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ABSTRACT 

In patients with asthma or chronic obstructive pulmonary disease rhinovirus infections can provoke 

acute worsening of disease and limited treatment options exist. Viral replication in the host cell 

induces significant remodeling of intracellular membranes, but few studies have explored this 

mechanistically or as a therapeutic opportunity. We performed unbiased lipidomic analysis on 

human bronchial epithelial cells infected over a 6 hour period with the RV-A1b strain of rhinovirus to 

determine changes in 493 distinct lipid species. Through pathway and network analysis we identified 

temporal changes in the apparent activities of a number of lipid metabolizing and signaling enzymes. 

In particular, analysis highlighted fatty acid synthesis and ceramide metabolism as potential anti-

rhinoviral targets. To validate the importance of these enzymes in viral replication, we explored the 

effects of commercially-available enzyme inhibitors upon RV-A1b infection and replication. Ceranib-

1, D609 and C75 were the most potent inhibitors, which confirmed that fatty acid synthase and 

ceramidase are potential inhibitory targets in rhinoviral infections. More broadly, this study 

demonstrates the potential of lipidomics and pathway analysis to identify novel targets to treat 

human disorders. 
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Introduction 

Rhinoviruses (RVs), members of the picornavirus family are the causative agent of the common cold. 

Like other picornaviruses they have a single positive-strand RNA genome of about 7.5kb. Following 

infection and entry into the cytoplasm, the viral genome is translated and post-translationally cleaved 

into 4 capsid proteins and 7 non-structural proteins that participate in viral replication. All known 

picornaviruses use the cytoplasmic surface of ER/Golgi membranes for genome replication and the 

morphology of these membranes is greatly remodeled by the virus into replication organelles or 

complexes. The viral non-structural proteins 2B, 2C and 3A associate with the ER and Golgi membranes 

and are thought important in remodeling through recruitment of host proteins. In addition to 

morphological changes to the ER and Golgi, viral replication induces changes to the lipid composition 

of cellular membranes. A number of host factors have been identified as being involved in membrane 

remodeling and viral replication including Golgi Brefeldin A Resistant Guanine Nucleotide Exchange 

Factor 1/ ADP-ribosylation factor 1 (GBF1/Arf1) (1), phosphatidylinositol-4-kinase (PI4K) (2, 3), 

Oxysterol Binding Protein (OSBP) (4-6) and Protein Kinase D (PKD) (7), inhibitors of these targets inhibit 

replication of a number of picornaviruses. This suggests membrane remodeling is important for 

picornaviral replication and represents potential for the discovery of novel anti-viral targets. 

In this study we have performed an open platform unbiased analysis of changes to the host lipidome 

during a single replicative cycle of RV in primary human bronchial epithelial cells (HBECs). We analyzed 

lipid samples extracted from synchronously infected cells over a time course of 6 hours and found 

evidence of multiple lipid metabolic pathways being altered with an unexpected and remarkable 

complexity of changes in both lipid class and the length and saturation of acyl chains. These studies 

identified lipid modifying enzymes as potential anti-viral targets and we tested these with chemical 

inhibitors demonstrating particular lipid modifying enzymes may represent potential anti-viral drug 

targets. 
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MATERIAL & METHODS 

Cells: 

Human bronchial epithelial cells (HBECs) (CC2540; Lonza) were cultured following manufacturer’s 

recommendations. HeLa H1 (ATCC CRL-1958) and HeLa Ohio (European Collection of Authenticated 

Cell Cultures [ECACC] 930021013) were used to produce RV1B and to perform viral endpoint titre 

determination, respectively. 

 

Virus infections: 

HRV-A1b stocks (ATCC) were produced by infection of HeLa H1 and were titrated on HeLa Ohio cells 

to determine the TCID50/mL. 

A number of compounds were tested for their anti-viral effect at a single concentration of 10μM. 

Compounds showing activity were subsequently tested for their anti-viral activity over concentration-

response curves ranging from 0.5 to 20μM. For the single dose experiments, a dose at which highest 

virus replication inhibition is achieved without cytotoxicity was used (10μM for Ceranib 1 and D609; 

20μM for 3-O-Methyl-SM, SK-I, SK-II, VU 0155069 and C75). HBECs were pre-treated with the specified 

concentration of the compounds or the vehicle alone for 1h at 37°C. RV-A1b was added to the cells at 

MOI 5; incubated for 1h at room temperature (RT) to obtain a synchronous infection, washed with 

BEBM to remove unbound virus; and further incubated in fresh medium containing the compound or 

the vehicle for 7h at 37°C. At the end of the infection/replication period, cells were harvested for 

further analysis by qRT-PCR, WB or endpoint titre determination by TCID50. The cytotoxicity of the 

compounds at 9h was determined by using the Viral ToxGlo assay (Promega) according to the 

manufacturer’s instructions. 

 

qRT-PCR: 
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After the 7h incubation period, cells were lysed with RLT buffer (Qiagen) supplemented with β-

Mercaptoethanol (Sigma) at 1:200 dilution. mRNA was extracted by using the RNeasy minikit (Qiagen) 

according to manufacturer´s instructions. 1μg of RNA was reverse-transcribed for cDNA synthesis for 

1h at 37oC by using the Omniscript RT kit (Qiagen). Quantification of the levels of viral RNA was 

conducted by using specific primer (Invitrogen) and probe (Eurofins) sequences, as follows: RV forward 

primer 5´-GTGAAGAGCCSCRTGTGCT-3´ (50 nM), RV reverse primer 5´-GCTSCAGGGTTAAGGTTAGCC-3´ 

(300 nM), HRV probe 5´-TGAGTCCTCCGGCCCCTGAATG-3´ (100 nM); 18S forward primer 5´-

CGCCGCTAGAGGTGAAATTCT-3´ (300 nM), 18S reverse primer 5´-CATTCTTGGCAAATGCTTTCG-3´ (300 

nM), and 18S probe 5´-ACCGGCGCAAGACGGACCAGA-3´ (100 nM). Analysis was performed by using 

QuantiTect Probe PCR master mix (Qiagen) and the LightCycler 480 real-time PCR system (Roche). For 

absolute quantification, the level of each gene was normalized to the level of 18S rRNA, and the exact 

number of copies of the gene of interest was calculated by using a standard curve generated by the 

amplification of plasmid DNA. 

 

Western Blotting: 

Cells were lysed in ice-cold radioimmunoprecipitation assay (RIPA) buffer (Sigma) supplemented with 

protease (Roche) and phosphatase (Sigma) inhibitors (according to the manufacturers’ instructions), 

and their protein content was measured by the bicinchoninic acid assay (Thermo Scientific). Equal 

amounts of protein were loaded onto 4 to 12% Bis-Tris SDS-PAGE gels (Life Technologies), followed by 

transfer onto polyvinylidene difluoride (PVDF) membranes (Life Technologies). Membranes were 

blocked in Tris-buffered saline (TBS) supplemented with 5% bovine serum albumin (BSA) and 0.1% 

Tween 20 for 1h at RT. Primary antibodies were incubated overnight at 4°C, and secondary antibodies 

were incubated for 1h at RT, followed by the addition of ECL reagent and data collection on a Fusion 

FX7 image analyser (Vilber Lourmat). Analysis of quantified images was performed by using ImageJ. 

Primary and secondary antibodies used: rabbit anti-RV 2C (generated and used as previously described 
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(8)), rabbit anti-Lamin B1 (LB1) (Proteintech), donkey anti-rabbit conjugated to horseradish peroxidase 

(HRP) (Jackson ImmunoResearch). 

 

LDL uptake: 

HBECs were grown on coverslips and pre-treated with vehicle or compound for 1h at 37°C. Human 

non-acetylated LDL conjugated to BODIPY™ FL (Thermo Fisher Scientific) was added at a final 

concentration of 25μg/mL, also in the presence of vehicle or compound, and cells were incubated 

for 1h at 37°C. Cells were fixed with 4% paraformaldehyde (PFA), washed with PBS, permeabilized 

then stained with a mouse anti-GM130 antibody (BD Pharmigen) followed by a donkey anti-mouse 

antibody coupled to Alexa Fluor 546 (Jackson ImmunoResearch). LDL quantification is shown as the 

fluorescence ratio between LDL and GM130. Cells from five different fields of each condition and 

from three independent experiments were quantified using ImageJ. 

 

Virus endpoint titre determination (TCID50/mL): 

Cells and supernatant were scraped, frozen-thawed twice, and centrifuged at 10,000g for 5 min at 4°C 

to remove cell debris, and the supernatant containing the viral particles was used to perform TCID50 

titration assays, as follows. HeLa Ohio cells were incubated in 96-well plates in DMEM (supplemented 

with 2% FBS and 1% penicillin-streptomycin) with 8-fold dilutions of the virus in six replicates for 5 

days. Titration was assessed by the presence or absence of cytopathic effect (CPE) in each well by 

using an RV-A1B stock as a positive control. 

 

Lipidomics  

Cells were harvested, washed twice in ice-cold PBS and then flash-frozen in liquid nitrogen. Cell 

pellets were washed twice with cold PBS and re-suspended in 1.5 ml methanol and 40 μl lipid 

standards added. This sample of lipid standard contained 17 : 0-cholesterol ester (CE; 400 ng), 

cholesterol-d7 (CH-d7; 1000 ng), 17 : 1/17 : 1/17 : 1-triacylglycerol (TG; 800 ng), 17 : 0/18 : 1-
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diacylglycerol (DG; 200 ng), 17 : 0-monoacylglycerol (MG; 100 ng), 17 : 0-free fatty acid (FFA; 400 

ng), 17 : 0-fatty acyl coenzyme A (FaCoA; 100 ng), 17 : 0-fatty acyl carnitine (FaCN; 50 ng), 17 : 0/18 : 

1-phosphatidic acid (PA; 50 ng), 17 : 0/18 : 1-phosphatidylcholine (PC; 400 ng), 17 : 0/18 : 1-

phosphatidylethanolamine (PE; 200 ng), 17 : 0/18 : 1-phosphatidylglycerol (PG; 50 ng), 17 : 0/20 : 4-

phosphatidylinositol (PI; 400 ng), 17 : 0/18 : 1-phosphatidylserine (PS; 200 ng), 14 : 0/14 : 0/14 : 0/14 

: 0-cardiolipin (CL; 200 ng), C17-platelet-activating factor (PAF; 50 ng), C17-2-lysoplatelet-activating 

factor (LysoPAF; 50 ng), 17 : 0-2-lysophosphatidic acid (LPA; 50 ng), 17 : 0-2-lysophosphatidylcholine 

(LPC; 100 ng), 17 : 1-2-lysophosphatidylethanolamine (LPE; 100 ng), 17 : 12-lysophosphatidylglycerol 

(LPG; 50 ng), 17 : 1-2-lysophosphatidylinositol (LPI; 100 ng), 17 : 1-2-lysophosphatidylserine (LPS; 50 

ng), C17-ceramide (Cer; 50 ng), C17-sphingosine (SG; 50 ng), 12 : 0-ceramide-1-phosphate (Cer1P; 50 

ng), C17-sphingosine-1-phosphate (S1P; 50 ng), C17-sphingomyelin (SM; 400 ng), C17-sphingosine-1-

phosphocholine (S1P; 50 ng) and C17-monosulfogalatosyl ceramide (Sul-Gal-Cer; 50 ng). 1.5 ml of 

LCMS-grade water and 3 ml chloroform were added. The mixture was subjected to Folch 

extraction. After collection of the lower phase, the upper phase was re-extracted with 3 ml 

synthetic lower phase (chloroform/methanol/water at volume ratio of 2:1:1, using the lower 

phase for re-extraction of lipid). The lower phase from both extractions was combined and dried 

under vacuum at 20 °C with SpeedVac (Thermo) and re-dissolved in 100 μl chloroform. 7 μl were 

injected for LC/MS/MS analysis. A Thermo Orbitrap Elite system (Thermo Fisher) hyphenated 

with a five-channel online degasser, four-pump, column oven, and autosampler with cooler 

Shimadzu Prominence HPLC system (Shimadzu) was used for lipid analysis as previously described 

(9, 10). In detail, lipid classes were separated on a normal-phase Cogent silica-C column (150 × 

2.1 mm, 4 μm, 100 Å, MicoSolv Technology) with 

hexane/dichloromethane/chloroform/methanol/acetanitrile/ water/ethylamine solvent gradient 

based on the polarity of head group. High resolution (240k at m/z 400) / accurate mass (with 

mass accuracy <5 ppm) were used for molecular species identification and quantification. The 

identity of lipid was further confirmed by reference to appropriate lipids standards. Orbitrap Elite 
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mass spectrometer operation conditions were as follows. For positive ion analysis: heated ESI 

source in positive ESI mode; heater temperature, 325 °C; sheath gas flow rate (arb), 35; aux gas 

flow rate (arb), 5; sweep gas flow rate (arb), 0; I spray voltage, 3.5 kV; capillary temperature, 

325 °C; and S-lens RF level, 60%. Orbitrap mass analyzer was operated as SIM scan mode with 

two events. Event 1: mass range, m/z 238-663; and mass resolution, 240 k at m/z 400. Event 2: 

mass range, m/z 663-1088; and mass resolution, 240 k at m/z 400. B. For negative ion analysis, 

heated ESI source in negative ESI mode; heater temperature, 325 °C; sheath gas flow rate (arb), 

45; aux gas flow rate (arb), 10; sweep gas flow rate (arb), 0; I spray voltage, 3.0 kV; capillary 

temperature, 375 °C; and S-lens RF Level, 70%. Orbitrap mass analyzer was operated as SIM scan 

mode with two events. Event 1: mass range, m/z 218-628; and mass resolution, 240 k at m/z 400. 

Event 2: mass range, m/z 628-1038; and mass resolution, 240 k at m/z 400 as previously 

described (11, 12). All the solvents used for lipids extraction and LC/MS/MS analysis are LC-MS 

grade from FisherScientific. 

For phosphoinositide analysis 340 μl of 1 mM HCl was added at 4 °C to the cell pellet, and 10 ng of 

PIP3 internal standard added. 750 μl of extraction mixture (484 ml of methanol, 242 ml of 

chloroform and 23.55 ml of 1 M HCl) was added to each sample before centrifugation (1,500 g for 5 

min at 4 °C). Before further centrifugation, 725 μl of chloroform was added. The lower phase was 

collected and mixed with 708 μl of the upper phase of pre-derivitization wash mixture (240 ml of 

chloroform, 120 ml of methanol and 90 ml of 0.01 M HCl), and samples were again centrifuged. The 

resultant lower phase was collected. 50 μl of 2 M trimethylsilyl-diazomethane (Sigma) in hexane was 

added in a fume hood for 10 min at room temperature. The reaction was quenched with 6 μl of 

glacial acetic acid and 700 μl of the upper phase of the post-derivitization wash (240 ml of 

chloroform, 120 ml of methanol and 90 ml of water) added before mixing, centrifugation and 

collection of the lower phase. Samples were dried at room temperature and dissolved in 80 μl of 

methanol and 20 μl of water. Analysis was undertaken using mass spectroscopy on a QTRAP 6500  
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mass spectrometer (AB Sciex)  connected to a Prominence high-performance liquid chromatography 

(HPLC) system using a 1.0 × 50 mm column (Waters) as previously described (13). 

 

Pathway analysis. Calculation of Z score 

Z-score 

To calculate the Z-score the probability of 𝑥 was considered in an experiment that consisted of a 

large number of independent trials approximated by a normal probability density 

function: "
√$%&

𝑒()
(+,-)/

/0/ 1. 

A normal distributed variable 𝑥 was standardised by subtracting the mean and dividing by the 

standard deviation of the experiment:   𝑍 =	 5(6
&

. This z-value or z-score described how many 

standard deviations (𝜎) of the experimental result (𝑥) diverged from the mean of population (𝜇). 

The larger the z-score is, the less likely the experimental result is due to chance. The probability can 

be computed from the cumulative standard normal distribution function: Φ(𝑍) = 𝑃(𝑍 ≤ 𝑧) =

∫ "
√$%

𝑒
,>/

/ 𝑑𝑢A
(B . That gives the probability 𝑃 that an experimental result with a z-score less than or 

equal to that observed is due to chance. Subtracting 𝑃 from one: 𝑄 = 1− 𝑃 = 1 −Φ(𝑍) 

gives 𝑄, the probability that the observed z-score is due to chance. This is by definition, a p-value. 

Consequently, z-score can be calculated from p-value by taking the inversed function:  𝑍 = Φ("(1 −

𝑄). 

Calculation of Z scores for the determination of active pathways was performed as follows.  

Let 𝐴 = {𝐴", 𝐴$, … , 𝐴J} for the pathway of interest, where 𝐴L  (𝑖 = 1,2, … , 𝑘) are metabolites. The 

scoring scheme can be described in two steps. Firstly, compute a weight vector 𝜔 =

[𝜔", 𝜔$, … ,𝜔J("] , where $𝜔L =
STUV
ST

, 𝑖 = 1,2, … , 𝑘 − 1. As a result, the weight for the reaction in 𝐴 
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will therefore indicate the shift toward more product or reactant in infected cells than uninfected 

cells. For each weighted edge of the pathway, we perform a student’s t-test between the infected 

and baseline samples, from which a p-value is obtained (the alternative hypothesis is that the mean 

in infected samples is greater than that in normal samples). Assuming that the t-distribution can be 

approximated by a normal distribution; therefore, the p-value can be converted to Z-score by taking 

𝑍 = 𝐶𝐷𝐹("(1 − 𝑝), where 𝐶𝐷𝐹 is the cumulative distribution function. By doing this each edge 𝑖 is 

assigned a Z-score 𝑍L  (𝑖 = 1,2, … , 𝑘 − 1). The score for pathway 𝐴 is computed as follows: 𝑍S =

"
√J("

∑ 𝑍LJ("
L\"  As a result, 𝑀𝑒𝑎𝑛(𝑍S) =

"
√J("

∑ 𝑀𝑒𝑎𝑛(𝑍L) = 0J("
L\" , 𝑉𝑎𝑟(𝑍S) =

"
J("

∑ 𝑉𝑎𝑟(𝑍L) = 1J("
L\"  

This means 𝑍S also follows a normal distribution. In order to check if pathway 𝐴 is active (significant) 

in infected over healthy cells, we chose the significance level (p-value) to be 0.05, as a result, the 

corresponding Z-score is computed to be 1.645. Thus, if 𝑍S > 1.645 then 𝐴 is classified as active.  

Network Analysis was performed as follows: A complex metabolic network extracted from three 

databases including iRefIndex (14), HMDB (15)  and Recon2 (16) was constructed. Prizes were 

assigned to metabolites (nodes) computed from statistical significance levels. We also assigned 

negative prizes (penalties) to highly connected nodes to avoid less reliable high degree connected 

nodes. Costs were assigned to interactions (edges) derived from the interaction probabilities. The 

optimization algorithm was run with different parameter sets and obtain optimal subnetworks which 

maximize the subnetwork robustness and the optimal subnetworks were merged into a unique 

optimal subnetwork. 

In order to obtain independent pathways, an extra node was added to the network. This node was 

then connected to all terminals via edges with the same weight 𝜔. We used the message passing 

approach (17) to find an optimal forest solution 𝐹 with 𝑉h nodes and 𝐸h edges, by minimizing the sum 

of the total cost of all edges in the tree and the total penalties of all nodes which are not contained in 

the tree. The objective function for optimisation is: 𝑓(𝐹) = 	𝛽∑ 𝑏(𝑣)n∉pq + ∑ 𝑐(𝑒) + 𝜔𝑘t∈vq  
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where 𝑏(𝑣) is the prize assigned to each node 𝑣 ∈ 𝑉h, 𝑐(𝑒) is the cost of each edge 𝑒 ∈ 𝐸h, 𝑘 

represents the number of trees in the forest 𝐹. We computed the prize for each node as –log(P value) 

of the significance levels of their alteration in the infected cells by two-tailed student’s t-test. The cost 

𝑐(𝑒) are one minus the edge weight. Here the edge weights were computed using the MIScore 

algorithm (18). This algorithm considers the number of publications, type of interaction and 

experimental methods to compute confidence scores for molecular interactions. The parameters 𝛽 

and 𝜔 were used to control the size of the resultant forest and the number of tree in the forest 

solution, respectively. In order to avoid including highly connected nodes (hub nodes) which may 

provide less insight information of altered pathways, we updated the prizes for all nodes in the 

network as follows: 𝑏w(𝑣) = 𝛽. 𝑏(𝑣) − 𝜇. 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣). Here 𝜇 is the parameter that controls the 

degree-based negative prizes. We fixed the value of 𝜔 at 50 while varying the values of 𝛽 and 𝜔 to 

adjust the effect of terminal nodes and hub nodes in the final forest. Increasing 𝛽 promoted more 

terminal to be included in the optimal network while increasing 𝜇 weakened the hub nodes in the 

optimal solution. We considered different values of 𝛽 and 𝜔 in the ranges of 1 to 20 and 0.05 to 0.4, 

respectively, based on the input terminal sets.  

 For a given set of parameters (𝛽L, 𝜇L, 𝜔) we also performed perturbation analysis to determine 

the robustness of the optimal forest (𝐺L) by generating a noisy optimal forest (𝑇L) obtained after 

adding random noise to edge weights. We then calculated a robustness score for forest (𝐺L)  by 

determining a fraction of overlapping nodes between (𝐺L) and (𝑇L) as follows: 𝑅|T =
∑ }~�
��T
��V

��T
              

𝑓�� = �1,			𝑖𝑓	𝑛� ∈ 𝐺L ∪ 𝑇L
0,								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

� where for some optimal network 𝐺L with 𝑁|T nodes, 𝑅|T shows the 

robustness score of forest 𝑖. After this step, all optimal forests were sorted in descending order of 

their robustness scores. We then used some top (or all) optimal resultant forests and merged them 

into a final optimal network. This optimal network therefore showed the complex interconnection of 

metabolic pathways. In the next step, we calculated a robustness score for each node in the final 
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optimal network: 𝑅�T =
∑ }~T,�
�
��V

∑ ∑ }~T,�
�
��V

�
T�V

 , 𝑓�T,� = � 1,			𝑖𝑓	𝑛L ∈ 𝐹�(𝑛)
0,								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

�; where for a family of 𝑀 optimal 

forests with 𝑁 nodes, 𝑅�T  represents the robustness score of node 𝑛L  (𝑖 = 1,2, … ,𝑁), and 𝐹�  

represents nodes in forest 𝑗. As a result, the robustness score of a particular node is therefore 

proportional to the number of times that node was selected to include in the optimal forests. After 

this step, all enzymes will be sorted in descending order of their robustness scores. We then chose 

some of the top enzymes for consideration. In order to compute robustness scores for edges of the 

network, we considered both frequency of edge chosen for optimal networks and the probability of 

interaction given by that edge. The scores for edges were therefore calculated as follows: 

 𝑅�T =
��T .∑ }�T,�

�
��V

∑ ∑ }�T,�
�
��V

�
T�V

, 𝑓�T,� = � 1,			𝑖𝑓	𝑛L ∈ 𝐹�(𝑛)
0,								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

�. Where for a family of 𝑀 optimal forests with 𝑇 edges, 

𝑅�T  represents the robustness score of edge 𝑒L (𝑖 = 1,2, … , 𝑇), 𝑝�T is the probability of interaction 

given by 𝑒L, and 𝐹�  represents nodes in forest 𝑗. The edge’s robustness scores are therefore show how 

important that edge is in our network. As a result, this measurement was used to determine whether 

a particular interaction should be highly considered over others. 

 

 

RESULTS 

To quantify changes in the lipidome of a relevant host cell during infection with the RV-A1b strain of 

rhinovirus we established conditions where cultures of primary human bronchial epithelial cells 

(HBECs) were synchronously infected with RV-1Ab. Using a high multiplicity of infection (MOI) of 20 

and monitoring viral replication by expression of the viral 2C protein by confocal microscopy (Fig 1) 

we showed that a time course up to 6 h post infection (hpi) produced a consistent, high percentage 

(>80%) infection of HBECs without a substantial cytopathic effect. 

 

Lipidomic analysis. 
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Lipid extracts were prepared from uninfected cells and HBECs infected with RV-A1b at 2, 3, 4, 5 and 6 

hpi. All cultures were performed in triplicate and each experiment performed three times. Thus, data 

collected at each time point represents the mean of 9 samples from 3 independent experiments. The 

lipidomics analysis identified changes not only in the amount of a lipid class as a whole but also 

changes in acyl carbon chain length and saturation of individual lipid species. The analysis 

demonstrated changes in phospholipids, lysophospholipids, fatty acids (FA) and inositol 

phospholipids, in particular a significant decrease in phosphatidylcholine (PC) species and a substantial 

decrease in unsaturated acyl chains (acyl chains with 5,6,7 or 8 double bonds) at 6hpi (Fig. 2A). We 

also observed changes in phosphatidic acid (PA), diacylglycerol (DG), triglycerides (TG) and FA, fatty-

acyl-CoA (FaCoA) and fatty-acyl-carnitine (FaCN).  There were changes in FA species at later stages of 

the infection, particularly those of long fatty acyl chains (>C16) with decreases in the level of 

unsaturation (Fig. 2B). This implies alterations in PA, DG, TG and FA metabolism. Phosphatidylinositol 

(PI) is a functionally important membrane phospholipid which can be phosphorylated to 

phosphatidylinositol 4-phosphate (PI4P) by PI4K and subsequently to phosphatidylinositol 4,5-

bisphosphate (PIP2) by phosphatidylinositol 4-phosphate 5-kinase (PIP5K). Many studies have 

reported the critical role of PI4K as one of the host lipid-regulatory proteins required for the viral life 

cycle. We observed that PI species of shorter chain (C32, C34) are more abundant in virally infected 

cells at the early stage of infection (2hpi) than the uninfected controls, whereas those of longer chains 

(>C34) with high degree of unsaturation (>2) are less abundant than in the uninfected controls. In 

addition at early time points we observed an increase in PI4P levels. These results are consistent with 

changes in PI4K activities in infected cells. The full lipidomics dataset is available as Supplementary 

Information Table 1. 

 

Pathway analysis 
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Simply examining amounts of lipid species has limited benefit in understanding changes in the cell, 

thus we adopted a previously described method (19, 20) to search for active pathways in infected 

cells. This calculates statistical z-scores for all possible lipid pathways to judge whether a particular 

pathway is active or not. Observation of changes in the acyl chain length and number of double 

bonds of FAs suggested changes in FA elongation and desaturation during the viral replication cycle. 

Thus, we searched for active pathways of FA synthesis for which elongation and desaturation 

processes will be highlighted. Fig 3A shows FA synthesis pathways in which potential active 

pathways have been highlighted in red boxes, clearly highlighting the activation of both elongation 

and desaturation processes. We found no sign of active elongation and desaturation at 2hpi, 

whereas both processes were clearly activated at 3hpi; at later time points only the elongation 

process was activated. A complete set of results for active pathways of FA synthesis are summarised 

in Table 1 and pathway maps for the other time points are in Supplementary Figure S1. The early 

activated desaturation pathways (comparing 3hpi to 2hpi) correlated with a reduction in the degree 

of saturation of fatty acids observed (Fig 2). Additionally, the activated elongation pathways 

confirmed the steady increase of acyl carbon chain length seen at later stages of infection (see Fig 2 

at 4,5,6 hpi).    

Pathway analysis was also utilised to examine changes in lipid classes by searching for all possible 

active lipid pathways. Active pathways were computed for each time point as shown in Fig3. Pathway 

maps for all time points are in Fig S2. Table 2 shows all potentially activated and inactivated pathways 

in infected cells over the time course. The observed alterations in lipid pathways suggest host enzymes 

activities that have changed during the viral replication cycle at different time points such as PI4K 

being activated early (2hpi). We also observed shutting off of sphingosine-1-phosphate (S1P) synthesis 

and the synthesis of PC from both phosphatidylethanolamine (PE) and lysophosphatidylcholine (LPC) 

suggesting virus-induced alteration in membrane structure. Additionally DG, that can recruit PKD to 

membranes, was elevated by 2hpi with a close to significant elevation at all other time points. We 

repeated the lipid composition analysis comparing each time point to the control rather than 
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comparing each time point to the previous time point. This showed a consistent increase in 

lysophosphatidylcholine acyltransferase (LPCAT) activity at all time points whereas the S1P pathways 

were activated after 3hpi. Interestingly, PI4K activity was not consistently activated post infection, the 

increase at 2hpi was followed by a reduction in activity though the enzyme was active again at 6hpi 

(Table 2). These analyses also pointed to the potential activation of ceramide synthase (LASS1) and 

phosphatidylcholine-specific phospholipase C (PC-PLC) activities. 

 

Network optimization 

We adopted a further method, independent of pathway analysis, termed the Prize-collecting Steiner 

tree problem (21, 22). This aims to find an optimal forest of trees that highlights enzymes associated 

with potential changed pathways. In contrast to the lipid pathway analysis where only lipid classes 

were analysed, the Prize-collecting Steiner tree problem takes all lipid species into a complex 

metabolic network, which includes nodes detected in experiments (terminals) and nodes that were 

not detected (Steiner nodes). Those nodes (metabolites or proteins) are connected via edges 

representing interactions between proteins as well as substrate-enzymes and product-enzyme 

associations. The input to the network are metabolomics scores that differ between the infected and 

uninfected cells. The algorithm searches an underlying database and outputs an optimal subnetwork 

which shows altered viral infection-associated pathways.  

The output is listed in Supplementary Table S2. As an example, Fig 4 shows part of an optimal 

subnetwork for the 2 hpi time point compared to the uninfected baseline time point for which 

associated enzymes have been highlighted. This analysis showed potential changes in the activities of 

the acyl transferases lysophosphatidylglycerol acyltransferase (LPGAT), lysocardiolipin acyltransferase 

1 (LCLAT1), 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT1-6), and in ectonucleotide 

pyrophosphatase/phosphodiesterase 2 (ENPP2) and phospholipase A2 Group VII (PLA2G7) which 

generate the lysophospholipid substrates for the acyltransferases. There were also potential changes 

in sphingosine kinase 1 and 2 (SPHK1 and 2), sphingosine-1-phosphate phosphatase 1 (SGPP1), 
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ceramide kinase (CERK), ceramide synthase (LASS1) and sphingomyelin phosphodiesterases (SMDP1-

2) enzymes regulating the concentrations of ceramide, sphingosine and S1P. Notably the enzymes 

highlighted from this analysis are consistent with the predictions generated by the pathway analysis. 

Supplemental Table S3 lists the identified enzymes. 

 

 

 

Biological validation. 

The bioinformatics analysis identified host lipid modifying enzymes whose activity changed during a 

single RV replication cycle. To test if these were important for viral replication we selected 18 

inhibitors of enzymes and pathways identified as being of interest through our lipidomics and 

bioinformatics analysis. In a primary screen these compounds were tested at a final concentration of 

10µM in an RV-A1b replication assay in HBECs by end point titre determination (see Fig S3). 8 

compounds were identified as potential inhibitors of viral replication, these appeared to focus on the 

ceramide, S1P, PA and FAS pathways. These were further analysed by quantification of inhibition of 

viral replication by end point titre determination over a full concentration range (Fig 5) and in parallel 

assessed for cytotoxicity. This identified Ceranib 1, D609 and C75 as producing the most profound 

inhibition of viral replication at non-cytotoxic concentrations. To determine where in the viral life cycle 

the compounds were acting, they were tested at a single maximal non-cytotoxic concentration in 

infection assays measuring viral genome replication by qRT-PCR and viral protein synthesis by Western 

blotting with an anti-2C antibody and further confirmation by end point titre determination (Fig 6). 

These data show that each selected compound significantly inhibited viral genome replication and 

protein synthesis indicating action early in the replication cycle. To determine if the compounds were 

affecting viral entry by clathrin-mediated endocytosis (CME) their effects upon LDL uptake by the cells 

were analysed as a control, however none of the compounds had an effect (Fig 6D).  
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DISCUSSION 

Many viruses remodel host cell intracellular membranes as part of their replicative cycle. The aim of 

our study was to identify RV-induced remodelling of cellular lipids in airway epithelial cells. RV is a 

member of the picornavirus family which includes important pathogens in animals and man including 

polioviruses, foot and mouth disease virus, coxsackievirus and hepatitis A virus. RV infections cause 

the common cold which in healthy patients is relatively trivial but in patients with asthma or COPD 

this can provoke serious acute worsening of their disease. We aimed to describe changes in host lipid 

metabolism during RV replication and use this information to identify targets in the host genome 

which may offer novel therapeutic targets for both RV and other RNA viruses that remodel 

intracellular membranes. Whilst the literature contains reports of virus-induced changes in lipids, for 

example H1N1 influenza infection of mouse lung tissue (23) and rotavirus-infected MA104 cells (9), 

no study has utilised pathway analysis and other bioinformatics approaches to identify potential 

molecular targets. 

Picornaviruses induce massive remodeling of intracellular membranes into clusters of double 

membrane bound vesicles with a diameter of 200-400nm resembling autophagosomes (24-27). 

Despite differences between members of the picornavirus family, there are common features with 

polioviruses being the best studied. Polioviruses disrupt traffic through the secretory pathway and the 

2B and 3A non-structural viral proteins, when expressed individually, disrupt the morphology of ER 

and Golgi and influence the transit of protein cargo (8, 28-30). The profound remodelling of host 

membranes has suggested that lipid modifying enzymes might be promising anti-viral targets (31). 

Several examples support this concept. This may in part be through altering the function of Arf1 in. 

Brefeldin A, a drug that inhibits the GTP exchange factor required for Arf1 activation (GBF1) and alters 

COP-I recruitment to membranes (32, 33), impedes the replication of several picornaviruses (34, 35), 

including RV (data not shown). Phospholipase D (PLD), an enzyme whose activity is also regulated by 

Arf1 and implicated in the regulation of membrane trafficking (36), was one of the enzymes identified 

by our pathway analysis as activated by RV (Table 2) thereby adding additional mechanistic insight 
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into the role of Arf1 in viral replication. Positive strand RNA viruses such as enteroviruses and 

flaviviruses recruit host phosphatidylinositol-4-kinase IIIβ (PI4KB) and the viral RNA polymerase 

(3Dpol) binds PI4P and assembles on PI4P enriched membranes (2). The picornaviral 3A protein can 

associate with the Golgi proteins ACBD3 (GCP60) and PI4KIIIβ (37-40) and PI4KIIIβ has been shown to 

be the target of certain anti-polio drugs (41-43). A number of additional host proteins interacting with 

the picornavirus 3A protein have been identified including VAMP-associated protein-A (VAP-A) (37) 

an ER protein essential for the stimulation of sphingomyelin (SM) synthesis by 25-hydroxycholesterol 

(44, 45) and depletion of VAPs by RNAi reduces the levels of PI4P, DG, and SM in the Golgi membranes 

(46). VAP-A binds OSBP, a family of lipid transfer proteins that control cholesterol/PI4P exchange at 

ER-Golgi membrane contact sites and also bind Arf1. OSBP is also targeted by certain anti-picornaviral 

drugs (4, 6, 47) providing further evidence for the requirement for lipid homeostasis at the ER/Golgi 

interface for viral replication. Additionally, the anti-viral effector protein interferon-inducible 

transmembrane protein 3 (IFITM3) interacts with VAP-A and prevents its association with OSBP 

thereby disrupting intracellular cholesterol homeostasis and inhibiting viral entry (48). Thus multiple 

lines of evidence point to PI4P being a pivotal ER/Golgi phospholipid in viral replication. Our data 

confirms viral replication influences PI4Ks activity (Figure 3, Table 2), but notably our analysis 

highlights distinct phases of activation at both 2 and 6 hpi, with no increase during the intervening 

period, pointing to a more complex regulation of phosphoinositide signaling than previously  

Changes in other lipids are implicated in viral replication, for example poliovirus stimulates PC 

synthesis through activation of CTP:phosphocholine cytidylyltransferase (49) and inhibitors of 

phospholipid biosynthesis such as cerulenin block poliovirus replication (50). Recently it has been 

shown that picornavirus infection induces FA import which is linked to PC synthesis and the formation 

of replication complexes. This is linked to long chain fatty acyl-CoA synthetase activity, a host factor 

required for poliovirus replication (51). Early events such as viral entry to cells induce activation of 

sphingomyelinase and the creation of ceramide rich patches on the plasma membrane (52) and 
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picornaviruses also cause redistribution of cellular cholesterol to replication complexes which is 

critical for completion of the viral life cycle (53).  

In our unbiased lipidomics approach we have performed a time course of a synchronous infection of 

RV in primary human bronchial epithelial cells. The results show widespread perturbation of lipid 

metabolic pathways with clear effects of increased FA elongation and desaturation with time and 

increases in long chain fatty acids (C22, C24) particularly at 5,6 hpi (Fig. 2). Pathway analysis also 

suggests that between 2 and 3 hpi there are increases in lysocardiolipin acyltransferase (LPIAT), 

phosphoinositides phosphatase (PIP), DG kinase, LPCAT activities and decrease in phosphoinositide 

phospholipase  (PI-PLA), phosphatidylcholine phospholipase (PC-PLA), SPHK1 and 2 and 

phosphatidylglycerophosphate synthase (PGPS) activities. Between 3 and 4 hpi there are probable 

increases in PI3K and LASS1 activities. Between 4 and 5 hpi there are decreases in phosphatidylserine 

synthase-1 (PSS1), PI3K and between 5 and 6 hpi increases in LPCAT and PLD activities. The clear 

changes detected at 2 hpi, in particular, strongly suggest that the virus is affecting enzyme activities 

directly, whilst at later times it is probable that there are additional effects including upon enzyme 

synthesis, presumably mediated through regulation of SREBP activity. The number and complexity of 

the observed changes does not clearly lead to a single mechanistic understanding of how or why viral 

replication is inducing such profound changes in the host lipidome. However it does generate a 

number of testable hypotheses. 

We have previously shown that PKD is activated late in the RV replication cycle and that PKD inhibitors 

reduce RV replication (7). Since PKD is a DG activated kinase, our time course and pathway analysis 

showing changes in flux through DG pathways are consistent with our previous observations: our data 

shows an activation of DG kinase activity in which DG – a recruiter of PKD was elevated by 2hpi.  

To test if the highlighted lipid signalling and metabolic pathways were important for viral replication 

and not merely a consequence of replication, we chose chemical inhibitor tools for target validation 

rather than siRNA as we find administration of RNA or DNA into cells activates the innate anti-viral 
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host response which profoundly interferes with RV replication. The validation studies identified 

Ceranib 1, D609 and C75 as significant RV replication inhibitors at concentrations not cytotoxic to the 

host cells.  D609, whilst reported to be non-specific, inhibits PC-PLC and SMS (54) which both produce 

DG from PC, consistent with a role for DG and thus potentially PKD in RV replication. Our pathway 

analysis shows a potential increase in PC-PLC activity as well as activation of sphingomyelin synthase 

activity (at 6hpi) producing DG and sphingomyelin. On the other hand, our network optimisation 

shows potential changes in sphingomyelin phosphodiesterase  (SMPD) which could suggest changes 

in sphingomyelin synthase activity as well.  

The lipidomics revealed substantial FA modifications, both acyl chain length and saturation and in 

keeping with this C75, a FAS inhibitor was an effective inhibitor of RV replication (Figure 5). 

Nchoutmboube et al showed that PV induces the uptake of FA that have 16 or 18C and that this 

matches the membrane properties of the replication complexes (51). Furthermore, FAS has been 

described as an anti-viral target for coxackievirus B3 (CVB3) (55) indeed amentoflavone, a FAS 

inhibitor, reduced CVB3 replication (56). Therefore, our observation for the importance of FAS in RV 

replication is consistent with studies on other viruses including picornaviruses. Ceranib 1 inhibits 

ceramidase which cleaves FA from ceramide, producing sphingosine which is phosphorylated by 

sphingosine kinase leading to S1P. Our pathway analysis shows potential activation of ceramide 

synthase activity at 4hpi whereas the network optimisation method suggests possible changes in 

ceramide kinase (CERK) and ceramide synthase (LASS1) across all time points. In addition, when 

comparing later time points with the baseline time point, there were consistent increases in S1P 

phosphatase and potentially in ceramide synthase activities. Our findings are consistent with 

observations from other viruses, for example inhibitors of SM biosynthesis affect HCV replication (57), 

and SM localises to WNV replication complexes and viral replication is moderately affected by SM 

biosynthesis inhibition (58). Ceramide has been shown to redistribute to WNV replication complexes 

and the inhibition of ceramide synthesis impairs replication (59). Thus lipidomics with pathway 

analysis identified novel therapeutic targets to antagonise RV infection. The inhibitors we have 
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identified blocked replication of the viral genome (Fig 6A) and consequently production of viral 

proteins (Fig 6B), thus they are acting early in the viral replication cycle. Importantly, the active 

inhibitors were not preventing viral entry, as assessed by monitoring CME, and thus the site of action 

is predicted to be between viral entry and genome replication, so confirming the importance of lipid 

metabolism in this process. It will be important, nevertheless, to determine the roles these enzymes 

and associated lipid changes play in viral infection and replication. 

In summary, we have performed an unbiased lipidomic study of primary HBECs infected with RV and 

analysed changes in lipid composition during a single round of viral replication. We have identified 

significant alterations in multiple pathways which change with time in a complex fashion, these have 

only been revealed by performing a time course in synchronously infected cells. Based on our network 

and pathway analysis, we identified a number of potentially important enzymes involved in the 

observed lipid metabolic changes and using chemical inhibitors we have shown that PC-PLC, SMS and 

FAS are of interest in this respect and worthy of further study as potential therapeutic targets. 
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Table 1. Active pathways of fatty acid synthesis. The data represents three independent experiments 

each performed in triplicate. FA composition at each time point was compared to the previous time 

point and pathway analysis performed. Pathways with a Z-score >1.645 are considered active. 

time point 

(current hpi 

/previous 

hpi) 

Pathway Z-

Score 

Processes 

2/0 18:0-FA->18:1-FA->18:2-FA->18:3-FA->20:3-FA-

>20:4-FA->22:4-FA 

-2.82 Decreases in 

elongation and 

desaturation 
20:4-FA->22:4-FA -2.39 

16:0-FA->16:1-FA -2.10 

18:1-FA->18:2-FA -1.85 

20:0-FA->20:1-FA -1.75 

18:0-FA->18:1-FA->18:2-FA->18:3-FA->20:3-FA-

>20:4-FA->20:5-FA->22:5-FA 

-1.66 

3/2 16:1-FA->18:1-FA->18:2-FA->18:3-FA->20:3-FA->2

0:4-FA->22:4-FA 

2.80 Changes in elongation 

and increase in 

desaturation 20:4-FA->22:4-FA 1.86 

18:0-FA->20:0-FA 1.86 

 

18:1-FA->18:2-FA 1.75 

24:0-FA->26:0-FA -1.97 
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20:0-FA->22:0-FA -19.4 

20:1-FA->22:1-FA -1.65 

4/3 18:1-FA->20:1-FA->22:1-FA->24:1-FA 1.93 Increase in elongation 

16:0-FA->18:0-FA 1.71 

5/4 18:1-FA->20:1-FA 2.22 Increase in elongation 

18:0-FA->20:0-FA 

 

2.21 

6/5 22:0-FA->24:0-FA->26:0-FA 

 

2.70 Increase in elongation 

and decrease in 

desaturation 

 

22:1-FA->24:1-FA 

 

2.35 

 

18:1-FA->20:1-FA 

 

2.22 

24:0-FA->26:0-FA 

 

1.95 

 16:0-FA->16:1-FA->18:1-FA->18:2-FA->18:3-FA-

>20:3-FA->20:4-FA->20:5-FA->22:5-FA 

-3.07 

16:1-FA->18:1-FA->18:2-FA->18:3-FA->20:3-FA -2.60 

18:0-FA->18:1-FA->18:2-FA->18:3-FA->20:3-FA-

>20:4-FA->20:5-FA->22:5-FA 

-2.46 

16:0-FA->16:1-FA->18:1-FA->18:2-FA->18:3-FA-

>20:3-FA->20:4-FA->22:4-FA 

-2.12 
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18:2-FA->18:3-FA -1.97 

20:0-FA->20:1-FA->22:1-FA -1.92 

 

 

 

 

 

  

 at B
A

B
R

A
H

A
M

 IN
S

T
, on July 2, 2018

w
w

w
.jlr.org

D
ow

nloaded from
 

http://www.jlr.org/


 29 

Table 2. Active lipid metabolic pathways. Lipid composition at a time point was compared to the 

previous time point and pathway analysis performed. Pathway Z-score >1.645 is significantly 

upregulated whilst a negative Z-score <-1.645 is significantly downregulated. Data represent three 

independent experiments performed in triplicate. 

time point 

(current hpi 

/previous hpi) 

Pathway ZScore Predicted enzymes 

activities 

2/0 PA->PI->LPI 2.53 Increase in LPCAT, PI4-

kinase, PI-PLA, PA 

phosphatase, PS 

synthase and PTEN 

activities and decrease 

in PI3kinase, DG kinase 

activities. 

Potential increase in 

PC-PLC. 

PI -> PIP 2.46 

PA->PI->PIP->PIP2 2.21 

LPC->PC->DG 2.30 

PA->PS->PE->PC->DG 2.21 

PI->LPI 1.78 

DG->PA -1.73 

PIP2->PIP3 -2.51 

3/2 LPI->PI 2.46 Increase in LPIAT, PIP 

phosphatase, DG 

kinase, LPCAT activities 

and decrease in PI-

PLA, PC-PLA, 

sphingosine kinase, 

LPC->PC 2.24 

DG->PA 1.96 

PA->PG -1.78 

SG->S1P -1.84 
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PGP synthase 

activities. 

4/3 PI->LPI 1.77 Probable increase in 

PI3kinase and 

ceramide synthase 

activities. 

PIP2->PIP3 1.54 

SG->Cer 1.54 

5/4 PIP2->PIP3 -1.55 Decrease in PS 

synthase 1, PI3kinase. 
PC->PS -1.97 

6/5 LPC->PC->PA->PI->PIP-

>PIP2->PIP3 

2.58 Increase in PI3kinase, 

LPCAT, PLD and 

Sphingomyelin 

synthase activities. 

Potential increase in 

PC-PLC. 

LPC->PC->DG 2.40 

LPC->PC->PA->PI->LPI 2.23 

LPC->PC->PA->PG 2.00 

PC->PA 1.87 

LPC->PC->PA->PS->PE 1.76 

LPC->PC->PA->DG->TG 1.67 

PC + Cer -> SM + DG 1.66 
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Figure 1. Infection of primary human bronchial epithelial cells with RV-A1b. Confluent primary 

human bronchial epithelial cells were infected with RV-A1b at an MOI of 20 for 1h, after unbound 
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virus removal, replication proceeded for up to 6hpi. Cells were fixed and processed for confocal 

microscopy by staining with anti-RV 2C protein. Each column shows the 2C staining, the phase 

contrast and merged images. Scalebar represents 50µm. 
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B 

 

Figure 2. Changes in (A) PC and (B) FA structures during the 6 hours viral replication timecourse. 

The figure shows changes in both acyl chain length and saturation of PC and FA, concentrations were 

normalised in each group to cell number. Each time point represents the mean +/- SEM from three 

independent experiments performed in triplicate (n=9) per time point (* = P<0.05 by student’s t-

test). 
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A

 

B 

 

 

Figure 3. Pathway analysis. (A) FA synthesis pathways in infected cells demonstrated by comparing 

the 3hpi to the 2hpi timepoint. (B) Active pathways in infected cells as comparing 2hpi to baseline 

(time 0). Green and red arrows show reactions with positive and negative Z-scores respectively, thus 
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showing pathways with increased and decreased reactivity. The boxes highlight potential changed 

pathways based on Z-scores. 
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Figure 4. Optimal subnetwork analysis. A subsection of the subnetwork analysis performed 

comparing the lipid composition at 2hpi with that of uninfected cells. The red and yellow dots are 

respectively metabolites and proteins. The thickness of edges is proportional to their robustness 

scores. 

  

 at B
A

B
R

A
H

A
M

 IN
S

T
, on July 2, 2018

w
w

w
.jlr.org

D
ow

nloaded from
 

http://www.jlr.org/


 38 

 

 

Figure 5. Quantification of RV-A1b replication inhibition over full drug concentration-response 

curves.   

(A, C, E) HBECs were pre-treated for 1h with increasing concentrations of compounds (0.1-20μM) or 

DMSO followed by infection with RV-A1b at an MOI of 5 for 1h. Replication proceeded for 7h and cell 

lysates with supernatants were harvested and processed to measure virus titres by TCID50. The graphs 

show means (± SEM) of three independent repeats each performed in duplicate. Differences between 
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the range of drug concentrations and DMSO-infected cells were estimated by one-way ANOVA with 

Dunnet’s post hoc test. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. (B, D, F) HBECs were 

incubated with drugs for 9h and cell viability was determined using the ToxGlo assay. The graph shows 

the % of cell viability compared to the control from three independent experiments. Viability of cells 

untreated is represented by the dotted line. 
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Figure 6. Effect on RV genome, protein and titre and LDL uptake. 

HBECs pre-treated with a maximal non-cytotoxic concentration (10μM for Ceranib 1 and D609; 20μM 

for 3-O-Methyl-SM, SK-I, SK-II, VU 0155069 and C75) or DMSO for 1h followed by infection with RV-

A1b at an MOI of 5 for 1h. After 7h (A) viral genome replication was measured by qRT-PCR, (B) viral 

protein synthesis by western blotting and (C) virus titre by TCID50. (A) viral RNA levels normalised to 

18S rRNA levels in the different conditions. The dotted line represents cell-bound viral RNA at the start 

of the replication cycle. (B) Western blots were scanned with ImageJ and represented as % of 2C/LB1 

ratio over control. (C) Virus titres measured by endpoint titre determination (TCID50). (D) BODIPY-non-

acetylated LDL uptake in cells pretreated with inhibitors for 1h. Graphs show means ± SEM of three 
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independent experiments and the differences between DMSO and the different inhibitors estimated 

by one-way ANOVA with Dunnet’s post hoc test. ***, P<0.001; ****, P<0.0001. 
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