between genomic features were then calcu

correlation coefficient betweenmethylation levels at specific regions and global av

features, as defined by the number of CpGs divided by the number of base pairs

(E) Box plots showing the distribution of mean methylation rates for Dnmt3a/b

conditions for 1 kb tiles over the whole genome (All), or for those tiles overlapping

H3K4me1 sites.

(F) Violin plots of DNA methylation at H3K4me1 sites for individual Dnmt3a/b, Te

(G) Scatter plot comparing average DNA methylation at H3K4me1 sites and tra

germueller et al., 2016) from the ‘‘more pluripotent’’ sub-population of primed ES

values of Dnmt3 genes divided by the sum of log expression values of Tet genes
This suggests that DNA methylation variance at enhancers is a

unique feature of primed pluripotency. Although other genomic

contexts showed proportionately less variability, levels of DNA

methylation at these sites were found to be tightly correlated

with those at enhancer regions and highly coherent for CpG-

poor elements (Figure 1D, Figures S1A and S1C, and Table S1).

DNAmethylation heterogeneity in enhancer regions is, therefore,

a reflection of coherent (i.e., synchronized) changes that affect

DNA at the genome scale within individual cells. In the results

described in this article, wewill use global DNAmethylation levels

at enhancers as a representation of global DNA methylation in

CpG-poor regions.

To assessDNAmethylation heterogeneity in different transcrip-

tional states, we used scM&T-seq to profile in parallel themethyl-

ome and transcriptome of individual ESCs (Angermueller et al.,

2016). In analogy to previous work (Chambers et al., 2007; Haya-

shi et al., 2008; Singh et al., 2007; Toyooka et al., 2008), primed

ESCswere classified into 3 subpopulations, basedonhierarchical

clustering of 86 pluripotency and differentiation genes (Table S2),

as previously described (Figure S2C) (Kolodziejczyk et al., 2015).

Rex1-high, ‘‘more pluripotent,’’ ESCs showed a wide range of

averageDNAmethylation levels at enhancers, similar to thebroad

distribution seen in the primed ESC scBS-seq data (Figures 1B

and 1C; Figure S2C). However, ‘‘differentiation primed’’ ESCs

and those ‘‘on thedifferentiation path’’ haduniformly high average

methylation levels at enhancer elements (Figure S2C).

Methylation of cytosine residues is catalyzed by the de novo

DNA methyltransferase (DNMT3A/B) enzymes, while TET1/2/3

enzymes act in a multi-step process that can remove DNA

methylation (Wu and Zhang, 2014). Primed ESCs express both

Dnmt3a/b and Tet1/2, while naı̈ve ESCs express Dnmt3a/b at

much reduced levels (Figure S2B), raising the possibility that

DNAmethylation heterogeneity is dependent on this paradoxical

co-expression (Lee et al., 2014). Consistently, we observed a

loss of heterogeneity at enhancers during differentiation to

embryoid bodies, where Tet and Dnmt3 are downregulated (Fig-

ures S2A and S2B). Furthermore, in primed ESCs, deletion of

Dnmt3a/b resulted in homogeneously low DNA methylation

levels, while loss of Tet1-3 led to uniformly high DNAmethylation

at enhancers (Figures 1E and 1F).

How does strongly correlated DNA methylation heterogeneity

arise during the transition from naı̈ve to primed pluripotency?
over the whole genome (All) or for enhancer elements defined using published

nd primed conditions was statistically significant (t test, p smaller thanmachine

rimed ESCs. Each histogram (B) and violin (C) represents an individual cell, and

able S1). For every single cell, average DNAmethylation levels were calculated

lated using all single cell averages. (Table S1). Middle: Distribution of Pearson’s

erage H3K4me1methylation. Right: Distributions of CpG densities in the same

.

, Tet1-3, or Tdg knockout (KO) and for wild-type ESCs in naı̈ve and primed

H3K4me1 sites. Note that the effect ofDnmt3 KO is specific to tiles overlapping

t1-3, or Tdg KO ESCs cultured in primed conditions.

nscription of DNA methylation modification enzymes in scM&T-seq data (An-

Cs (see Figure S2C). Specifically, the y axis shows the sum of log-expression

. The size of the dots is proportional to the global methylation coverage.
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One possibility is that methylation differences between primed

ESCs reflect slow dynamic changes in the expression of

DNMT3A/B and TET1/2 arising, for example, through transcrip-

tional state switching (Singer et al., 2014). However, although

DNA methylation heterogeneity is dependent on the co-expres-

sion of genes that drive methylation and demethylation (Figures

1E and 1F), analysis of scM&T-seq data (Angermueller et al.,

2016) shows that global methylation levels (i.e., genome-wide

mean methylation rates) are largely independent of expression

(Figures 1G and S2D, R2 = 0.06). Moreover, DNA methylation

is dynamic in primed conditions (Singer et al., 2014) and, as a

system in steady-state, it follows that such dynamics must be

recurrent. Such behavior could be achieved by DNAmethylation

switching stochastically and reversibly between distinct average

levels or, alternatively, by continuously oscillating. Crucially,

since we observe strong genome-wide coherence in DNA

methylation levels (Figure 1D), such recurrent changes must be

correlated across the genome, i.e., the methylation state of

many loci must be synchronized within individual ESCs.

Modeling Dynamics of DNA Methylation
To assess whether DNA methylation turnover could give rise to

oscillatory dynamics, we turned to modeling. Notably, our

approach was constrained by the genome-wide coherence of

DNA methylation, which placed emphasis on us finding a

description based on collective degrees of freedom. We there-

fore questioned how collective dynamics in DNA methylation

could emerge despite the plethora of complexities that can influ-

ence methylation locally across the genome.

We began by considering the dynamics of a single CpG site,

which can assume different states, including an unmodified

cytosine (C), a methylated cytosine (5mC), a hydroxymethylated

cytosine (5hmC), and other states. Notably, the biochemistry of

DNA methylation turnover involves a cyclical process: the bind-

ing and action of DNMT3A/B drives conversion of C to 5mC

(Baubec et al., 2015; Jia et al., 2007), while demethylation occurs

through a sequence of intermediary steps, each requiring the

binding and release of enzymes, and ultimately the excision of in-

termediates and DNA repair or DNA replication (Figure 2A).

DNMT3A/B has been shown to bind cooperatively to DNA

(Emperle et al., 2014), implying that de novo methylation is

autocatalytic. Meanwhile, the removal of DNA methylation

leads effectively to a time delay, Dt, between the removal of

the 5mC mark and the re-establishment of the unmodified

cytosine. Given the known coupling between histone modifica-

tions, chromatin remodeling, and DNA methylation (Du et al.,

2015; Iurlaro et al., 2017), it is likely that these different levels

of regulation contribute to the non-linear feedback of DNA

methylation on itself. Mathematically, we reasoned that the

time evolution of C and 5mC concentrations, cðtÞ and mðtÞ,
averaged across the genome of individual ESCs, can therefore

be captured by the minimal set of coupled rate equations

(STAR Methods),

_cðtÞ= k mðt � DtÞ � r cðtÞmðtÞ; _mðtÞ= r cðtÞmðtÞ � k mðtÞ;
(Equation 1)

with k and r defining effective chemical conversion rates from C

to 5mC and 5mC to C, respectively. If the time delay Dt is suffi-
66 Cell Systems 7, 63–76, July 25, 2018
ciently long, de novo methylation of initially hypomethylated

genomic regions will result in a rapid depletion of the pool of un-

modified cytosines, which is then filled again due to the delayed

conversion of 5mC to C. This can then lead to sustained oscilla-

tions in the levels of C and 5mC through a Hopf bifurcation (Fig-

ures 2B and 2C). Although the effective conversion rates k and r

are unknown, the fact that the model predicts coherent oscilla-

tions for low values of kDt suggests that coherent oscillations

can occur under biologically relevant conditions. Indeed, distri-

butions ofmethylation rates obtained from numerical simulations

of the full stochastic dynamics (STARMethods) resemble closely

the experimental distributions (Figure 2D and Video S1). This

suggests that DNA methylation oscillations can emerge due to

the non-linearity of DNMT3 binding, even if the expression of

DNMT3s and TETs remains constant over time.

Although thisminimalmodel captures theessenceofhowglobal

oscillations may emerge from the biochemistry of methylation

turnover, its validity relies implicitly on a mechanism by which in-

formation onmethylation levels is transported across the genome.

How can such collective behavior arise, given the known hetero-

geneity of local factors influencing DNA methylation? To answer

this question, we developed a more ab initio model, considering

the stochastic dynamics of individual CpG sites,which, according

to the biochemistry, cycle through multiple chemical states sto-

chastically with a locus-specific rate. We hypothesized that

coherent collective dynamics can emerge through the autocata-

lytic binding of DNMT3A/B. These enzymes can methylate multi-

ple neighboring CpGs at the same time, leading to their effective

short-range coupling (Haerter et al., 2014). At the same time,

DNMT3A/B preferentially bind to 5mC, which represses active

degradation of these enzymes (Sharma et al., 2011) and thereby

leads to global positive feedback on DNAmethylation (Figure 2E).

We took both local and global feedback to be locally heteroge-

neous, mirroring local variations in enzyme binding affinity

(conferred, for example, by different chromatin contexts).

To investigate whether locally heterogeneous interactions

can, in theory, give rise to global oscillations in DNAmethylation,

we successively combined neighboring CpGs into larger and

larger blocks characterized by an average methylation level,

starting from CpG-dense regions and progressing to CpG-poor

regions (Figure S3G). Repeating this coarse-graining procedure,

we defined the effective DNA methylation dynamics at the

genome scale (STARMethods). Specifically, during this process,

neighboring blocks of CpGs become increasingly uncoupled,

such that the coarse-grained local oscillatory phase dynamics

is described by a model involving the global heterogeneous

coupling of oscillators (a Kuramoto model),

_Qi = ~ui + ~ki
X
j

~kj sinðQj �QiÞ; (Equation 2)

with continuously varying phase coordinates, Qi, indexed by

position along the genome, effective intrinsic frequencies

~ui, and couplings ~ki. In common with the original minimal

model, the heterogeneous Kuramoto model exhibits a transition

(through Hopf bifurcation) to a state involving coherent collective

oscillations when the average coupling through DNMT3A/B

binding, or the local heterogeneities of binding affinities, are

sufficiently strong, viz.
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(A) Schematic summarizing the biochemical processes involved in the turnover of cytosine modifications and a biophysical model comprising autocatalytic

de novo methylation and time-delayed demethylation.

(B) Numerical solution of Equation 1 for dimensionless concentrations of (un-)methylated CpGs for various values of the dimensionless delay time kDt (see main

text and STAR Methods). Color denotes time, such that early times are blue, intermediary times are yellow, and late times are red.

(C) Amplitude of oscillations (arbitrary units) as a function of the dimensionless time delay.

(D) Top: Distributions of methylation rates at H3K4me1 sites as obtained from stochastic simulations. Panels show different time points. Bottom: Exemplary

distributions of DNA methylation rates at H3K4me1 sites in different cells obtained from scBS-seq (Smallwood et al., 2014).

(E) Schematic summarizing global and local modes of coupling of CpGs via DNMT3a/b binding.
h~ki2 +
D
ð~k� h~kiÞ2

E
R

2

pGð~u0Þ: (Equation 3)

Here, Gð~u0Þ denotes the value of the probability distribution

of coarse-grained oscillator frequencies taken at its maximum

(see STAR Methods).

This result suggests that coherent oscillations can occur due

to local and global feedback by DNMT3A/B and that this effect

is enhanced by heterogeneity in DNMT3A/B binding affinities.

To challenge the viability of such a mechanism, it is key to test

model predictions under different perturbations of DNA methyl-

ation turnover. Fortunately, the local heterogeneity of DNMT3

binding affinities provides such perturbations throughout the

genome. From the model, there emerge two key predictions

of how the amplitude and frequency of oscillations changes
throughout the genome. First, if oscillations are intrinsic to the

DNAmethylation machinery (rather than imposed by an extrinsic

driving oscillator), the local frequency of oscillation should, at

least transiently, be proportional to the local DNMT3A/B binding

affinity. Second, if DNMT3A/B mediates global coherence in the

phase of DNA methylation oscillations across the genome,

the amplitude in a given genomic region will be proportional to

the local rate of DNMT3A/B binding.

Evidence for Rapid DNA Methylation Oscillations upon
Serum Priming
To test the model predictions and obtain more direct evidence

for genome-scale DNAmethylation oscillations, we next consid-

ered an in vitro ‘‘2i release’’ model in which cells were transferred

from naı̈ve 2i to primed serum culture conditions and bulk cell
Cell Systems 7, 63–76, July 25, 2018 67
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samples were collected for BS-seq over a subsequent time

course (Figure 3A). As naı̈ve ESCs show homogeneously low

DNA methylation levels (Figure 1C), we reasoned that the trans-

fer from naı̈ve to primed conditions might synchronize their entry

into an oscillatory phase, allowing direct evidence for oscillations

to be acquired from population-based measurements. Notably,

we detected evidence for rapid oscillations in the mean methyl-

ation rate over H3K4me1 enhancer domains, with a period of

approximately 2–3 hr (Figure 3A and Figure S4A). Oscillations

in global methylation were also observed in other genomic con-

texts, such as CpG-poor promoters and exons (Figures 3B, and

3C and Figures S4B and S4C). Spectral analysis confirmed en-

riched oscillations in H3K4me1 (p = 0.05) and H3K27ac elements

(p = 0.007), as well as exons (p = 2e�4), introns (p = 8e�7), pro-

moters (p = 0.01), and the whole genome (p = 1e�51) (Figure 3D

and Figure S4C). In agreement with the model, the period of os-

cillations during the release differed between genomic elements

(Figure 3D and Figure S4C), being longer at specific enhancer

regions known to repel DNMT3 binding (Ooi et al., 2007)

than at other genomic regions, such as promoters or exons.

Indeed, this initial heterogeneity suggests that oscillations in

DNA methylation are not driven extrinsically by a single global

(genetic) oscillator, such as Hes1 (Kobayashi and Kageyama,

2011), which would lead to the same single harmonic across

the genome.

At first sight, themodest amplitude of oscillationsmay seem to

indicate that the scale of oscillatory dynamics is limited; however,

global averages in bulk measurements represent only the

residual signal after averaging over many noisy elements and

may be confounded by cell-to-cell variability in the timing of

DNMT3A/Bupregulation uponpriming, such that thesemeasure-

ments provide only a lower bound for the true local amplitude of

DNA methylation oscillations. Indeed, oscillations with substan-

tially greater amplitude were found upon inspection of specific

H3K4me1 sites (Figure 3E and Figure S4D). Oscillations were

yet more subtle in a repeat experiment and could not be

rigorously resolved with the coverage depth available in

whole-genome BS-seq. To improve our ability to detect oscilla-

tions with lower amplitudes, we designed amplicon bisulfite

sequencing assays (AmpBS-seq) to target 14 loci at H3K4me1

sites that showed evidence of oscillatory dynamics in the initial

2i release experiment (Table S3). We confirmed oscillations at 4

of these 14 loci in the second experiment using spectral analysis

(Figure 3DandFigureS5A),while nooscillationswereobserved in
Figure 3. Oscillatory Dynamics of DNA Methylation during Transition f

Naı̈ve ESCswere transferred to primed conditions in two independent ‘‘2i release’’

time point, and BS-seq and RNA-seq libraries were prepared (A–F). In the secon

presented in (D).

(A) Average DNA methylation at H3K4me1 sites over the time course. For the ave

over the time course (n = 10,324).

(B) Average methylation at promoter regions (n = 637) and (C) exons (n = 4,990).

(D) Average spectral densities for different genomic features calculated from who

denote significant enrichment of a given period (p < 0.05). Thin lines denote stan

(E) Methylation levels at exemplary enhancer elements as measured by BS-se

methylation calls, and shaded regions signify standard errors. For the AmpBS-seq

intervals, lines represent Loess interpolations, and shaded regions represent sta

performed on the AmpBS-seq time course (STAR Methods).

(F) Comparison between the DNA methylation time course in H3K4me1 regions

after the removal of slow trends (STAR Methods). Shaded regions and error bars
cells that remained in 2i (Figure S5B). Furthermore, when consid-

ering a larger set of 35 loci by AmpBS-seq (Table S1 and Figures

S5A and S5B), spectral analysis revealed significantly enriched

oscillations compared to control (p = 0.05, Fisher’s test).

To explore the potential impact of methylation oscillations

on transcription, we performed RNA sequencing after release

from 2i conditions. To resolve rapid oscillatory dynamics, we

normalized reads by long-lived transcripts (Sharova et al., 2009a),

which are not expected to fluctuate on short timescales. With this

approach, we found significant correlations between the expres-

sion of short-lived transcripts aligned to exons, enhancer regions,

and introns with global DNA methylation levels (Figure 3F).

Oscillations Are CpG Density Dependent
To further probe themechanistic basis of methylation oscillations

andchallenge themodel,we returned to the2i releaseexperiment

to investigate whether oscillations were equally prevalent across

the genome or preferentially enhanced in specific elements. The

locally averaged distance between neighboring CpGs, or its in-

verse, the CpG density, defines a natural scale in the context of

DNA methylation (Lövkvist et al., 2016). We therefore tiled the

genome into windows of variable length but constant local

sequencing coverage (50 informative CpGs) to account for vary-

ing CpG coverage (see Figure 4A). For each window, we then

determined the CpG density and amplitude of oscillation upon

2i release, asdefinedby theexcessvarianceover technical uncer-

tainty. We found that the amplitude diverged at a characteristic

value of the CpG density of around 2.5%, while oscillations

were largely suppressed at CpG-rich regions (Figure 4B).

Based on this observation, we returned to the scBS-seq data

for primed ESCs in steady state and calculated how much cell-

to-cell variability in DNA methylation at a given region exceeds

that expected from technical noise. To estimate biological vari-

ability for a given locus, and to account for confounding factors

due to methylation variance, we followed previous work and

considered the ratio of methylation variance across cells and

the technical variance expected for a given combination of

mean methylation and coverage (STAR Methods). Notably, we

found the same CpG density-dependent divergence as for the

amplitude of oscillations after 2i release (Figure 4C), consistent

with our hypothesis that methylation heterogeneity in primed

ESCs derives from oscillatory dynamics. Moreover, the diver-

gence in the strength of oscillations coincides with the measured

CpG density-dependence of DNMT3A/B binding (Figure 4D), as
rom Naı̈ve to Primed Pluripotency In Vitro

experiments. In the initial experiment, triplicate sampleswere collected at each

d, single samples were collected at each time point and AmpBS-seq data are

rage, we took into account 50% of enhancers with the highest coverage depth

le genome BS-seq data (see also Figure S4C and STAR Methods). Green dots

dard errors.

q (top) and AmpBS-seq (bottom). For the BS-seq experiment, dots denote

experiment, dots aremethylation calls, error bars are 68%binomial confidence

ndard errors of the Loess interpolations. Lomb-Scargle spectral analysis was

(see also Figure 3A) and average log-expression in different genomic contexts

in (A)–(D) and (F) represent standard errors.
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Figure 4. CpG Density Is a Key Parameter Defining Oscillatory Dynamics

(A) Illustration of the analysis of CpG density-dependent methylation. The genome was segmented into tiles of 50 consecutive informative (i.e., at least one valid

read) CpGs (unbiased probes). Regions with similar CpG densities were then grouped, and the average methylation level for a given CpG density, the variance

between cells, and the average coverage in a given region were calculated. Biological variability was then determined as measured variance divided by technical

variance, as an indicator of the amplitude of oscillation.

(B) Amplitude of oscillations in DNA methylation following the transfer from naı̈ve (2i) to primed conditions as a function of CpG density. Shaded regions denote

95% confidence intervals obtaind via bootstrapping.

(C) Analogous analysis reveals biological variability as a function of CpG density in a long-term culture of primed ESCs (Smallwood et al., 2014).

(D) Fold enrichment over input of DNMT3A/B binding as a function of CpG density. ChIP-seq data were analyzed similarly to Baubec et al. (2015). We tiled the

genome into 1 kbp tiles with an overlap of 500 bp and added 8 pseudo-counts per element.
obtained from previous studies based on ChIP-seq measure-

ments (Baubec et al., 2015), suggesting that, in agreement

with the model, coherence is mediated through DNMT3A/B

binding.

Evidence for Coherent Oscillations in DNA Methylation
In Vivo

Noting that the transcriptional and epigenetic changes that

occur in ESCs following their transfer from naı̈ve to primed

conditions resemble those seen in vivo during the exit from plu-

ripotency (Kalkan et al., 2017), we then questioned whether

oscillatory DNA methylation dynamics can be observed in the

embryo. Indeed, during this transition (E4.5 to E5.5 epiblast),

there is a substantial increase of Dnmt3a and b transcript levels,

while Tet1 remains highly expressed (Boroviak et al., 2015; Mo-

hammed et al., 2017), suggesting that the co-expression of these

enzymes could drive oscillations. We therefore analyzed parallel

scM&T sequencing of epiblast cells at E4.5, E5.5, and E6.5

(Argelaguet et al., unpublished). Once again, we observed cell-
70 Cell Systems 7, 63–76, July 25, 2018
to-cell variability in the levels of DNA methylation at primed

ESC enhancers (Figure 5A and Figure S6A). At E4.5 and E6.5,

global DNA methylation correlates with transcriptional changes

associated, respectively, with early and late lineage priming

and, in particular, Dnmt3 and Tet expression (Figures S6B

and S6C). However, although DNA methylation variability is

associated with transcriptional states at earlier and later stages

during development (with correlations detectable using

scM&T), at E5.5, as in primed ESCs, global methylation levels

at enhancers were largely independent ofDnmt3 and Tet expres-

sion in the same cell (Figure 5B and Figure S6B, R2 = 0:12), and

the transcriptome did not show any early signs of lineage priming

(Mohammed et al., 2017; Peng et al., 2016). Moreover, at E5.5,

DNA methylation heterogeneity was also independent of any

genes that vary spatially across the embryo at E6.5 (STAR

Methods) (Scialdone et al., 2016).

Based on these observations, we hypothesized that the

heterogeneity of DNA methylation at E5.5 is a consequence

either of stochastic de novo methylation or oscillatory turnover.
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But how can oscillatory dynamics be identified from static

single-cell sequencing measures? To address this question,

we reasoned that static measurements of a population of cells

exhibiting oscillations around the same center point would,

with higher probability, reflect cells at the extremes of the oscil-

lation. Therefore, if the progressive increase in de novo methyl-

ation is superimposed with oscillatory dynamics, the distribution

of average levels of DNA methylation would become bimodal,

both at the onset of this transition and when DNA methylation

has reached saturation (Figures 5C and 5D and STAR Methods).

By contrast, during the transient phase of increasing global DNA

methylation levels, cell-to-cell variability in this process would

overshadow this bimodal signature, resulting in a unimodal dis-

tribution. Alternative hypotheses, such as variability in the timing

of entry into the primed phase, would ultimately lead to unimodal

distributions of global DNA methylation levels during the transi-

tion, with the peak tracking the increase in the average level of

DNA methylation (STAR Methods).

At E5.5, when global DNA methylation levels were near

their maxima, we found that the distribution of global DNA

methylation across cells was indeed bimodal at enhancers

(p < 1e�16) and in thewhole genome (Figures 5E and 5F and Fig-

ure S5C), consistent with oscillatory dynamics. To further chal-

lenge the association of bimodality with oscillatory dynamics,

we tiled the genome into coverage-based windows and used a

statistical (dip) test to assess whether DNAmethylation in a given

window is bimodally distributed between cells. In striking agree-

ment with the divergence of the oscillation amplitude after 2i

release, and in biological cell-to-cell variability in primed condi-

tions, the bimodal signature was strongest for elements with

approximately 2.5% CpG density (Figures 5F and 5G). Further,

independent of CpG density, we compared genomic regions at

different stages of the de novo methylation process. Consistent

with oscillatory dynamics (Figure 5D), and independent of CpG

density, bimodality was pronounced only at hypomethylated or
Figure 5. Scm&T-Seq Reveals Evidence for Oscillatory DNA Methylatio

(A) Average DNA methylation levels at H3K4me1 sites of individual cells at three

represents a cell. Error bars (standard error) are smaller than the size of the dots

(B) Average DNA methylation levels at H3K4me1 sites versus the sum of log exp

Dnmt1) over the sum of log expression levels of genes that drive demethylation (T

coverage; the dashed line indicates a linear fit, with shaded regions representing

(C) Theoretical predictions of the distribution of global DNAmethylation levels acro

time points in different scenarios (STAR Methods). Colors denote time after exit fr

the process ofde novomethylation, averagemethylation levels across cells (left to

is initiated as a unimodal distribution, the distribution of global DNA methylatio

methylation levels). Middle: If de novo methylation is initiated at early time points

global DNA methylation is bimodal only at intermediary times (or average met

oscillatory dynamics, we expect bimodality at early and late times (low and high

average global methylation levels).

(D) Schematic summarizing the specific patterns of the distributions of DNA met

physicalmodeling predicts a bimodal distribution of global methylation levels at ea

oscillatory component (STAR Methods). Each line represents global DNA methyl

(E) Probability density of global DNA methylation levels across cells at H3K4me

bimodality at E5.5 when DNA methylation has already saturated.

(F) Probability distributions (bars: from histograms, shaded areas: density estim

separated by different ranges of CpG densities. For this analysis, the genome was

valid read) CpGs (unbiased probes). Bimodality is most pronounced at CpG den

(G) Fraction of unbiased probes that show statistically significant patterns of bim

(H) Fraction of unbiased probes that show statistically significant bimodality (dip

Shaded regions and error bars in G and H denote 95% confidence intervals obta
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hypermethylated regions but not at regions with intermediary

levels of methylation (Figure 5H). Notably, although our analysis

does not rule out early lineage commitment through DNA

methylation heterogeneity, such a scenario cannot explain the

observed CpG density dependence of bimodality or the deple-

tion of the bimodal pattern at regions with intermediary DNA

methylation levels.

Finally, to obtainmore direct evidence for DNAmethylation os-

cillations in vivo, we sought to resolve oscillations by ordering

cells according to their ‘‘developmental age,’’ i.e., the time since

the initial upregulation of theDnmt3 genes. To this end, we noted

that CpG-rich regions do not show pronounced oscillations

in vitro, and DNA methylation levels in these regions rise mono-

tonically between E4.5 and E6.5 (Figure 6A). We therefore used

global methylation levels in regions with a CpG density between

10% and 15% to define amethylation ‘‘pseudo-time’’ for individ-

ual cells (STAR Methods). Then, charting the average DNA

methylation levels of genomic elements with CpG densities for

which oscillations are expected to be most pronounced (i.e., be-

tween 2% and 3%) against pseudo-time, we found evidence of

coherent oscillatory patterns, which were then confirmed using

spectral analysis (p = 6e�4, Figures 6B and 6C; STARMethods).

In common with the findings of the 2i release experiment, this

oscillatory pattern was strongest at approximately 2.5% CpG

density (Figure S6D).

DISCUSSION

Transcriptional and epigenetic heterogeneity between cells is

thought to be important for cell fate decision making during

development (Torres-Padilla and Chambers, 2014), but the un-

derlying mechanisms are largely unknown. Previous studies

have estimated the degree of DNAmethylation heterogeneity us-

ing single-molecule information gained from bulk BS-seq anal-

ysis (Gaidatzis et al., 2014); however, such studies cannot link
n In Vivo

stages during early mouse embryo development (E, embryonic day). Each dot

.

ression levels of genes that positively influence methylation (Dnmt3a/b/l and

et1/2/3 and Tdg). The size of the dots is proportional to the overall methylation

95% confidence intervals.

ss cells during the stochastic process of global de novomethylation for various

om pluripotency, such that blue represents early times and green, late. During

right) increasewith time. Top: If oscillations are absent and de novomethylation

n levels remains unimodal at all times (or, equivalently, intermediate average

following a bimodal distribution (early lineage segregation), the distribution of

hylation levels). Bottom: If global de novo methylation is superimposed with

average global methylation levels) but not at intermediary times (intermediary

hylation levels across cells in vivo for oscillating global DNA methylation. Bio-

rly and late stages of global de novomethylation if methylation dynamics has an

ation in a single cell.

1 sites (bars: from histograms, line: density estimation) reveals evidence for

ation) of DNA methylation levels, taking into account all genomic regions but

tiled into windows of 100 consecutive informative (i.e., containing at least one

sities that showed the largest amplitude of oscillations in vitro (Figure 4B).

odality (dip-test, p < 0.05) as a function of CpG density.

-test, p < 0.05) as a function of their average methylation level across cells.

ined via bootstrapping.
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Figure 6. Pseudo-time Analysis Provides Independent Evidence for In Vivo Oscillations in DNA Methylation

(A) Box plots of average DNA methylation levels of individual cells at three stages during early mouse development acquired from genomic regions with CpG

densities between 10% and 15%.

(B) Using the average methylation levels from (A) as a measure of the ‘‘developmental time’’ of a given cell, DNA methylation levels in different contexts show

parallel non-monotonic dynamics.

(C) Average spectral densities for the whole genome. Green dots denote significant enrichment of a given period (p < 0.05). Thin lines denote standard error.

(D) Summary schematic depicting the trend for DNA methylation levels at sites of intermediate CpG density during the exit from pluripotency. As levels of DNA

methylation rise during this phase, co-expression of DNMT3s and TET1 promotes intermittent genome-scale oscillations in DNA methylation.
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patterns of heterogeneity at different genomic loci within individ-

ual cells. We have exploited single-cell sequencing to reveal

genome-wide regulation of DNA methylation heterogeneity in

primed pluripotent cells. By combining biophysical modeling

with single-cell sequencing during exit from pluripotency, we

have found evidence for DNA methylation oscillations in vitro

and in vivo (Figure 6D).Mechanistically, these oscillations appear

to be driven by cooperative binding of the DNMT3 enzymes,

which makes low CpG density sequences, including enhancers,

a particular target.

Based on the DNA modification cycle, a modeling approach

predicts the emergence of genome-scale oscillations in DNA

methylation when both DNMT3 and TET enzymes are expressed.

These conditions arise naturally during the priming of ESCs and in

epiblast cells in vivo, when DNMT3A/B levels increase strongly in

cells already expressing TETs. By synchronizing cells in the naı̈ve

state and measuring DNA methylation upon serum priming, we

found direct evidence of DNA methylation oscillations with a

period of around 2–3 hr. Given the multi-step cycle of cytosine

modification turnover, these oscillations are remarkably fast.

However, yet more rapid oscillations in DNA methylation (with a

period of 1.7 hr) were observed in breast cancer cells at the pS2

promoter upon transcriptional activation (Métivier et al., 2008).

DNA methylation oscillations in primed ESCs are more rapid

than, and therefore must be autonomous of, the cell cycle and

the rate of switching between transcriptional states (Singer

et al., 2014). The observation of local heterogeneity in oscillation

frequency following 2i release makes it less likely that a single

(genetic) oscillator, such as Hes1, which oscillates with a similar

frequency, could be the driver of oscillations. However, we

cannot rule out the possibility that a superposition of multiple ge-

netic oscillators together with heterogeneous DNA binding could

yield a similar phenomenology. Similarly, other factors, such as

post-transcriptional changes or local chromatin dynamics, may

be involved in driving oscillations.

Our initial focus was on enhancer methylation, the sites of

greatest heterogeneity in primed ESCs. This is consistent with

LMRs and H3K4me1 sites being targeted by hydroxymethylation

in ESCs and being the most methylation-variable sequences be-

tween tissues upon differentiation in vivo (Booth et al., 2012;

Feldmann et al., 2013; Hon et al., 2013; Hon et al., 2014; Stadler

et al., 2011). At first sight, the amplitude and genome-scale syn-

chronization of oscillations might seem inconsistent with the

limited accessibility of DNA in condensed chromatin. However,

transcription factor binding to enhancers and promoters disrupts

the local nucleosome structure, rendering chromatin more

accessible, as reflected in DNAse hypersensitivity and ATAC-

seq assays (Boyle et al., 2008; Buenrostro et al., 2013). We found

that many regions of the genome participate in oscillatory

methylation in a manner that is dependent on CpG density.

Parallel BS-seq and RNA-seq sequencing during 2i release

suggests that oscillations in DNA methylation are correlated

with changes in primary transcripts, pointing to a potential

functional role. Intriguingly, in parallel with the current study,

genome-scale oscillations with approximately the same period

of 2–3 hr have been observed through studies of nascent tran-

scription at intronic sites in mESCs in serum conditions (Shah

et al., 2018). Through alterations in DNA binding affinities for

the transcriptional machinery, mediated by changes in DNA
74 Cell Systems 7, 63–76, July 25, 2018
methylation, these findings point at periodic changes in

‘‘Waddington’s epigenetic landscape’’ that occur on similar or

faster timescales than those of cell lineage decisions. Future de-

velopments in single-cell multi-omics and the manipulation of

epigenetic states in vivo will determine whether and how oscilla-

tions in DNA methylation play an instructive role in promoting

transcriptional heterogeneity with attendant consequences for

symmetry breaking and lineage priming.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Cell Lines

B Mice

d METHOD DETAILS

B Cell Lysis and Nucleic Acid Purification

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Bisulfite Sequencing

B Amplicon Bisulfite Sequencing

B Knock-out ESC and EB scBS-Seq Data Processing

B RNA-Seq Data Analysis

B scBS-Seq Data Analysis

B Embryo scM&T-Seq Analysis

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental information includes six figures, five tables, and one video and

can be found with this article online at https://doi.org/10.1016/j.cels.2018.

06.012.

ACKNOWLEDGMENTS

Dnmt3a/b knockout ESCs were the generous gift of Dr. Tatyana Nesterova;

Tet1-3 knockout ESCs were the generous gift of Dr. Guoliang Xu; Tdg

knockout ESCs were the generous gift of Dr. Primo Sch€ar. We thank the Well-

come Trust Sanger Institute sequencing pipeline team for assistance with Illu-

mina sequencing. We thank Dr. John Marioni for critical reading and discus-

sion. W.R. is supported by BBSRC (BBS/E/B/000C0422), Wellcome Trust

(095645/Z/11/Z), and EU. B.D.S. acknowledges the support of the Wellcome

Trust (098357/Z/12/Z). H.J.L. is supported by EU NoE EpiGeneSys. G.K. is

supported by BBSRC (BB/P013406/1), MRC (MR/K011332/1), and EU. O.S.

is supported by EMBL, Wellcome Trust, and EU.

AUTHOR CONTRIBUTIONS

H.J.L., S.R., B.D.S., and W.R. conceived the project. H.J.L., S.J.C., S.A.S.,

H.M., W.D., J.N. and P.R.-G. performed experiments. S.R. developed the the-

ory and performedmodeling. S.R. and C.A. performed statistical analysis. F.K.

processed andmanaged sequencing data. G.K. andO.S. supervised technical

aspects of the project. H.J.L., S.R., S.J.C., B.D.S, andW.R. interpreted results

and drafted the manuscript. All authors edited and approved the final

manuscript.

DECLARATION OF INTERESTS

W.R. is a consultant and shareholder of Cambridge Epigenetix. All other au-

thors declare no competing interests.

https://doi.org/10.1016/j.cels.2018.06.012
https://doi.org/10.1016/j.cels.2018.06.012


Received: June 29, 2017

Revised: October 17, 2017

Accepted: June 25, 2018

Published: July 18, 2018

SUPPORTING CITATIONS

The following references appear in Supplemental Information: Buecker et al.

(2014); Factor et al. (2014); Illingworth et al. (2010); Scialdone et al. (2016).

REFERENCES

Angermueller, C., Clark, S.J., Lee, H.J., Macaulay, I.C., Teng, M.J., Hu, T.X.,

Krueger, F., Smallwood, S.A., Ponting, C.P., Voet, T., et al. (2016). Parallel

single-cell sequencing links transcriptional and epigenetic heterogeneity.

Nat. Methods 13, 229–232.

Atlasi, Y., and Stunnenberg, H.G. (2017). The interplay of epigenetic marks

during stem cell differentiation and development. Nat. Rev. Genet. 18,

643–658.

Auclair, G., Guibert, S., Bender, A., and Weber, M. (2014). Ontogeny of CpG

islandmethylation and specificity of DNMT3methyltransferases during embry-

onic development in the mouse. Genome Biol. 15, 545.

Baubec, T., Colombo, D.F., Wirbelauer, C., Schmidt, J., Burger, L., Krebs,

A.R., Akalin, A., and Sch€ubeler, D. (2015). Genomic profiling of DNA methyl-

transferases reveals a role for DNMT3B in genic methylation. Nature 520,

243–247.

Berry, S., Dean, C., and Howard, M. (2017). Slow chromatin dynamics allow

Polycomb target genes to filter fluctuations in transcription factor activity.

Cell Syst 4, 445–457.e8.

Bintu, L., Yong, J., Antebi, Y.E., McCue, K., Kazuki, Y., Uno, N., Oshimura, M.,

and Elowitz, M.B. (2016). Dynamics of epigenetic regulation at the single-cell

level. Science 351, 720–724.

Booth, M.J., Branco, M.R., Ficz, G., Oxley, D., Krueger, F., Reik, W., and

Balasubramanian, S. (2012). Quantitative sequencing of 5-methylcytosine

and 5-hydroxymethylcytosine at single-base resolution. Science 336,

934–937.

Boroviak, T., Loos, R., Lombard, P., Okahara, J., Behr, R., Sasaki, E., Nichols,

J., Smith, A., and Bertone, P. (2015). Lineage-specific profiling delineates the

emergence and progression of naive pluripotency in mammalian embryogen-

esis. Dev. Cell 35, 366–382.

Boyle, A.P., Davis, S., Shulha, H.P., Meltzer, P., Margulies, E.H., Weng, Z.,

Furey, T.S., and Crawford, G.E. (2008). High-resolution mapping and charac-

terization of open chromatin across the genome. Cell 132, 311–322.

Buecker, C., Srinivasan, R., Wu, Z., Calo, E., Acampora, D., Faial, T., Simeone,

A., Tan, M., Swigut, T., and Wysocka, J. (2014). Reorganization of enhancer

patterns in transition from naive to primed pluripotency. Cell Stem Cell 14,

838–853.

Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J.

(2013). Transposition of native chromatin for fast and sensitive epigenomic

profiling of open chromatin, DNA-binding proteins and nucleosome position.

Nat. Methods 10, 1213–1218.

Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M.,

Vrana, J., Jones, K., Grotewold, L., and Smith, A. (2007). Nanog safeguards

pluripotency and mediates germline development. Nature 450, 1230–1234.

Clark, S.J., Smallwood, S.A., Lee, H.J., Krueger, F., Reik, W., and Kelsey, G.

(2017). Genome-wide base-resolution mapping of DNA methylation in

single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc.

12, 534–547.

Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W.,

Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al.

(2010). Histone H3K27ac separates active from poised enhancers and pre-

dicts developmental state. Proc Natl. Acad. Sci. USA 107, 21931–21936.

Du, J., Johnson, L.M., Jacobsen, S.E., and Patel, D.J. (2015). DNAmethylation

pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell.

Biol. 16, 519–532.
Emperle, M., Rajavelu, A., Reinhardt, R., Jurkowska, R.Z., and Jeltsch, A.

(2014). Cooperative DNA binding and protein/DNA fiber formation increases

the activity of the Dnmt3a DNA methyltransferase. J. Biol. Chem. 289, 29602–

29613.

Factor, D.C., Corradin, O., Zentner, G.E., Saiakhova, A., Song, L., Chenoweth,

J.G., McKay, R.D., Crawford, G.E., Scacheri, P.C., and Tesar, P.J. (2014).

Epigenomic Comparison Reveals Activation of ‘‘Seed’’ Enhancers during

Transition from Naive to Primed Pluripotency. Cell Stem Cell 14, 854–863.

Farlik, M., Sheffield, N.C., Nuzzo, A., Datlinger, P., Schönegger, A.,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Mouse E14 ESCs (male) (Hooper et al., 1987) were cultured in naı̈ve or primed conditions as described below. Dnmt3a/b knock-out

ESCs (male) (von Meyenn et al., 2016), Tet1-3 knock-out ESCs (male) (Hu et al., 2014) and Tdg knock-out ESCs (male) (Kunz et al.,

2009) were grown in primed conditions as described below.

Naı̈ve ESCswere cultured in serum freemedia with 2i inhibitors (Neurobasal, N2, B27, 103U/ml LIF, 1 mMMek inhibitor PD0325901

and 3 mM Gsk-3b inhibitor CHIR99021) without feeders at 37�C and 5% CO2.

Primed ESCs were cultured in serum containing media (DMEM 4,500 mg/l glucose, 4 mM L-glutamine, 110 mg/l sodium pyruvate,

15% fetal bovine serum, 1 U/ml penicillin, 1 mg/ml streptomycin, 0.1 mM nonessential amino acids, 50 mM b-mercaptoethanol, and

103 U/ml LIF ESGRO) without feeders at 37�C and 5% CO2.

For the 2i release experiment, ESCs in naı̈ve culture conditions were washed with PBS before addition of media for primed ESC

growth.

EB differentiation was performed by seeding 1000 primed ESCs per well in ultra-low attachment 96-well plates (Sigma-Aldrich) in

primed ESC culture media without Lif.

Mice
All animal procedures were performed in accordance with the local ethical review committee and under license from the Animal Sci-

entific Procedures Act 1986 (HO Project Licenses PPL70/8276). C57Bl/6Babr embryos were collected at E4.5 (n = 91 from 4 em-

bryos), E5.5 (n = 80 from 1 embryo) and E6.5 (n = 96 from 2 embryos). The sex of embryos was not recorded at the time of collection

because of their early developmental stage.

METHOD DETAILS

Cell Lysis and Nucleic Acid Purification
For the 2i release experiment, cells were lysed by removing media from culture dishes and adding 200ul of RLT plus buffer (Qiagen)

supplemented with 0.5mM 2-mercaptoethanol. In the first experiment, triplicate samples were collected at 31 time points from 0 h to

56 h 30 min. In the second experiment, single samples were collected at 47 time points from 0 h to 7 h 40 min (every 20 min). The

second experiment also included a control time-course, where cells received fresh naı̈ve culture medium rather than primed culture

medium at the beginning of the experiment. Total nucleic acid was purified from cell lysates with RNAdvance magnetic beads

(Beckman Coulter, A32649) using a Bravo Workstation pipetting robot (Agilent Technologies) following the manufacturers protocol.

RNA was subsequently purified by treating the total nucleic acid with DNase I.

For qPCR analysis during EB differentiation, RNA was prepared from frozen cell pellets using DNA/RNA AllPrep kits (Qiagen).

RT-PCR

Purified RNA was reverse-transcribed using RevertAid (ThermoFisher, EP0441) and random hexamer primers. qPCRs were per-

formed in triplicate using Brilliant III SYBR (Agilent Technologies) or Platinum SYBR (ThermoFisher). Primer sequences are provided

in Table S4.

FACS

FACS collection of single Dnmt3a/b, Tet1-3 and Tdg knok-out ESCs and EB cells was performed selecting for live cells and low DNA

content (i.e., G0 or G1 phase cells) using ToPro-3 and Hoechst 33342 staining.

Isolation of Mouse Embryonic Cells

C57Bl/6Babr E4.5 embryos were dissected from nascent decidua and trophectoderm removed by immunosurgery (Solter and

Knowles, 1975). The embryos at E4.5 and E5.5 were then dissociated using AccutaseTM (5 min), transferred to M2 droplets and

then single cells were picked and transferred to cell lysis buffer using a finely drawn Pasteur pipette and frozen immediately. The

visceral endoderm and extraembryonic ectoderm at E5.5 were both separated from the epiblast by pulling using a finely drawn

Pasteur pipette. The extra embryonic ectoderm was removed using the tip of a pulled Pasteur pipette. At E6.5, embryos were

dissected from decidua in PBS and placed into droplets of M2 for manual dissection to remove extraembryonic tissue. Cells were

again dissociated using AccutaseTM at room temperature and single cells picked, lysed and frozen as described above.

Bisulfite Sequencing

For the 2i release experiment, bisulfite sequencing (BS-seq) libraries were prepared from the total nucleic acid using the bulk-cell

PBAT method previously described (Smallwood et al., 2014). Briefly, bisulfite conversion and purification was carried out using

the EZ Methylation Direct MagPrep kit (Zymo), following the manufacturers’ instructions but with half volumes. Bisulfite converted

DNA was eluted from MagBeads directly into 39ul of first strand synthesis reaction mastermix (1x Blue Buffer (Enzymatics),

0.4mM dNTP mix (Roche), 0.4uM 6NF preamp oligo (IDT) then heated to 65�C for 3 minutes and cooled on ice. 50U of klenow
e2 Cell Systems 7, 63–76.e1–e12, July 25, 2018
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exo- (Enzymatics) was added and the mixture incubated on a thermocycler at 37�C for 30 minutes after slowly ramping from 4�C.
Reactions were diluted to 100ml and 20U of exonuclease I (NEB) added and incubated at 37�C before purification using a 0.8:1 ratio

of AMPure XP beads. Purified products were resuspended in 50ml of second strand mastermix (1x Blue Buffer (Enzymatics), 0.4mM

dNTP mix (Roche), 0.4uM 6NR adaptor 2 oligo (IDT) then heated to 98�C for 2 minutes and cooled on ice. 50U of klenow exo-

(Enzymatics) was added and the mixture incubated on a thermocycler at 37�C for 90 minutes after slowly ramping from 4�C. Second
strand products were purified using a 0.8:1 ratio of AMPure XP beads and resuspended in 50ml of PCR mastermix (1x KAPA HiFi

Readymix, 0.2uM PE1.0 primer, 0.2uM iTAG index primer) and amplified with 9 cycles. The final libraries were purified using a

0.8:1 volumetric ratio of AMPure XP beads before pooling and sequencing. All libraries were prepared in parallel with the pre-

PCR purification steps carried out using a Bravo Workstation pipetting robot (Agilent Technologies). 9-12 libraries were sequenced

as a multi-plex on one Illumina HiSeq 2000 lane using 125bp paired-end read length.

Amplicon Bisulfite Sequencing

To obtain increased sequencing depth, amplicon bisulphite sequencing (AmpBS-seq) libraries were prepared from the second

2i release experiment. Regions of interest where chosen from exemplary enhancers showing oscillatory dynamics correlated to

the global H3K4me1 trends in the BS-seq data from the first 2i release experiment. Total nucleic acid isolated from the 2i release

experiment underwent bisulfite conversion using Zymo reagents as described above. KAPA HiFi Uracil+ Master Mix (Kapa

Biosystems) was used to amplify regions of interest using 30nM primers (Table S3), with the reverse primer including an 8N unique

molecular identifier (UMI). The PCR program was: 95C 5min; 35 repeats of 98C 20s, 60C 15s, 72C 60s; 72C 10min. Amplicons were

pooled for each sample and purified using Ampure XP beads (Agencourt), before a second round of PCR was used to incorporate

Illumina Adaptor sequences and index samples. The PCR reaction included 11ul pooled amplicons, 200nM indexed PE1.0 (Table S5)

and iPCRTag primers (Quail et al., 2011), and KAPA HiFi Master Mix (Kapa Biosystems). The PCR program was: 98C 45s; 5 repeats

of 98C 15s, 65C 30s, 72C 30s; 72C 5min. Samples were then pooled and purified before library QC and sequencing was performed

with up to 144 samples included on a 150bp paired-end MiSeq run.

Single-Cell Sequencing

Single cell BS-seq libraries were prepared from knock-out ESCs and EBs as described (Angermueller et al., 2016; Clark et al., 2017).

Briefly, single-cells were lysed in 2.5ul of RLT plus buffer (Qiagen) then diluted to 10ul prior to bisulfite conversion and purification was

carried out using the EZ Methylation Direct MagPrep kit (Zymo), following the manufacturers’ instructions but with half volumes.

Bisulfite converted DNA was eluted from MagBeads directly into 39ul of first strand synthesis reaction mastermix (1x Blue Buffer

(Enzymatics), 0.4mM dNTP mix (Roche), 0.4uM 6NF oligo (IDT) then heated to 65�C for 3 minutes and cooled on ice. 50U of klenow

exo- (Enzymatics) was added and themixture incubated on a thermocycler at 37�C for 30minutes after slowly ramping from 4�C. First
strand synthesis was repeated 4 more times with the addition of 0.25 ml of reaction mixture (1x blue buffer, 0.25mM dNTPs, 10mM

6NF preamp oligo and 25U klenow exo-). Reactions were diluted to 100ml and 20U of exonuclease I (NEB) added and incubated

at 37�C before purification using a 0.8:1 ratio of AMPure XP beads. Purified products were resuspended in 50ml of second strand

mastermix (1x Blue Buffer (Enzymatics), 0.4mMdNTPmix (Roche), 0.4uM 6NR adaptor 2 oligo (IDT) then heated to 98�C for 2minutes

and cooled on ice. 50U of klenow exo- (Enzymatics) was added and the mixture incubated on a thermocycler at 37�C for 90 minutes

after slowly ramping from 4�C. Second strand products were purified using a 0.8:1 ratio of AMPure XP beads and resuspended in

50ml of PCRmastermix (1x KAPAHiFi Readymix, 0.2uMPE1.0 primer, 0.2uM iTAG index primer) and amplified with 12 cycles. Finally,

scBS-seq libraries were purified using a 0.8:1 volumetric ratio of AMPure XP beads before pooling and sequencing. Fifteen single cell

libraries plus one negative control were multiplexed together on one Illumina HiSeq 2000 lane using 125bp paired end reads.

Single-cell methylome and transcriptome libraries were prepared from embryos as previously described (Angermueller

et al., 2016).

RNA-Seq

cDNA was prepared from 1ul of purified RNA following the Smart-seq2 protocol (Picelli et al., 2014) with 10 cycles of amplification.

Nextera XT libraries were prepared as described (Picelli et al., 2014) but with one-fifth volumes and 200pg of input cDNA. Libraries

were sequenced as a multiplexed pool on one Illumina HiSeq 2000 lane using 50bp single-end read length.

Derivation of a Phenomenological Model

The modeling approach was to, instead of attempting to precisely model every aspect of the methylation turnover cycle, define the

simplest model that captures the essence of the dynamics, without making detailed assumptions about the underlying biochemical

processes. This approach is justified by the observation of genome-wide coherence of DNAmethylation levels (Figure 1C), constrain-

ing the dynamics to a single degree of freedom (the phase), and ruling out the possibility that existing dynamic local heterogeneities

affect the global dynamics. The strategy therefore was to derive a phenomenological model for the global DNA methylation dy-

namics, and then in a second step justify the emergence of coherence from the local dynamics at single cytosines. To this end,

the number of unmodified cytosines, and the number of methylated cytosines in a given large region of the DNA of size N at a given

time, t, were defined as CðtÞ and MðtÞ, respectively. While the specific choice of N is irrelevant for the following analysis it could, for

example, denote the number of base pairs in the genome or the volume of the nucleus. IfN is large, continuous concentrationsmay be

defined as cðtÞ=CðtÞ=N and mðtÞ = MðtÞ=N. To derive kinetic equations for the time evolution of cðtÞ and mðtÞ it is noteworthy that

while the conversion from C to 5mC is direct, the conversion from 5mC back to C involves a large number of intermediary steps

(Figure 2A) which, as a result of the binding and unbinding kinetics, are nonlinear (Langmuir kinetics). Each of these steps requires

the recruitment of different enzymes to the DNA, aswell as their binding and unbinding, and eventually excision and repair of the DNA.

It is clear that the conversion from 5mC to C cannot be instantaneous. Specifically, it has been shown that a large number of nonlinear
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reactions can be effectively described by a time delay between the first and the last reaction, Dt. This is independent of the precise

form of the nonlinearities arising from these reactions. In this case, this corresponds to a time delay, Dt, between the removal of the

methylation mark and the establishment of an unmodified cytosine.

Then, as the number of cytosines in any state is conserved, the structure of the differential equations describing the time evolution

of cðtÞ and mðtÞ takes the symmetric form,

_cðtÞ= kmc½cðtÞ;mðt � DtÞ� � kcm½cðtÞ;mðtÞ�;
_mðtÞ= kcm½cðtÞ;mðtÞ� � kmc½mðtÞ; cðtÞ�;

where kmc½c;m� and kcm½c;m� are the concentration-dependent rates of conversion from 5mC to C and C to 5mC, respectively.

Describing the time evolution in terms of rate equations, implicitly makes the important assumption that changes in DNAmethylation

globally effect the genomic region under consideration. This assumption will be discussed in the following section. For the beginning

of the mathematical analysis, for simplicity, it was assumed that enzyme binding to the DNA is not limited by the concentration of

these enzymes, such that conversion rates are linear functions of the concentrations cðtÞ andmðtÞ. The inclusion of higher order non-

linearities arising from enzyme binding and unbinding kinetics does not qualitatively alter the results, as will be shown further below.

In this simplified case, i.e. neglecting higher order nonlinearities arising from the Langmuir kinetics, the rate of loss of Cs, kcm, is

simply proportional to the concentration of cytosines that are available for conversion, cðtÞ. Additionally, it is assumed that 5mC is

autocatalytic, i.e. establishment of 5mC catalyses further methylation. There are several reports that suggest that de novo methyl-

ation is indeed autocatalytic: DNMT3A and DNMT3L enzymes have been shown to act cooperatively by forming heteromeric poly-

mers and in vitro studies suggest that these enzymes are capable of polymerising on the DNA, thereby effectively methylating groups

of adjacent cytosines at the same time (Jia et al., 2007). Further, DNMT3A/B enzymes have been shown to have increased binding

affinity to 5mC and in somatic cells this leads to inhibition of DNMT3A/B degradation and an overall higher abundance of DNMT3A/B

(Sharma et al., 2011). Taken together, this suggests that 5mCs catalyse de novo methylation of cytosines. In the simplest case, the

conversion rate fromC to 5mC therefore takes the form kcm½cðtÞ;mðtÞ�fcðtÞmðtÞ such that, for lowmethylation levels, de novomethyl-

ation is limited by the concentration of 5mCs while, for high methylation levels, it is limited by the concentration of Cs. Similarly, the

rate of production of Cs is proportional to the number of 5mCs, and the rate of conversion is simply kmc½cðtÞ;mðtÞ�fmðtÞ, independent
of cðtÞ. DNA methylation turnover in a large genomic region is therefore effectively described by a simple set of time-delayed differ-

ential equations capturing essential properties of methylation turnover (Figure 2A),

_cðtÞ= kmmðt � DtÞ � kccðtÞmðtÞ;
_mðtÞ= kccðtÞmðtÞ � kmmðtÞ;

where km and kc define the effective constant rates of conversions from 5mCs and Cs, respectively.

To show that DNA methylation turnover can indeed lead to oscillatory dynamics and to investigate the conditions under which

oscillations occur the differential equations were first non-dimensionalized by rescaling time such that thkmt and DthkmDt, and

concentrations such that uhðkc=kmÞc and vhðkc=kmÞm,

_uðtÞ= vðt � DtÞ � uðtÞvðtÞ;
_vðtÞ= uðtÞvðtÞ � vðtÞ:

This results in a system of time-delayed differential equations with a single parameter, Dt, which qualitatively determines the dy-

namics. To fully define the model, initial conditions of the form uðtÞhu0ðtÞ and vðtÞhv0ðtÞ for t0%t%0 were supplied, effectively re-

sulting an infinite dimensional problem. For simplicity, constant initial conditions, uðtÞhu0 and vðtÞhv0 for t
0%t%0, were considered

here. The above equations admit stationary solutions where uðtÞ= 1 or vðtÞ = 0, corresponding to a balance betweenmethylation and

demethylation, or a completely unmethylated genome, respectively.

Studies of time-delayed differential equations have mostly focussed on linear systems, while nonlinear systems are still poorly un-

derstood. Leaving a rigorous analytical study to future work, the dynamics of the time-delayed systems was studied using numerical

integration. To obtain the period of oscillations time points where the derivative of vðtÞ vanishes were determined. The period was

then calculated as the average difference between next nearest roots of the derivative. Similarly, the amplitudes of uðtÞ and vðtÞ
were defined as the average difference between two consecutive roots. Averages were taken over the last 10 periods of an overall

simulation time of 1000.

Figure 2B shows numerically obtained phase portraits (u0 = 1:6, v0 = 0:4) of the dynamics for a given set of initial conditions and

varying values of the dimensionless time delay, Dt. For small values of Dt, the dynamics spiral inward and asymptotically focus on a

singular point in phase space. With increasing values of the time delay, trajectories converge toward periodic orbits with a fixed

amplitude. This behavior is characteristic of systems undergoing a Hopf bifurcation, where a stable fixed point of the dynamics gives

rise to limit cycle behavior with increasing order parameter. While a complete characterisation of the bifurcation is beyond the scope

of this work, the bifurcation was studied more rigorously by defining an order parameter as the amplitude of the oscillatory variable

vðtÞ. With this definition, Figure 2C illustrates the abrupt onset of oscillations at a specific threshold value,Dt�. Not unexpectedly, the
period of oscillations increases linearly with the time delay and is weakly dependent on the initial conditions (Figure S3A). Hence,

translating back to dimensional parameters, the period increases with the time delay, Dt, and the inverse conversion rates 1=km
and 1=kc. Finally, to systematically study the dependence on the initial conditions the threshold delay, Dt�, was calculated as a

function of u0 and v0 (Figures S3B and S3C). While oscillations can occur for a broad range of initial conditions, they are most easily
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obtained if v0 is broadly of order unity, i.e. the initial concentration of 5mC is of the order kc=km. Hence, to obtain oscillatory dynamics,

the net rates of methylation and de-methylation should be of the same order of magnitude.

For this simple model, oscillation occurs if the delay between the removal of the 5mCmark and the establishment of an unmodified

cytosine is larger than the typical time scale of the removal of 5mC marks. Such conditions may arise if the time delay is mainly a

consequence of the later steps in demethylation, such as the BER pathway. Below the threshold value, oscillations are damped

on a time scale given by Dt. Importantly, on the time scales relevant in a dynamically changing system such as primed ESCs,

DNA methylation oscillations are expected even if Dt <Dt�. Although numerical results show typical threshold values of Dt�z5,

one should be careful in assigning a direct biological correspondence to this number. As is shown, the threshold value can be

significantly smaller or larger if stronger nonlinearities, for example arising from enzyme binding and unbinding kinetics, are taken

into account. However, as the dimensionless quantity Dt� is roughly of order unity, the threshold delay time is on a similar scale

as other characteristic time scales in DNAmethylation turnover. This indicates that oscillatory dynamics can occur under biologically

plausible conditions. In addition, the emergence of limit cycle behavior straight forwardly extends to transient situations, where the

concentrations of DNMT3A/B and TET1/2 enzymes are time dependent. Figure S3D shows exemplary trajectories for such a

scenario.

Finally, oscillatory dynamics in C and 5mC implies temporally increased concentrations of 5hmC and other transient marks

between C and 5mC. The total concentrations of states in any of the intermediary stages between 5mC and C should therefore

be of the same order as the changes in concentrations in the subset of CpGs taking part in the oscillations. Therefore, increased

concentrations of these states are expected in strongly oscillating regions of the genome. While estimates for the concentrations

of intermediary states vary widely, it has indeed been found that 5hmC is enriched in enhancer regions for which we found the

strongest oscillations (Booth et al., 2012; Feldmann et al., 2013; Hon et al., 2014). Notably, oscillatory DNA methylation does not

contradict low levels of 5caC, 5fC and 5hmC in other contexts because we observe a smaller fraction of dynamically changing

CpGs there.

Stochastic Simulation

To illustrate how oscillatorymethylation dynamics give rise qualitatively to distributions such as in Figure 2D, the random nature of the

conversions between different cytosine modifications was then taken into account. The distribution observed in scBS-seq datasets

arise from multiple sources of noise, most notably technical noise due to the relative low coverage of the single cell technique. The

first source of noise are fluctuations arising from the stochastic conversion between C and 5mC. The probability distribution of the

number of Cs and 5mCs in a given region of DNA, PðC;M; tÞ, is governed by a set of differential equations of the form

vtPC;MðtÞ=a½ðC+ 1ÞðM� 1ÞPC+ 1;M�1ðtÞ � CMPC;MðtÞ�
+ b

XN
M0 ;C0 = 0

M0PM0 ;C0 ðt � DtÞ½PM+ 1;C�1ðtÞ � PM;CðtÞ�:

It is assumed that events at t and t � Dt are effectively decoupled. These time-delayed Master equations were solved by making

use of an adaptation of Gillespie’s direct method for time delayed stochastic systems. Due to the limited coverage of the scBS-seq

method, technical noise is a further important factor contributing to the distribution of methylation rates. With rhM=ðM+CÞ denoting
the ‘‘true’’ methylation rate and s the number of informative CpGs, we modeled the number of positive reads, k, as statistically inde-

pendent and following a binomial distribution,

RkjrðtÞ;sðtÞ= s!

k!ðs� kÞ! rðtÞ
kð1� rðtÞÞs�k

:

Then, with the coverage distributionQðsÞ giving the probability that a given region has s informative CpGs, the number of positive

reads is distributed according to

RkðtÞ=
XN

C;M= 0

PC;MðtÞ
XN
s=5

QðsÞ s!

k!ðs� kÞ!
�

C

C+M

�k�
1� C

C+M

�s�k

;

where the sum over s starts from 5 as we removed all elements (e.g. H3K4me1 sites) with a coverage less then 5 from the statistical

analysis of the scBS-seq data. Empirically, for H3K4me1 sites QðsÞ can be approximated by an exponential distribution with mean

14.3. For the Supplemental Movie and Figure 2D of the main manuscript parameters were chosen as a = 0:001, b = 1, Dt = 6. The

plots and the video show the distributions of the fraction of positive reads, k=s, and they were obtained by sampling over 48,000

simulations. The resulting distributions of methylation levels recapitulate the ones observed in the single-cell experiment (Smallwood

et al., 2014) (Figure 2D). As sequencing is a static measurement, it cannot be ruled out, however, that similar distributions can result

from different mechanisms. This potential ambiguity necessitates the development of dynamic measurements of DNA methylation,

as implemented in the 2i release experiment.

Structural Stability

DNA methylation turnover is a conservative process, i.e. if the cell is not in S-phase, the number of cytosines in any form remains

constant over time. In conservative systems, periodic solutions are structurally unstable, such that small alterations of the dynamic

rules give rise to qualitatively different dynamics. In particular, conservative systems do not give rise to limit cycle behavior. Onemight

therefore argue that the limit cycle behavior predicted with the model might not reflect the true dynamics of methylation turnover.
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Indeed, by restricting the model on the C and 5mC states, the overall numbers of cytosines is not explicitly fixed. However, there are

several reasons why limit cycles nevertheless can appropriately describe oscillations in DNA methylation:

1. As will be discussed below, DNA methylation turnover might be subject to global feedback by fluctuations in the concentra-

tions of DNMT3A/B and TET1/2 enzymes. This positive feedback effectively stabilizes oscillations with respect to amplitude

perturbations, thereby giving rise to stable periodic orbits.

2. Oscillations are also coupled locally by cooperative DNMT3A/B/L binding. It has been shown that local coupling can give rise to

limit cycles in cyclic conservative systems.

3. Additive noise can drive conservative oscillatory systems out of states, which would otherwise arrest the dynamics, thereby

effectively stabilizing oscillations.

The limit cycle oscillations emerging from our simple model are structurally robust, i.e. changes to themodel should not give rise to

qualitatively different behavior. In the following several structural perturbations to our model will be qualitatively investigated showing

that limit cycles still occur under these conditions.

First, the model predicts vanishing de novo methylation in the case of completely unmethylated DNA, i.e. v = 0 is a fixed point of

the dynamics. This fixed point is likely to be an artefact of the simplified modeling scheme. Adding a term proportional to uðtÞ to the

conversion rate from C to 5mC escribes effect of de novomethylation which is independent of pre-existing methylation patterns. The

modified system of delay differential equations reads

_uðtÞ= vðt � DtÞ � uðtÞ½vðtÞ+ e�;
_vðtÞ= uðtÞ½vðtÞ+ e� � vðtÞ:

The dimensionless parameter e denotes the relative strength of linear de novo methylation as compared to autocatalytic de novo

methylation. Figure S3E shows that the transition to limit cycle behavior remains qualitatively the same, although the threshold in-

creases with increasing values of e.

Second, stronger nonlinearities were taken into account. Such nonlinearities arise, for example, due to DNA binding and unbinding

kinetics of enzymes and are enhanced by the cooperative action of enzymes. In the case of DNA methylation turnover, strong non-

linearities due to the cooperative action of DNMT3A/B/L and the large number of processes involved in demethylation can indeed be

expected. Therefore, systems of the following form were investigated:

_u=
vðt � DtÞn

An + vðt � DtÞn �
½uðtÞvðtÞ�m

Bm + ½uðtÞvðtÞ�m;

_v =
½uðtÞvðtÞ�m

Bm + ½uðtÞvðtÞ�m � vðtÞn
An + vðtÞn:

A and B are dimensionless quantities corresponding to threshold concentrations and the Hill coefficients m and n determine the

strength of the nonlinearity of the conversion process. For example, they can be thought of the number of polymerisation processes

enzymes undergo before catalysing a reaction. Depending on the parameters defining these nonlinearities, the conditions for robust

oscillation may be significantly enhanced, as shown in Figure S3F, or diminished.

Emergence of Global Coherence in DNA Methylation Oscillations

The experimental observation of genome-wide coherence in DNA methylation (Figure 1C) implies the emergence of collective

degrees of freedom. The following calculations show how, despite the complexities affecting DNA methylation on the local level,

collective behavior can arise through coupling of local DNA methylation dynamics.

A single CpG can be in one of n different chemical states, such as an unmodified cytosine, bound to DNMT3A/B enzyme, a

methylated cytosine, and a number of states involved in the removal of themethylationmark. As the biochemistry of DNAmethylation

is cyclic a phase representation for the chemical state of a CpG was chosen, where the discrete phase variable f can take one out

of n different values from the interval ½0;2pÞ. Following the biochemistry of DNA methylation turnover, the phase is advanced by

increments of 2p=n with a rate u, which for simplicity we take to be constant throughout the cycle. If the biochemical steps

of the DNA methylation cycle are statistically independent of each other, the time evolution of the probability of finding the CpG in

state f follows a Master equation of the form

vt Pðf; tÞ= nu

2p
½Pðf� 1; tÞ � Pðf; tÞ�:

The solution for delta-distributed initial conditions is simply a Poisson distribution with mean and variance utn=ð2pÞ. In the

presence of both DNMT3s and TETs, a single cytosine is therefore, trivially, a stochastic oscillator.

However, an independent set of such stochastic oscillators, even if initiated in phase, would quickly desynchronise and cannot

explain the coherent nature of DNA methylation oscillations. Single-cell bisulfite sequencing experiments in serum conditions and

in vivo suggest that DNA methylation dynamics is correlated on the genome scale (Figures 1 and 5). To understand the emergence

of coherent dynamics it is important to note that the stochastic dynamics of CpGs is weakly coupled, both globally and locally.

One mechanism of positive feedback arises from DNMT3A/B binding to the DNA. It has been shown that DNMT3A/B have increased

binding affinity to highly methylated DNA. In somatic cells, unboundDNMT3A/B is selectively degraded by the proteosomal pathway,
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such that high levels of DNA methylation effectively lead to increased concentrations of DNMT3A/B in the nucleus, while globally

hypomethylated DNA reduces DNMT3A/B levels. It is likely that unbound DNMT3A/B is also selectively degraded in the much

more dynamic ESCs. The global positive feedback by DNMT3A/B enzyme concentrations provides a potential mechanism for syn-

chronising oscillations in DNAmethylation. Mathematically, this feedbackwas taken to affect local DNAmethylation with a locus spe-

cific strength si. Reversely, the effect of local DNA methylation on the global concentration of DNMT3A/B is denoted by ki.

Further, DNMT3A/B/L molecules may form heteromers and simultaneously methylate multiple cytosines on the DNA. Beyond that,

in vitro studies suggest that DNMT3A/B/L can polymerise on the DNA such that these interactions might even affect CpGs in low-

density regions (Emperle et al., 2014). To investigate the extent to which the combination of these couplings may lead to oscillatory

dynamics on the genome scale the stochastic local dynamics was combined with mathematical representations of both short-range

and global interactions. To model these short-range interactions, an interaction kernel lð��ri � rj
��Þ was defined giving the strength of

coupling between CpGs at positions ri and rj. We assume these interactions to be local, i.e. lð��ri � rjÞ decays much on a much shorter

scale than the size of the genome. In other words, it is assumed that CpG rich regions such as CpG islands are localised. This allows

the definition of a normalized kernel Kij = l�1lð��ri � rj
��Þ with l =

P
ij lð

��ri � rj
��Þ.

Taken together, the time evolution of the distributionPðffig; tÞ for a given configuration ffig and time t is governed byMaster equa-

tions of the form

vt Pðffig; tÞ=
X
i

ni

2p

"bu i + l
X
j

Kij
bL ij

�
fj � fi

�
+ ki

X
jsi

sj
bL ij

�
fj � fi

�#Pðfi; tÞ;

with bu i = juijðbf�sign ui

i Þ and shifting operators defined as

bf ±

i Pðf1;.;fi;.fNÞ=Pðf1;.;fi ±1;.;fN; tÞ:
The local and global coupling functions take the form

bL ijðfÞ= 1+ sinðε½f+ 1�Þ
2

bf�
+
1� sinðε½f� 1�Þ

2
bf + � 1:

Therefore, although the stochastic dynamics of single CpGs was initially assumed to be unidirectional, the coupling between sites

induced biased diffusive dynamics. Therefore, the simplifying assumption of strict local unidirectionality does not restrict the gener-

ality of our results for the global phase dynamics as derived below. A simpler version of these equations has been studied previously

in (Jörg, 2017).

To infer the collective dynamics of the stochastic phase variables we now successively coarse grain the Master equations. Spe-

cifically, at each renormalisation step, we phase average two neighbouring CpGs or blocks of CpGs with the strongest mutual

coupling, Ki;i + 1, and obtain a new phase variable of the form

~fi =
nifi + ni + 1fi + 1

ni + ni + 1

;

with ni being the number of CpGs in block i. We then renormalise the couplings and frequencies in order to bring the equations back

into the original form. The renormalisation procedure is depicted in Figure S3G. Renormalising the dynamics in this way is typically

referred to as strong disorder renormalisation. The implicit assumption we make in this procedure is that at high CpG densities, the

effect of local coupling on the phase dynamics is stronger than the effect of global coupling and the intrinsic stochastic dynamics of

CpGs. Upon renormalization, the different terms in the Master equation behave in the following ways:

The number of states in a coarse-grained phase variable increases exponentially as ~ni = nini + 1 � I=2, where I is the number of el-

ements in the intersection between the states fi and fi + 1. Upon renormalization, the phase variable quickly becomes continuous.

The new stochastic, coarse-grained phase variable ~fi has an effective frequency of

~ui =
niui + ni + 1ui + 1

ni + ni +1

:

After each coarse graining, the largest element of Kij is removed. We renormalise K and obtain a new coupling constant

~l=
l

ni + ni + 1

;

such that, for the local interactions, the Master equations read

vtPðf~fig; tÞ=
X
i

~ni

2p

" b~ui + ~l
X
ij

Kij
bL�

~fj � ~fi + d
�
+.

#
Pðf~fig; tÞ;

where d is to highest order a constant contribution stemming from the frequency differences between neighboring blocks of oscil-

lators. This time-independent phase shift can be absorbed into the definition of the block phase ~fi.
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The effect of coarse graining on the global interaction terms is two-fold: The effect of the mean field on a block of phase variables

scales inversely with the number of CpGs in a block, ~ki = ki=ni, while the influence on the mean field scales like ~si = nisi. Taken

together, the global coupling terms remain invariant under renormalisation,

vtP
��

~fi

�
; t
�
=
X
i

~ni

2p

"
.+ ~ki

X
jsi

~sj
bL�

~fj � ~fi

�#P��~fi

�
; t
�
:

The equations were then successively coarse grained and renormalized until the microscopic length scale defined by the minimal

distance between neighboring blocks is much larger than the local interaction range, such that ~l%~ui; ~ki. Then, the local coupling

terms become irrelevant compared to the global coupling, and the dynamics on large scales is effectively described by

vtPðf~fig; tÞ=
X
i

~ni

2p

( b~ui +
X
jsi

~ki bL�
~fj � ~fi

�)Pðf~fig; tÞ:

A linear noise approximation was then employed by formally writing

2p

ni

~fiðtÞ=QiðtÞ+
ffiffiffiffiffiffiffiffiffiffiffiffi
2p=~ni

p
xiðtÞ+O



~n
�1
i

�
;

with the deterministic part following

vtQi = ~ui + ~ki
X
j

~si sinðQj �QiÞ

and fluctuations described by

d

dt
xi =

X
j

~kjcosðQj �QiÞ
�
xj � xi

�
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~uij+

X
j

kj

s
hiðtÞ;

where hiðtÞ is Gaussian white noise with hhiðtÞi= 0 and hhiðtÞhjðt0Þi = dijdðt� t0Þ. By successively merging neighboring CpGs, the

typical number of states, ~ni, grows exponentially. Taking the continuum limit, ~ni/N, the discrete phase is well-approximated by
~fiðtÞ/QiðtÞ. Therefore, on large scales, the dynamics is effectively described by equations of the form

vtQi = ~ui + ~ki
X
j

~sjsinðQj �QiÞ:

This is the heterogeneous Kuramoto model, which has been studied in the literature(Paissan and Zanette, 2008). The main results

are briefly recapitulated and discussed here in the context of collective DNA methylation oscillations. In the spirit of Kuramoto’s

original theory these equations can be reformulated in terms of a global phase FðtÞ and amplitude rðtÞ defined as the modulus

and amplitude of the complex number zðtÞhrðtÞexp½iJðtÞ� = N�1
P
i

siexp½ifiðtÞ�, respectively,
vtfi = ~ui + ~ki rsinðF� fiÞ:

The condition for synchronisation, and the global amplitude rðtÞ, can then be obtained by self-consistency. It is found that the

probability of asymptotically synchronised oscillators is proportional to the coupling to the global field,

psðd; ~k; ~sÞ= ~krGðU+ ~kr sin d; ~k; ~sÞcos d;
where d is the phase shift between the local oscillator and the global phase and Gð~u; ~k; ~sÞ is the probability distribution of oscillators

with frequency ~u and coupling ~k and ~s. Global synchronisation occurs ifZ N

0

~k

Z N

0

~sGð~u0; ~k; ~sÞd~k d~sR2

p
;

with the most abundant frequency denoted by ~u0. More specifically, if the contribution to the mean field and its effect on the local

oscillator are correlated through a relation ~s= ~sð~kÞ and the intrinsic frequencies are statistically independent of the coupling, then

Gð~u; ~k; ~sÞ=gð~uÞhð~kÞfð~sÞ and the condition for global synchronisation reduces toZ N

0

~khð~kÞ~sð~kÞd~kR 2

pgð~u0Þ;

In the case of DNA methylation turnover, the coupling to the mean field and the contribution of each oscillator to it are both

mediated through DNMT3A/B binding, such that ~k and ~s are proportional, ~sð~kÞ = a~k. Therefore, globally synchronised oscillations

occur if Z N

0

~k2hð~kÞd~k=
D
ð~k� h~kiÞ2

E
+ h~ki2R 2

pagð~u0Þ:
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Interestingly, global synchronisation of DNA methylation oscillations is not only promoted by the average global coupling, but also

by the variance thereof. The denominator, gð~u0Þ, suggests that the value of the critical coupling strength is determined by the number

of oscillators with intrinsic frequencies close to the typical frequency, ~u0. In the special case of a set of homogeneous oscillators this

implies asymptotic coherence for any distribution of ~k.

In the special case of homogeneous coupling, hð~kÞ = dð~k� ~k0Þ, the synchronisation condition reads

~k0R
2

pgð~u0Þ:

In this case, it can be shown that the asymptotic degree of synchronisation increases according to a scaling law with the square

root of the distance to the critical coupling ~kc = 2=½pgð~u0Þ�,

rz

ffiffiffiffiffiffiffiffi
16

p~k3c

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

�g00ð~u0Þ
r

;

with m= ð~k0 � ~kcÞ=~kc and g00ð~u0Þ denotes the second derivative of the distribution of intrinsic frequencies at the position of the

characteristic frequency ~u0. For example, if ~u is normally distributed, g00ð~u0Þ is proportional to the negative standard deviation. Taken

together, solutions corresponding to global synchronisation go from unstable below ~kc to stable above ~kc.

In DNAmethylation turnover, a large number of oscillators have identical intrinsic frequencies, such that gð~u0Þ[1 and g00ð~u0Þ � 1.

In this case the synchronised state is stable even for vanishing coupling h~ki and perturbations lead to an exponentially fast relaxation

back into the synchronised state. Hence, synchronisation occurs on a time scale proportional to 1=~k0 and preferential DNMT3A/B

binding provides a potential mechanism stabilising synchronised oscillations in DNA methylation. It is unlikely that non-constant

conversion rates qualitatively alter these results as synchronisation phenomena have been shown to be robust against heterogeneity

in phase transition rates (Kuramoto, 1991).

This analysis shows how coherent oscillations can emerge despite the heterogeneity on the local scale. Starting from the micro-

scopic dynamics we have derived qualitatively the same genome-scale behavior as with our phenomenological model. Although the

analysis focussed on DNMT3A/B as the main driver leading to genome wide synchronisation, likely, there are many more sources

driving synchronisation. For example, cell cycle periodically and homogeneously converts 5caC, 5fC and potentially other states

to unmodified cytosines. This can effectively be understood as a periodic driving force giving rise to synchronised oscillations.

Further, parallel scM&T-seq recently revealed that expression levels of Tet1/2 genes are anti-correlated to methylation levels of

several genomic elements in their vicinity (Angermueller et al., 2016). In particular, this holds true for a non-CGI promoter of the

Tet1 gene that is differentially methylated between cells. High methylation levels in these elements may therefore result in low Tet

expression and a globally decreased rate of demethylation. Similarly, lowmethylation levels give rise to high Tet expression and sub-

sequently increased demethylation. Methylation of the Tet1 promoter and other elements in the vicinity of Tet1/2 genes therefore

effectively yields positive global feedback on DNA methylation. Elements whose methylation status influences the expression of

Tet1/2 play a special role in this scenario: they act as ‘‘pacemakers’’ which mediate the coupling of all other oscillators. These ele-

ments can therefore be thought of as a periodic force acting on CpGs in potentially distal parts of the genome. In fact, in a fluctuating

environment such as a cell, oscillators are subject to many random stimuli. It has been theoretically shown that if these sources of

noise affect all oscillators, the emergence of coherent dynamics is facilitated.

DNA Methylation Oscillations In Vivo

The observation of DNA methylation oscillations in the highly transient situation of the 2i release experiment suggests that these os-

cillations might also occur during the de novo methylation process in vivo, which has been shown to parallel the transcriptional and

epigenetic dynamics of the in vitro experiment. During the exit from pluripotency (E4.5 to E6.5 in mouse) the global level of DNA

methylation, averaged over cells levels, rises monotonically in time (Figure 6A). To investigate whether this process has an oscillatory

component parallel bisulphite and RNA sequencing in single cells was performed at several time points during these stages in devel-

opment (E4.5, E5.5, and E6.5). Different lineages were found in our dataset at E4.5 and E6.5, and the sample size does not allow to

define an ensemble of statistically equivalent cells from the ensuing subpopulations, subsequent analysis was restricted to cells

taken at E5.5. The analysis of sequencing data is complicated by the fact that sequencing only provides static information, which

makes unveiling dynamic processes like methylation oscillations potentially challenging. Before aiming to reconstruct the temporal

dimension in the methylation data the first step in the analysis was to ask whether statistical patterns can be extracted that allow to

distinguish between different hypotheses explaining methylation heterogeneity.

To begin, it needed to be determined whether differences in global DNA methylation at E5.5 might be the result early lineage de-

cisions, which would indicate that methylation heterogeneity is the result of a process on slower time scales than expected for oscil-

latory DNA methylation. No significant correlation between the expression of any gene and global DNA methylation was found. In

particular, analogous to the situation in serum conditions in vitro, global DNAmethylation levels were not correlated to the expression

of theDnmt and Tet genes (Figure 5B). To investigate whether DNAmethylation correlatedwith the spatial location of cells, a potential

indicator of post-transcriptional regulation of cell fate, all genes with (unadjusted) p-values for correlation to global H3K4me1methyl-

ation smaller than 0.01 were selected. After adjusting for multiple testing, the expression of no gene was significantly correlated

to global methylation. This list of 78 genes was then compared with a list of 462 genes that are differentially expressed along the
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embryonic body axis at E6.5 (Scialdone et al., 2016). There was no overlap between these sets. Taken together, this suggests that

variability in DNA methylation between cells is not the result of slow effects extrinsic to DNA methylation turnover.

DNA methylation heterogeneity should therefore either stem from cell-to-cell variability in the process of global de novo methyl-

ation between E4.5 and E6.5, oscillatory DNA methylation turnover, or a combination of both. To distinguish these possibilities in

the sequencing data biophysical modeling was employed to study the shape of distribution of global DNA methylation levels across

cells over time. The first step of the analysis focused on a single cell which undergoes global de novo methylation. As global DNA

methylation levels are typically calculated as an average over thousands of local genomic elements, cell-to-cell variability in these

averages resulting from the stochastic nature of biochemical reactions is negligible compared to variations in the onset and rates

of de novo methylation. It was assumed that the average level of DNA methylation in a given set of loci follows a sigmoidal form.

Measuring time in units of the inverse global rate of de novomethylation andmethylation levels in units of their saturation levels during

later stages of development, the average global methylation level in a given set of genomic regions was parametrized as

mðDtÞ= 1

1+ expð�DtÞ:

The precise form of mðtÞ is empirically unknown, but the following results are insensitive to its specific choice. Importantly, vari-

ability in the rates and times of onset of de novomethylation can, by appropriate rescaling of time, be summarized in the single dimen-

sionless quantityDt. To continuewe denote by fðm;mÞ the distribution ofmethylation values across cells whichwould be observed in

steady state conditions with average methylation levelm. More precisely, fðm;mÞ is the conditional probability that a cell has global

methylationm given that the average global methylation across statistically identical cells ism. With this, the probability that a cell has

methylation level m at a time t is

pðm; tÞ=
Z t

0

fðm;mðDtÞÞgðDt; tÞdDt;

where gðDt; tÞ is the probability that at time t the de novo methylation process has been active for a time Dt.

In order to quantitatively understand cell-to-cell variability throughout the process of de novomethylation three possible scenarios

were investigated.

In the case that de novomethylation is not superimposedwith oscillatory dynamics, fðm;mÞ is unimodal. If gðDt; tÞ is also unimodal

(e.g. because a homogeneous population of cells exits the pluripotent state in a stochastic manner), then pðm; tÞ is unimodal at all

times. The time evolution of pðm; tÞ was obtained by numerical integration and it is depicted in Figure 5C (top).

gðDt; tÞ can be bimodal if there is early lineage segregation of epiblast precursors, such that the exit from pluripotency and the start

or the rate of de novomethylation are sufficiently different between two subpopulations. The time evolution of pðm; tÞ in such a sce-

nario is exemplarily shown in Figure 5C (middle). The distribution of global methylation levels in this case is bimodal only at interme-

diary stages of the de novo methylation process.

Last, if DNA methylation in a steady state scenario is oscillatory, the probability of methylation levels at the extreme points of the

dynamics is higher than for intermediary levels (note that this is not necessarily the case in serum conditions, where oscillations in

cells differ in amplitude and midpoint due to differential expression of Dnmt3 and Tet genes). In this case fðm;mÞ takes a bimodal

form. The shape of fðm;mÞ depends on the molecular details of DNA methylation turnover. For simplicity, and without loss of gen-

erality, f was approximated by a Gaussian mixture distribution,

fðm;mÞ= 1

2
ffiffiffiffiffiffi
2p

p
s2

e
�½x�ðm�A=2Þ�2

2s2 +
1

2
ffiffiffiffiffiffi
2p

p
s1

e
�½x�ðm+A=2Þ�2

2s2
1 ;

where A is the amplitude of the oscillation. Progress can bemade by noting that in this case pðm; tÞ is bimodal if, at a given time t, the

variance of the distribution of m across different cells is smaller than the amplitude of the oscillation. This distribution is given by

hðm; tÞ=
Z t

0

dðm�mðDtÞÞgðDt; tÞdDt:

For notational simplicity the same symbolm is used for the random variable and for the functional form of the dynamics of de novo

methylation in single cells. The time evolution of hðm; tÞwas then studied separately for early times and for the long time asymptotics.

In the former case mðDtÞ was expanded to first order such that mðtÞ= uðDtÞ�1 +O½u�2� with uðDtÞ = expð� DtÞ. The variance of

hðm; tÞ then obeys

VarðmÞh
Z N

0

24m�
Z N

0

m0hðm0; tÞdm0

352

hðm; tÞdm= uðDtÞ�2
es2



es2 � 1

�
:

Therefore, the variance of m initially increases monotonically in time.

For t/N,mðtÞwas expanded to first order as a Laurent series, such thatmðDtÞ = 1� uðDtÞ + O½u2�. The variance of hðm; tÞ then
evolves as

VarðmÞ= uðDtÞ2es2


es2 � 1

�
:
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Asymptotically, when average global DNAmethylation approaches its maximum level, the variance decreases monotonically over

time. In between these asymptotic regimes there must therefore be a maximum of the variance. Oscillations in global DNA methyl-

ation are therefore reflected in bimodality at early and late times of the global de novo methylation process. At intermediary times

bimodality should only be observed if the amplitude of oscillations is of the same order as the global changes in DNA methylation

that occur during the process of de novo methylation. Figure 5C (bottom) shows pðm; tÞ for the oscillating case.

In summary, the three generic scenarios are clearly distinguishable by the occurrence of bimodality at different stages during the de

novo methylation process. The observation of bimodality at E5.5, where global DNA methylation has reached its saturation level, is

only compatible with an oscillatory modulation of DNA methylation. In agreement with the characterisation of oscillatory dynamics

in vitro, a bimodal distribution of methylation levels between cells was particularly enriched at genomic regions with a CpG density

between 2 and 3% (Figure 5G).

At a given time in development, different regions of the genome gain methylation in different degrees. While a large degree of this

variation can be tracked back to CpG density we found that even for fixed values of the CpG density, some regions of the genome

remain lowly methylated. A corollary of the theoretical results on the time evolution of bimodality is that at a given time during devel-

opment, bimodality in the distribution of methylation levels across cells should particularly emerge at regions which remain lowly

methylated and regions which have reached their maximum methylation levels. To test whether this pattern of oscillatory dynamics

is reflected in the single-cell sequencing data tiled the genome was tiled into coverage-based windows and for each window the

average methylation level across cells and the p-value for bimodality of methylation levels in the respective genomic region was

calculated. Binning average methylation levels, the fraction of significantly bimodal elements ðp< 0:05Þ was obtained for each bin.

Bimodality is indeed specific to elements that either remain lowly methylated at E5.5 or which have already reached the maximum

value at this time (Figure 4F). As the former conditionmight overlapwith elements that are inaccessible for DNMT3 binding, bimodality

is more pronounced for higher average methylation levels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Published data sets used in analysis are listed in Table S1.

Bisulfite Sequencing
Raw sequence reads were trimmed to remove both poor quality calls and adapters using Trim Galore (v0.4.1, www.bioinformatics.

babraham.ac.uk/projects/trim_galore/, Cutadapt version 1.8.1, parameters: �paired) (Martin, 2011). Trimmed reads were first

aligned to the mouse genome in paired-end mode to be able to use overlapping parts of the reads only once while writing out un-

mapped singleton reads; in a second step remaining singleton reads were aligned in single-end mode. Alignments were carried

out with Bismark v0.14.4 (Krueger and Andrews, 2011) with the following set of parameters: a) paired-end mode: �pbat; b) sin-

gle-end mode for Read 1: �pbat; c) single-end mode for Read 2: defaults. Reads were then deduplicated with deduplicate_bismark

selecting a random alignment for position that were covered more than once. CpG methylation calls were extracted from the dedu-

plicated mapping output ignoring the first 6 bp of each read (corresponding to the 6N random priming oligos) using the Bismark

methylation extractor (v0.14.4) with the following parameters: a) paired-end mode: �ignore 6 –ignore_r2 6; b) single-end

mode: �ignore 6. SeqMonk version 0.32 was used to compute methylation rates and coverage. To QC BS-seq data, pairwise Pear-

son correlation coefficients were calculated using methylation levels averaged over 10kb tiles. Replicates within the same time point

were on average more highly correlated than between time points (r = 0.885 versus 0.866). For subsequent analyses, replicates were

merged.

Further statistical analysis was performed by custom scripts in Perl and R. Averages were weighted by coverage depth. For

enhancers, we took into account regions which had higher total coverage depth throughout the time course than the median. For

exons and promoters, which include regions with significantly varying CpG density, we filtered for regions below the 1st quartile in

CpG density and above the 95th percentile in total coverage depth to calculate average methylation levels. To estimate the bounds

of technical noise we followed standard methods by considering methylation of CpGs as statistically independent, such that the total

number of methylation reads in a given region follows a binomial distribution. For each genomic region we calculated the distribution

of methylation levels under the null hypothesis from 1000 binomial samples, given by the same local average coverage and methyl-

ation rate found in the experiment. Confidence bounds were then obtained from the distribution of weighted averages over all

regions.

Spectral analysis is complicated by the fact that, given the temporal resolution of the time series, statistical significance in period-

icity cannot be rigorously established on the level of single elements after multiple testing correction. Rather, we investigated whether

parallel oscillatory dynamics is enriched overmany genomic elements. To determine the distribution of spectral powers under the null

hypothesis, we sampled spectral powers using the Lomb-Scargle method over 2.5e7 uncorrelated and normally distributed time

series, taking into account the possibility of artificial spectral peaks that arise from the non-uniformity of time points. The average

spectral power over a large set of genomic regions for a given period (or frequency) is normally distributed and we used t tests to

determine statistical significance for the enrichment of periods with respect to the null hypothesis. For spectral analysis, slow trends

in average DNAmethylation levels were removed by considering the residuals after fitting to a second order polynomial. It is important

to note that the limited number of time points and their non-uniformity gives rise to correlations in spectral powers aswell as a discrete

set of possible enriched periods, which is reflected in a periodicity in the average spectral powers.
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To estimate the amplitude of the oscillations (excess variance) we rescaled the weighted variance of methylation levels across time

points by the variance of methylation levels expected from a Bernoulli trial of a length corresponding to the average coverage ðcÞ and
average methylation level ðmÞ for a given genomic window (technical variability), VarðmÞ=½mð1� mÞ=c�.

Amplicon Bisulfite Sequencing
The first 8 bp of Read 2, representing unique molecular identifiers (UMIs), were removed and written into the sequence IDs instead.

The reads were then subjected to adapter and quality trimming using Trim Galore (v0.4.2; default parameters) and aligned to the

mouse genome (build GRCm38) using Bismark (v0.16.3, parameters:�non_directional). After mapping reads were deduplicated us-

ing the UMI-mode of deduplicate_bismark (options –bam –barcode).

For spectral analysis we filtered for data points with more than 100 reads and used elements with more than 20 valid time points.

(n = 16 for release and n = 16 for control). Spectral analysis was performed using the Lomb-Scargle method with a scanning interval

ranging from 90 to 180 minutes. Spectral peaks at the boundaries of the scanning interval were discarded.

Knock-out ESC and EB scBS-Seq Data Processing
Raw sequence reads had the first 6 base pairs clipped off the 5’ end to remove 6N random priming portion of the reads, andwere also

trimmed to remove both poor quality calls and adapters using Trim Galore (v0.4.1, www.bioinformatics.babraham.ac.uk/projects/

trim_galore/, parameters: �clip_r1 6, Cutadapt v1.8.1). Remaining sequences were then aligned to the mouse genome (build

GRCm38) with Bismark (v0.14.5) in single-endmode (parameters:�non_directional). Methylation calls were extracted after duplicate

sequences had been excluded.

RNA-Seq Data Analysis
Read counts associated with different genomic features where obtained using Bioconductor’s GenomicAlignments package

in R. We excluded H3K4me1 regions that overlap with exons. For the interpretation of read counts we needed to separate technical

from biological variability between time points. While this potentially ambiguous we reasoned that rapid changes associated with

DNA methylation oscillations must be less pronounced in transcripts with significantly longer average lifetime than the period of

DNA methylation oscillations. With long-lived transcripts as a reference we focussed our analysis on short-lived transcripts, such

as reads aligned to enhancer or intron regions. To this end, we calculated normalisation factors using size factor normalisation on

transcripts with an average lifetime of more than the median lifetime of all transcripts (corresponding to roughly 7 hours, (Sharova

et al., 2009b)). All downstream analysis was performed on log-transformed normalised read counts, after adding an offset of 1.

scBS-Seq Data Analysis
For violin plots shown in Figures 1 and Figures S1 and S2, SeqMonk version 0.32 was used to compute methylation rates, using

annotated loci (Table S1) withmore than 5CpGs each containing at least one read. For each cell, all sites with DNAmethylation values

were included in beanplots prepared using R (beanwidth = 10).

To estimate biological variability of DNA methylation between cells (Figure 4C and S6A) we rescaled the weighted variance of

methylation levels between cells by the variance of methylation levels expected from a Bernoulli trial of a length corresponding to

the average coverage ðcÞ and averagemethylation level ðmÞ for a given genomic window (technical variability), VarðmÞ=½mð1�mÞ=c�.

Embryo scM&T-Seq Analysis
Data processing was performed as previously described (Angermueller et al., 2016).

Downstream analysis was performed using custom scripts in Perl and R. Averages over methylation rates and correlations were

weighted by coverage depth. For weighted correlation between Dnmt/Tet expression and global methylation we took the difference

of the average log-transformed normalized read counts of the Dnmt3a/b/l/1 genes and Tet1/2/3 genes, respectively, after removal of

dropouts. For a given cell, to estimate developmental age we tiled the genome into regions of 100 informative CpGs (more than one

read each). We then filtered for tiles with CpG density between 10% and 15%. Pseudo time was defined as the average fraction of

forward reads in these regions, pt = N�1
P
i

fi=ðfi + biÞ, where fi and bi are the number of forward and backwards reads in a region,

respectively, and N Is the total number of regions under consideration. The resulting pseudo time series where then detrended using

linear regression and rescaled by the expected technical variance in methylation levels.

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing datasets reported in this paper is GEO.
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