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The WD40 domain of ATG16L1 is required for
its non-canonical role in lipidation of LC3 at
single membranes
Katherine Fletcher1,†, Rachel Ulferts2,†, Elise Jacquin1, Talitha Veith2, Noor Gammoh3, Julia M Arasteh4,

Ulrike Mayer5, Simon R Carding6 , Thomas Wileman4, Rupert Beale2,* & Oliver Florey1,**

Abstract

A hallmark of macroautophagy is the covalent lipidation of LC3
and insertion into the double-membrane phagophore, which is
driven by the ATG16L1/ATG5-ATG12 complex. In contrast, non-
canonical autophagy is a pathway through which LC3 is lipidated
and inserted into single membranes, particularly endolysosomal
vacuoles during cell engulfment events such as LC3-associated
phagocytosis. Factors controlling the targeting of ATG16L1 to
phagophores are dispensable for non-canonical autophagy, for
which the mechanism of ATG16L1 recruitment is unknown. Here
we show that the WD repeat-containing C-terminal domain
(WD40 CTD) of ATG16L1 is essential for LC3 recruitment to
endolysosomal membranes during non-canonical autophagy, but
dispensable for canonical autophagy. Using this strategy to inhibit
non-canonical autophagy specifically, we show a reduction of
MHC class II antigen presentation in dendritic cells from mice
lacking the WD40 CTD. Further, we demonstrate activation of
non-canonical autophagy dependent on the WD40 CTD during
influenza A virus infection. This suggests dependence on WD40
CTD distinguishes between macroautophagy and non-canonical
use of autophagy machinery.
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Introduction

Autophagy is a catabolic process where cytosolic components are

degraded within the lysosome. Canonical autophagy (here referring

to macroautophagy) involves the formation of double-membrane

vesicles called autophagosomes that sequester intracellular material,

including organelles or proteins, and target it to lysosomes (Feng

et al, 2013). Canonical autophagy is activated by a variety of cellu-

lar stresses such as nutrient deprivation, and functions to maintain

cellular energy metabolism and viability (Choi et al, 2013).

The association of microtubule-associated protein 1 light chain 3

(LC3) has long been considered a defining hallmark of autophago-

somes. LC3 is a cytosolic ubiquitin-like protein, which upon activa-

tion of canonical autophagy becomes covalently bound to

phosphatidylethanolamine (PE) on autophagosomal membranes

(Mizushima et al, 1998). It is now appreciated that the membrane

remodelling machinery required for starvation-induced autophagy

can be co-opted to a variety of different uses (Codogno et al, 2011).

For example, LC3 can be conjugated to PE in the context of single-

membrane, non-autophagosome compartments. We refer to these

processes, which target LC3 to a single membrane, as “non-cano-

nical autophagy” (Florey & Overholtzer, 2012). Examples of this

non-canonical autophagy pathway include LC3-associated phagocy-

tosis (LAP), where LC3 is lipidated at single-membrane phagosomes

following the engulfment of bacterial and fungal pathogens or apop-

totic and necrotic cells (Sanjuan et al, 2007; Florey et al, 2011;

Martinez et al, 2011). A similar LAP-like LC3 lipidation event is

seen during macropinocytosis and entosis, the latter a form of live

cell engulfment (Florey et al, 2011). It has also recently been

reported that a range of drugs possessing lysosomotropic or iono-

phore properties, including monensin, CCCP and chloroquine, are

able to activate non-canonical autophagy and induce the lipidation

of LC3 at single-membrane compartments of the endolysosomal
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system (Florey et al, 2015; Jacquin et al, 2017). While these

processes associated with unconventional LC3 lipidation are not

bona fide autophagic processes (Galluzzi et al, 2017), they are

commonly referred to as non-canonical autophagy (Henault et al,

2012; Kim et al, 2013; Cadwell, 2016; Martinez et al, 2016; Jacquin

et al, 2017). This should not be confused with ATG5- or Beclin1-

independent autophagy (Codogno et al, 2011).

Non-canonical autophagy has been implicated in regulating the

degradation of material following macro-scale engulfments through

the modulation of lysosome fusion with macroendocytic compart-

ments. This is important for many immune responses such as

pathogen clearance and antigen presentation (Sanjuan et al, 2007;

Ma et al, 2012; Romao et al, 2013). LAP also plays a role in modu-

lating the cytokine profile in macrophages following the engulfment

of apoptotic cells (Martinez et al, 2011, 2016) resulting in a proin-

flammatory response. In the absence of LAP, mice develop an

autoimmune phenotype that resembles systemic lupus erythemato-

sus (Martinez et al, 2016). The exact molecular mechanisms under-

lying how non-canonical autophagy facilitates these events remain

unknown.

An important feature common to non-canonical autophagy

processes is that the associated LC3 lipidation is independent from

the upstream regulators of canonical autophagy, including the ULK1

complex containing ATG13 and FIP200, and nutrient status (Florey

et al, 2011; Martinez et al, 2015). However, like canonical autop-

hagy, non-canonical autophagy utilises the core ubiquitin-like

conjugation machinery that consists of ATG3, 4, 5, 7, 10, 12, 16L1,

which together act together to co-ordinate the lipidation of LC3 with

PE.

In vivo, ATG16L1 is responsible for the correct targeting of LC3

to forming autophagosome membranes (Fujita et al, 2008). It

contains an N-terminal domain which associates with ATG5 and

ATG12, a central FIP200 and WIPI2b binding domain, and a C-term-

inal WD40 domain (WD40 CTD). The ATG5-ATG12-ATG16L1

complex has an E3-Ubiquitin ligase-like enzymatic activity required

for lipidation of LC3 and is essential for LC3 targeting to membranes

during canonical and non-canonical autophagy (Fujita et al, 2008;

Martinez et al, 2015). The central region in ATG16L1 (amino acids

229–242) encompassing binding sites for both FIP200 and WIPI2b is

known as the FIP200 binding domain (FBD). Deletion of this

domain prevents ATG16L1 recruitment to forming autophagosomes

and inhibits the canonical autophagy response to both amino acid

starvation and infection by cytosolic bacteria (Gammoh et al, 2013;

Dooley et al, 2014). Recruitment of the ATG16L1 complex to form-

ing autophagosomes is dependent on the generation of PI3P, via the

type III phosphatidylinositol 3-kinase VPS34. Accordingly, inhibition

of VPS34 with wortmannin and other inhibitors abrogates

autophagosome formation and the associated LC3 lipidation

(Itakura & Mizushima, 2010). Subsequently, the PI3P binding

effector WIPI2b and FIP200, a member of the ULK1 complex,

directly bind and recruit the ATG16L1 complex (Gammoh et al,

2013; Nishimura et al, 2013; Dooley et al, 2014). The C-terminal

WD40 domain of ATG16L1 is not present in Atg16, the yeast

homolog. The structure of the WD40 CTD has recently been solved,

but its biological function remains unclear, although there is some

evidence that the WD40 CTD can bind ubiquitin and other factors

involved in lysophagy and some forms of xenophagy (Fujita et al,

2013; Boada-Romero et al, 2016; Bajagic et al, 2017).

Considering the importance of ATG16L1 in LC3 lipidation during

both canonical and non-canonical pathways, we sought to deter-

mine the mechanism by which ATG16L1 functions specifically

during non-canonical autophagy. In this report, we reveal a critical

role for the WD40 CTD of ATG16L1 in its recruitment to single-

membrane endolysosomal compartments and for LC3 lipidation

during non-canonical autophagy. Importantly, canonical autophagy

does not appear to be affected by deletion of the WD40 CTD of

ATG16L1. Thus, our results provide the first means to genetically

distinguish between canonical and non-canonical autophagy.

Influenza A virus (IAV) infection results in the lipidation of LC3

and its relocalisation to the plasma membrane and to perinuclear

structures (Gannage et al, 2009; Beale et al, 2014). This depends on

the viral M2 protein, a proton channel with multiple roles in the

viral life cycle. Targeting of LC3 to the plasma membrane is

promoted by a direct interaction between a LC3-interacting region

(LIR) in the C-terminal tail of M2 and LC3. Here, using our strategy

to distinguish canonical and non-canonical autophagy, we demon-

strate that LC3 relocalisation during IAV infection depends on the

proton channel activity of M2 and the WD40 CTD of ATG16L1, rais-

ing the possibility that activation of the non-canonical autophagy

pathway can be triggered by loss of cellular pH gradients.

Results

ATG16L1 recruitment to membranes and LC3 lipidation during
non-canonical autophagy does not require VPS34 and WIPI2b

ATG16L1 in complex with ATG5 and ATG12 acts as an E3 enzyme

that lipidates LC3 to PE in membranes. During canonical autophagy,

ATG16L1 is responsible for targeting the complex to sites of forming

autophagosomes. We reasoned that ATG16L1 may also direct LC3

lipidation during non-canonical autophagy, and to address this, first

examined its recruitment. In agreement with published work (Fujita

et al, 2008), we detect ATG16L1 colocalised with LC3 punctate

autophagosome structures following activation of canonical autop-

hagy by nutrient starvation (Fig 1A). To investigate non-canonical

autophagy, we analysed LC3-associated phagocytosis (LAP), where

LC3 is lipidated to zymosan-containing single-membrane phago-

somes (Florey et al, 2011; Martinez et al, 2011; Romao et al, 2013).

Interestingly, we detected ATG16L1 recruitment to LC3-positive

phagosomes in the mouse macrophage cell line J7741.A (Fig 1B).

To broaden this observation, we also analysed models of drug-

induced non-canonical autophagy. We have previously reported

activation of a non-canonical autophagy pathway by the sodium/

proton ionophore monensin, which promotes LC3 lipidation to

acidic single-membrane endolysosomal compartments, including

those generated following entosis, a live cell engulfment process or

engulfment of plain latex beads (Florey et al, 2015; Jacquin et al,

2017). Upon monensin treatment, we observed both ATG16L1

recruitment and LC3 lipidation to large entotic corpse-containing

vacuoles (Fig 1C) and to latex bead-containing phagosomes

(Fig 1D). These data demonstrate that, like double-membrane

autophagosomes in canonical autophagy, ATG16L1 is recruited to

single-membrane compartments during non-canonical autophagy.

ATG16L1 recruitment to autophagosomes is dependent on PI3P

generated by VPS34, and the PI3P effector WIPI2b that directly
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binds ATG16L1 (Dooley et al, 2014). In agreement with this,

pretreatment of cells with the PI3 kinase inhibitor wortmannin abol-

ishes canonical autophagy induced by starvation as measured by

LC3 puncta formation and lipidation (Fig 1E and G). However, in

line with our previous report (Florey et al, 2015), total levels of LC3

lipidation and localisation to entotic corpse vacuoles following treat-

ment with monensin were not inhibited by wortmannin (Fig 1F–H).

Consistent with the dispensability of VPS34 and PI3P in monensin-

induced non-canonical autophagy, we found no evidence of WIPI2b

recruitment to LC3-positive entotic corpse vacuoles (Fig 1J), while

WIPI2b was observed at LC3-positive starvation-induced autophago-

somes (Fig 1I).

Together these data show that, upon activation of non-canonical

autophagy, ATG16L1 can be recruited to single-membrane

endolysosomal compartments independently of PI3P and WIPI2b,

and thus through a mechanism distinct from canonical autophagy.

ATG16L1 structure function in canonical autophagy

To investigate the novel mechanisms underlying ATG16L1 recruit-

ment to membranes during non-canonical autophagy, we sought to

map the domain of ATG16L1 required to support endolysosomal

LC3 lipidation. To do so, we re-expressed a set of ATG16L1

constructs (depicted in Fig 2A) in multiple independently generated

ATG16L1-deficient cell lines. The ATG16L1 constructs consist of

full-length ATG16L1 (FL), ATG16L1 lacking the region 219–242 that

contains the WIPI2b and FIP200 binding sites (DFBD), and ATG16L1

lacking the WD40 CTD (DWD). We engineered ATG16L1-deficient
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Figure 1. ATG16L1 is recruited to endolysosomal membranes during non-canonical autophagy.

A Confocal images of control and starved HCT116 cells expressing GFP-LC3 and stained for ATG16L1. Arrows indicate autophagosome puncta double positive for LC3
and ATG16L1. Scale bar: 10 lm.

B–D Confocal images of ATG16L1 and GFP-LC3 on (B) zymosan-containing phagosomes in J774A.1 cells (arrows indicate phagosomes), scale bar: 5 lm; (C) monensin-
treated entotic corpse vacuoles in MCF10A cells (asterisk indicate entotic corpse, arrows indicate entotic vacuoles), scale bar: 10 lm; and (D) latex bead-containing
phagosomes in monensin-treated HCT116 cells (asterisk indicate bead-containing phagosomes, arrows indicate phagosome membranes), scale bar: 5 lm.

E, F Confocal images of GFP-LC3 in (E) starved cells or (F) entotic corpse vacuoles in monensin-treated MCF10A cells � wortmannin pretreatment. Scale bars: 10 lm.
G Western blotting of LC3 in control, starved or monensin-treated HEK293 cells � wortmannin.
H Quantification of LC3-II/LC3-I ratios from (G).
I, J Confocal images of WIPI2b staining and GFP-LC3 in (I) starved HCT116 cells. Arrows indicated double-positive autophagosome structures, and (J) entotic corpse

vacuoles in monensin-treated MCF10A cells. Scale bars: 10 lm.

Data information: In (H), data are presented as mean + SEM from three separate experiments. *P < 0.04 (Student’s t-test).
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clones of the human colon cancer cell line HCT116 and the human

breast epithelial cell line MCF10A using CRISPR/Cas9. We also

utilised ATG16L1-deficient mouse embryonic fibroblasts (MEFs)

previously generated by traditional methods based on homologous

recombination. In all three cases, we were able to generate stable

cell lines deficient in ATG16L1 and in which either full-length or

truncated ATG16L1 could be expressed (Fig 2B-D).

As expected, cells expressing full-length ATG16L1 exhibited an

increase in lipidated LC3 (LC3-II) following activation of canonical

autophagy by mTOR inhibition, using PP242 (Fig 2E and F). DWD

cells displayed similar LC3 lipidation levels to full-length expressing

cells (Fig 2E and F), indicating this domain is not required. In line

with previous reports, however, we saw a reduction of LC3 lipida-

tion in DFBD cells lacking the WIPI2b and FIP200 binding sites

(Fig 2E and F), indicating this domain is required for canonical

autophagy (Gammoh et al, 2013). Consistent with the Western blot

results, we also observed increases in autophagosome number, as

assessed by GFP-LC3 puncta, in full-length and DWD, but not DFBD
MEFs (Fig 2G and H) and HCT116 cells (Fig EV1) following starva-

tion. Formation of WIPI2b puncta lies upstream of ATG16L1
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Figure 2. The WD domain of ATG16L1 is not required for canonical autophagy.

A Diagram of full-length (FL) 229–242 deletion (DFBD) and 1–336 (DWD) ATG16L1 constructs used in this study.
B-D Western blot analysis of ATG16L1 in (B) HCT116 ATG16L1�/�, (C) MEF Atg16L1�/� and (D) MCF10A ATG16L1�/� cells stably re-expressing ATG16L1 constructs. Arrows

indicate specific ATG16L1 band.
E Western blotting for LC3 in complemented HCT116 cells � PP242 (1 lM, 1 h).
F Quantification of fold differences of LC3-II/LC3-I ratios over controls from (E).
G Confocal images of GFP-LC3 in complemented MEF cells � starvation (1 h). Scale bar: 10 lm.
H Quantification of GFP-LC3 puncta from 100 MEF cells per experiment cultured in full media (control) or EBSS (starve) for 1 h.
I Quantification of WIPI2b puncta in ATG16L1-complemented HCT116 cells. Puncta from 100 cells were counted per experiment.

Data information: Data represent mean � SEM from three separate experiments. (F) *P < 0.02. (H) ***P < 0.0001, **P < 0.001. (I) ***P < 0.0006, **P�0.005 (Student’s t-test).
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recruitment and thus LC3 lipidation in the canonical autophagy

pathway. Consistent with this established hierarchy of autophagy

proteins, all ATG16L1-expressing HCT116 cell lines supported

increased WIPI2b puncta formation following starvation (Fig 2I).

These data demonstrate that our complemented ATG16L1 cell

lines are competent for canonical autophagy induction and confirm

previously reports data that the WIPI2b and FIP200 binding domain

of ATG16L1 is required for LC3 lipidation and association with

autophagosomal membranes in starvation-induced canonical auto-

phagy, while the WD40 CTD is dispensable for this process.

ATG16L1 structure function in monensin-induced
non-canonical autophagy

We next used our set of complemented ATG16L1 cell lines to study

LC3 lipidation induced during monensin driven non-canonical

autophagy. We have previously shown that in wild-type cells, the

ionophore monensin increases lipidated LC3 (LC3-II) via two paral-

lel pathways. Firstly, by inserting into membranes and facilitating

the exchange of sodium and hydrogen ions, monensin raises lyso-

some pH thus blocking autophagosome flux (canonical). At the

same time, monensin also induces osmotic imbalances within

endolysosomal compartments, which are then targeted for lipidation

with LC3 (non-canonical autophagy pathway; Florey et al, 2015). In

contrast, the V-ATPase inhibitor bafilomycin A1 increases LC3-II

levels solely by inhibiting autophagosome flux. Thus, comparing

the levels of lipidated LC3 (LC3-II) induced by monensin versus

bafilomycin A1 allows the distinction between these parallel effects.

Accordingly, in HCT116 cells expressing full-length ATG16L1

monensin induces significantly more LC3-II than bafilomycin A1,

(Fig 3A), indicating the activation of non-canonical autophagy. A

similar pattern is observed in DFBD cells (Fig 3A), suggesting the
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Figure 3. The WD domain of ATG16L1 is required for monensin-induced non-canonical autophagy.

A Western blotting of LC3 in ATG16L1 FL, DFBD- or DWD-complemented HCT116 cells treated with bafilomycin (100 nM) or monensin (100 lM) for 1 h. Below is the
quantification of LC3-II/LC3-I ratios.

B Western blotting of LC3 from ATG16L1-complemented HCT116 cells treated with wortmannin (67 lM), monensin (100 lM) or both for 1 h. Below is the
quantification of LC3-II/LC3-I ratios.

C Confocal images of latex bead-containing phagosomes in control and monensin-treated GFP-LC3-expressing HCT116 cells complemented with ATG16L1 FL, DFBD or
DWD. Samples were stained for LAMP1. Cropped images show bead phagosomes. Scale bar: 5 lm.

D Quantification of GFP-LC3 recruitment to LAMP-1-positive phagosomes. 100 phagosomes were counted per experiment.

Data information: In (A, B, D), data are presented as mean � SEM from three separate experiments. (A) *P < 0.02, ***P < 0.001. (B) **P < 0.0002 (Student’s t-test).
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FBD domain is dispensable in this context. Strikingly, we detected

no difference in LC3-II levels between bafilomycin A1 and monensin

treatment in DWD cells (Fig 3A). These data provide the first indica-

tion that, in contrast to canonical autophagy, the WD40 CTD of

ATG16L1 is required for non-canonical autophagy.

LC3 lipidation associated with non-canonical autophagy induced

by monensin is resistant to wortmannin in wild-type cells (Fig 1D–

G). We observe similar wortmannin-resistant LC3 lipidation in full-

length and DFBD cells following monensin treatment (Fig 3B).

However, in DWD cells, wortmannin significantly inhibited

monensin driven LC3 lipidation. These data suggest that the lipi-

dated LC3 observed in DWD cells derives only from a wortmannin-

sensitive canonical autophagy pathway.

In order to better differentiate between canonical versus non-

canonical autophagy pathways, we next examined the localisation

of LC3 in our set of complemented cells. Monensin mediated the

recruitment of GFP-LC3 to LAMP1-positive latex bead-containing

phagosomes in full-length and DFBD cells (Fig 3C and D). We have

previously shown that the recruitment of GFP-LC3 in this model is

lipidation dependent and not associated with canonical autophagy

(Florey et al, 2015). In DWD cells, we could detect no GFP-LC3

recruitment to phagosomes (Fig 3C and D). A similar result was

seen when examining entotic corpse vacuoles in complemented

ATG16L1�/� MCF10A cells treated with monensin (Fig EV2A and

B). This is consistent with monensin-induced LC3 lipidation being

driven by continuous recruitment of the ATG16L1 complex to

endolysosomal membranes rather than inhibition of ATG4 activity.

This model is supported by fluorescence recovery after photobleach-

ing (FRAP) data that shows GFP-LC3 localisation to monensin-

treated entotic corpse vacuoles reappears following photobleaching

(Fig EV2C and D). These experiments demonstrate that cells lacking

the WD40 CTD of ATG16L1 are unable to support LC3 lipidation to

endolysosomal compartments associated with monensin-induced

non-canonical autophagy.

ATG16L1 structure function in physiological
non-canonical autophagy

We next sought to test the requirement of the WD40 CTD of

ATG16L1 in more physiological examples of non-canonical autop-

hagy. LC3-associated phagocytosis (LAP) occurs during the phago-

cytic engulfment of apoptotic and necrotic cells, or the engulfment

of some fungal and bacterial pathogens. LC3 is targeted to these

single-membrane phagosomes independently of the canonical

autophagy pathway, but dependent on the lipidation machinery that

includes ATG16L1. MEF cells are able to engulf apoptotic cells (Gar-

dai et al, 2005) and have previously been shown to be competent

for LAP (Hubber et al, 2017). Using live cell imaging, we detected

GFP-LC3 recruitment to phagosomes containing CellTracker Red-

labelled apoptotic corpses in full-length and DFBD MEFs. However,

consistent with our previous data using monensin, DWD cells did

not support GFP-LC3 recruitment to apoptotic corpse-containing

phagosomes (Fig 4A and B). These data demonstrate an essential

requirement for the WD40 CTD of ATG16L1 during LC3-associated

phagocytosis.

Similar to LAP, LC3 has also been shown to be targeted to newly

formed macropinosomes via a non-canonical autophagy pathway

(Florey et al, 2011). Using red dextran as a fluid phase marker in

PDGF stimulated MEFs, we found GFP-LC3 recruitment to red-

labelled macropinosomes in full-length and DFBD cells but not in

DWD cells (Fig 4C). Further, non-canonical autophagy is induced

by vacuolating toxin A (VacA); a virulence factor secreted by the

pathogen Helicobacter pylori. VacA inserts into and oligomerises in

target cell plasma membranes and is then internalised through

endocytosis. Once internalised, VacA acts as a chloride channel

creating ionic and electrochemical imbalances within the endocytic

compartment. V-ATPase activity is upregulated to counter these

changes, which in turn promotes accumulation of weak base amines

in the endocytic compartment resulting in osmotic vacuolation, and

subsequent recruitment of LC3 (Florey et al, 2015). As expected,

stimulation with VacA and NH4Cl resulted in profound vacuolation

in all complemented ATG16L1 MEF cell lines. However, only full-

length and DFBD cells exhibited GFP-LC3-positive vacuoles, while

vacuoles in DWD cells remained GFP-LC3 negative (Fig 4D).

Together, these data confirm that the WD40 CTD of ATG16L1 is

essential for LC3 lipidation in a range of engulfment processes

which activate non-canonical autophagy.

Recruitment of ATG16L1 to membranes during non-canonical
autophagy is dependent on the WD40 CTD

We have taken distinct physiological processes that are known to

activate non-canonical autophagy and demonstrated an essential

requirement for the WD40 CTD of ATG16L1 in all cases. To rule

out the possibility that this is due to a failure to form the E3-like

ATG5-ATG12-ATG16 protein complex, we analysed full-length and

DWD ATG16L1 immunoprecipitates using Western blotting and

mass spectrometry. We found both constructs are competent in

binding ATG5 and ATG12 (Fig 5A and B). Coupled with the fact

that DWD ATG16L1 cells can support LC3 lipidation to autophago-

some structures upon nutrient starvation, we conclude that the

ATG16L1 DWD protein retains its structural integrity and another

explanation must exist for its lack of function during non-canonical

autophagy.

The role of ATG16L1 in canonical autophagy is to target the E3-

like ATG12-5 16 complex to forming autophagosome membranes.

Unlike the full-length protein, ATG16L1 DWD failed to recruit to

latex bead phagosomes following monensin treatment (Fig 5C). In

support of this, using fractionation and Western blotting, we

detected increased amounts of ATG16L1 and ATG5 in membrane

fractions from full-length expressing cells following monensin

treatment but not in DWD-expressing cells (Fig 5D–G). Indeed,

under resting conditions there appeared to be less ATG16L1 DWD in

the membrane fraction compared to full-length ATG16L1. These

data suggest that the WD40 CTD of ATG16L1 is required to target

the protein to membrane compartments during non-canonical

autophagy.

Identification of key residues on the top face of ATG16L1 WD40
CTD required for non-canonical autophagy

To gain more molecular insight into how the WD40 CTD of

ATG16L1 regulates non-canonical autophagy, we used a published

algorithm to predict residues important for supporting protein

interactions with the top faces of WD40 proteins (Wu et al, 2012)

and identified 12 candidates. To screen these residues for a role in
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Figure 4. The WD domain of ATG16L1 is essential for LC3-associated phagocytosis and other non-canonical autophagy-dependent processes.

A Confocal images of GFP-LC3 in ATG16L1-complemented MEF cells phagocytosing red-labelled apoptotic cells. Scale bar: 10 lm.
B Quantification of GFP-LC3 recruitment to apoptotic corpse-containing phagosomes in (A). Twenty phagosomes were counted per experiment.
C Confocal images of red dextran-positive macropinosomes ATG16L1 complimented MEF cells. Cropped images show macropinosomes. Scale bar: 10 lm.
D Confocal images of GFP-LC3 in ATG16L1-complimented MEF cells treated with VacA toxin (10 lM, 4 h). Scale bar: 10 lm.

Data information: In (B), data are presented as mean � SEM from three separate experiments. ****P < 0.0001 (Student’s t-test).
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non-canonical autophagy, we generated ATG16L1�/� HCT116 cell

lines stably re-expressing point mutants generated by site-directed

mutagenesis. Using Western blotting, we then tested the ability of

wortmannin treatment to inhibit monensin-induced LC3 lipidation,

similar to that used in Fig 3B. From our initial list, we found three

residues N453, F467 and K490, which when mutated to alanine
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Figure 5. The WD domain of ATG16L1 is required for its recruitment to single-membrane compartments during non-canonical autophagy.

A Analysis of ATG16L1 immunoprecipitation from Atg16L1�/�, FL and DWD MEF cells treated with monensin. Input and IPs were probed for ATG16L1 and ATG5.
B Mass spectrometry analysis of ATG5 and ATG12 protein levels pulled down with FL and DWD ATG16L1.
C Confocal images of GFP-LC3 and ATG16L1 on latex bead-containing phagosomes in FL and DWD-expressing HCT116 cells � monensin (100 lM, 1 h). Cropped

images show phagosomes. Scale bar: 3 lm. Line profile analysis of ATG16L1 and GFP-LC3 fluorescence intensity is shown for representative phagosomes.
D, E Western blot analysis of total lysate, cytosolic and membrane fractions from (D) FL and (E) DWD-expressing HCT116 cells � monensin. Membranes were probed

ATG16L1, ATG5 and membrane markers, LAMP1 and V0D1.
F, G Quantification of membrane-associated (F) ATG16L1 and (G) ATG5 from experiments above, normalised to unstimulated conditions.

Data information: In (B, F, G), data are presented as mean � SEM from on (B) three (F, G) separate experiments. *P < 0.02 (Student’s t-test).
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displayed a robust inhibition of monensin-induced LC3 lipidation

following wortmannin pretreatment (Fig EV3).

Using the recently derived crystal structure of the ATG16L1

WD40 CTD (Bajagic et al, 2017), we found that N453, F467 and

K490 were in close proximity to one another and generated a pocket

on the top face of the WD40 CTD (Fig 6A and B). These residues

were also highly conserved through multiple species (Fig 6C). We

chose two residues (F467 and K490) to study in more detail. Using

HCT116 cells complemented with either full-length (FL) or F467A or

K490A ATG16L1 (Fig 6D), we found they exhibited no defect in

canonical autophagy induced by starvation as measured by GFP-

LC3 puncta count or WIPI2b puncta formation (Fig 6E and F).

However, MEF cells expressing F467A or K490A mutants showed a

dramatic inhibition of LAP upon phagocytosis of apoptotic cells

(Fig 6G and H), similar to that seen in DWD-expressing cells

(Fig 4A). The F467A and K490A mutants were unable to recruit to

latex bead-containing single-membrane phagosomes upon

monensin treatment (Fig 6I and J), suggesting these sites are impor-

tant in supporting ATG16L1 recruitment to these membranes. Inter-

estingly, we found that the WD40 CTD alone could not recruit to

phagosome membranes, which suggest the domain is necessary but

not sufficient for recruitment of the complex (Fig 6K and L).

Together, these data reveal for the first time specific sites within the

WD40 CTD of ATG16L1, which are important for its role in non-

canonical autophagy.

Inhibition of non-canonical autophagy by deleting the WD40 CTD
of ATG16L1 inhibits MHC class II antigen presentation in
dendritic cells

While the full extent of non-canonical autophagy function in cells is

not fully understood, it has been implicated in a number of

immune-related processes including pathogen clearance (Sanjuan

et al, 2007; Ma et al, 2012) and presentation of exogenous antigens

(Lee et al, 2010; Ma et al, 2012). Commonly this has been achieved

by inhibiting the LC3 conjugation machinery, that is ATG5 or ATG7.

We now sought to more specifically test the role of non-canonical

autophagy in antigen presentation using the ATG16L1 DWD system.

To achieve this, we utilised a recently engineered mouse model

where ATG16L1 is truncated at position E230 and thus lacks the

WD40 CTD. This truncated version of ATG16L1 is expressed in all

cells (Fig 7A), and unlike Atg16L1 knockout mice, E230 mice are

viable, which suggest they remain competent for canonical autop-

hagy. To test for non-canonical autophagy, we examined zymosan

phagocytosis in bone marrow-derived dendritic cells (BMDCs). We

found LC3 recruitment to zymosan-containing phagosomes in wild-

type BMDCs but found no LC3 recruitment to phagosomes in E230

cells (Fig 7B). This demonstrates E230 BMDCs are deficient in LC3-

associated phagocytosis. We next examined the presentation of an

exogenous antigen. BMDCs were incubated with GFP-Ea peptide for

24 h and analysed for Ea peptide presentation on MHC class II

molecules by flow cytometry using an antibody that recognises the

peptide in complex with MHCII (Macritchie et al, 2012). We found

that E230 BMDCs displayed a significant inhibition in presentation

of exogenous antigen as compared to wild-type BMDCs (Fig 7C).

This defect was not due to impaired uptake of antigen, as both wild-

type and E230 BMDCs showed a dose-dependent increase in GFP

signal following incubation with GFP-Ea peptide (Fig 7D). Indeed,

E230 BMDCs displayed increased GFP signal as compared to wild-

type cells, which potentially points to a defect in antigen processing

as GFP signal can be lost as the peptide is processed. These data

demonstrate a functional consequence of inhibiting non-canonical

autophagy through the targeting of the ATG16L1 WD40 CTD. It veri-

fies a role for non-canonical autophagy in antigen presentation and

provides a clean system with which to study this process.

Influenza A infection activates non-canonical autophagy via a
proton channel

Having established the essential role of the WD40 CTD of ATG16L1

in the activation of endolysosomal LC3 lipidation, and as a method

to distinguish between canonical autophagy and non-canonical

autophagy pathways, we utilised our cell lines to demonstrate a

novel non-canonical autophagy-dependent process. Considering our

previous data showing activation of non-canonical autophagy

through alterations in ion or proton gradients, either by ionophore

drugs or pathogenic factors such as VacA, we tested the effect of

another physiological modulator of ion movement. During influenza

A virus infection, the viral protein M2 inserts into cell membranes

of infected cells and acts as a highly selective proton channel.

Expression of M2 has previously been shown to induce LC3 lipida-

tion at both the plasma membrane of infected cells and in perinu-

clear structures (Beale et al, 2014). There are conflicting reports as

to whether this depends on the proton channel activity of M2 (Gan-

nage et al, 2009; Ren et al, 2015). The antiviral drug amantadine is

a selective blocker of the M2 proton channel in sensitive strains.

The laboratory-adapted influenza A virus (IAV) PR8 strain is resis-

tant to amantadine, whereas IAV strain Udorn is sensitive. We

therefore tested the ability of PR8 or a derivative bearing segment 7

(and hence the sensitive M2) from Udorn (MUd) to relocalise LC3 in

the presence or absence of amantadine. We found that the IAV

strain, which is sensitive to amantadine completely fails to relocalise

LC3 (Fig 8A). Our results confirm that the proton channel activity of

M2 is required for LC3 relocalisation. Next, we tested the require-

ment for ATG16L1 FBD and WD40 domains. We determined that

full-length or DFBD ATG16L1 were able to complement ATG16L1

deficiency, but DWD40 or K490A ATG16L1 were unable to do so

(Fig 8B). We further showed a dependency on the WD40 CTD of

ATG16L1 for IAV-induced LC3 lipidation by Western blotting

(Fig 8C). These data indicate that IAV-induced LC3 lipidation is

driven predominantly by non-canonical autophagy. We found no

effect on viral titres in the absence of non-canonical autophagy

(Fig EV4), which suggests further work is required to elucidate the

function of this pathway during influenza infection.

Discussion

In this study, we identified a novel mechanism that recruits

ATG16L1 to sites of LC3 lipidation during non-canonical autophagy

processes, including LC3-associated phagocytosis. The C-terminal

WD domain of ATG16L1 is essential in its targeting, in complex with

ATG5-ATG12, to single-membrane compartments rather than

double-membrane autophagosomes. We also identified, for the first

time, specific sites within the top face of the WD40 CTD required for

the non-canonical activity of ATG16L1. Our results support
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published data that the WD40 CTD of ATG16L1 is dispensable for

canonical autophagy induction. Indeed, yeast Atg16 lacks the WD40

CTD, consistent with the finding that this domain is not required for

canonical autophagy, and suggesting that non-canonical autophagy

may have evolved in higher organisms. Conversely, we show that

the FBD domain required for canonical autophagy is dispensable for

non-canonical autophagy.

The existence of a distinct mechanism for ATG16L1 recruitment

during non-canonical autophagy is further supported by experiments

that show that, unlike canonical autophagy, PI3P generation and

VPS34 activity are not required for non-canonical autophagy-

associated LC3 lipidation. At first, this may appear to contradict

recent work showing LAP is dependent on Rubicon-mediated VPS34

activity and PI3P (Martinez et al, 2015). However, it is possible that

in the context of phagocytosis, VPS34 and PI3P are required at an

upstream step to mature the phagosome to a state competent for

LC3 lipidation, without being directly involved in ATG16L1 recruit-

ment. Phagocytosis is a complex process, and no clear distinction

◀ Figure 6. ATG16L1 recruitment and function in non-canonical autophagy requires specific residues within the WD40 CTD.

A Ribbon model of the top face of ATG16L1 WD40 CTD with critical residues in ball and stick. Structural image generated in NGL viewer using Protein Database (PDB)
5NUV.

B Surface of ATG16L1 WD40 CTD coloured to electrostatic potential (blue positive 2, red negative �2). Cropped image a zoom of the critical residues. Image generated
in Swiss-PdbViewer.

C Annotated alignment of ATG16L1 sequences (447–496) over different species.
D Western blot analysis of ATG16L1 in HCT116 ATG16L1�/� cells stably re-expressing ATG16L1 constructs.
E Quantification of GFP-LC3 puncta from 100 HCT116 cells per experiment cultured in full media (control) or EBSS (starve) for 1 h.
F Quantification of WIPI2b puncta from 100 HCT116 cells per experiment cultured in full media (control) or EBSS (starve) for 1 h.
G Confocal images of GFP-LC3 in ATG16L1-complemented MEF cells phagocytosing red-labelled apoptotic cells. Scale bar: 5 lm.
H Quantification of GFP-LC3 recruitment to apoptotic corpse-containing phagosomes in (G). Twenty phagosomes were counted per experiment.
I Confocal images of GFP-LC3 and ATG16L1 on latex bead-containing phagosomes in FL, F467A- and K490A-expressing HCT116 cells � monensin (100 lM, 1 h).

Cropped images show phagosomes. Scale bar: 5 lm.
J Quantification of ATG16L1/GFP-LC3-positive phagosomes from (I).
K Western blot analysis of ATG16L1 in HCT116 ATG16L1�/� cells stably re-expressing full-length (FL) and CTD (336-623) ATG16L1 constructs.
L Confocal images of GFP-LC3 and ATG16L1 stained with anti-S-Tag antibodies on latex bead-containing phagosomes in knockout, FL and CTD expressing HCT116

cells � monensin (100 lM, 1 h). Cropped images show phagosomes. Scale bar: 5 lm

Data information: In (E, F, H, J), data are presented as mean � SEM from three separate experiments. (E) *P < 0.03, **P < 0.005, ***P < 0.0001. (F) **P < 0.005. (H)
**P < 0.002, ***P < 0.0002. (J) ***P < 0.0003 (Student’s t-test).
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Figure 7. ATG16L1 WD40 CTD supports presentation of exogenous antigen by dendritic cells.

A Western blot analysis of ATG16L1 in wild-type and E230 BMDCs. Arrows indicate ATG16L1, and asterisks mark non-specific band.
B Confocal images of LC3 in BMDCs phagocytosing zymosan particles. Insert shows phagosome. Scale bar: 20 lm.
C Mean fluorescent intensity (MFI) FACs analysis of Y-Ae in wild-type (open circles) and E230 (filled circles) BMDCs exposed to different concentrations of Ea-GFP.
D Mean fluorescent intensity (MFI) FACs analysis of Ea-GFP in wild-type (open circles) and E230 (filled circles) BMDCs exposed to different concentrations of Ea-GFP.

Data information: In (C, D), data are presented as mean � SD from four replicates. Data are representative of three independent experiments. (C) **P < 0.002. (D)
***P < 0.0001 (Student’s t-test).
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can be made between upstream maturation and direct autophagy

protein recruitment. However, activating non-canonical autophagy

using the ionophore monensin bypasses the VPS34-dependent matu-

ration step as it targets already mature endolysosomal compart-

ments. Thus, monensin allows us to interrogate more specifically

the role of VPS34 and PI3P in ATG16L1 recruitment during non-

canonical autophagy.

Our work provides a clear genetic means to distinguish between

canonical and non-canonical autophagy pathways. Previously, cells

deficient in only canonical autophagy (e.g. ULK1/2, FIP200, ATG13

knockout cells) have been compared to cells deficient in both

canonical and non-canonical autophagy (ATG5, ATG7, ATG16L1

knockout cells) to infer a role for the non-canonical autophagy (Kim

et al, 2013; Martinez et al, 2016). More recently, in the context of

phagocytosis, Rubicon was shown to differentially effect canonical

autophagy and LAP (Martinez et al, 2015). However, loss of Rubi-

con may have particular effects on endosomal maturation, possibly

indicating that the requirement for Rubicon is specific to LAP rather

than the non-canonical autophagy pathway in general. We have

now uncovered a system where truncations or point mutations in

ATG16L1, a bona fide autophagy protein, render cells deficient in

non-canonical autophagy while remaining competent for canonical
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Figure 8. Influenza infection activates non-canonical autophagy via proton channel activity of M2.

A Confocal images of GFP-LC3-transduced HCT116 cells infected at MOI 1 with IAV strains PR8 (amantadine resistant) or MUd (amantadine sensitive). Amantadine was
added 3 h postinfection. Samples were fixed at 16 h postinfection and stained for M2 (red) and with DAPI. Scale bar: 10 lm.

B Confocal images of GFP-LC3-transduced wild-type or ATG16L1�/� HCT116 cells complemented with the indicated constructs. Samples fixed at 16 h postinfection with
IAV PR8 at MOI of 5 and stained for M2 (red). Scale bar: 20 lm.

C Western blot analysis of LC3 in influenza-infected ATG16L1�/� HCT116 cells complemented with the indicated constructs.
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autophagy. This is true for all types of non-canonical autophagy

processes tested. We propose that ATG16L1 acts as a regulatory hub

to direct LC3 lipidation during all autophagy-related processes, with

FIP200 and WIPI2b proteins driving canonical autophagy, and the

WD40 CTD coordinating non-canonical autophagy.

The discovery that the ATG16L1 WD40 CTD supports non-cano-

nical autophagy is consistent with the fact that WD repeat structures

are known to be important for protein–protein interactions. Whether

there is one universal mechanism to recruit ATG16L1 through the

WD domain or whether there are process-specific mechanisms

remains to be determined. It would appear, however, that the sites

identified here are important in all tested examples of non-canonical

autophagy. Interestingly, TMEM59 and TMEM166/EVA1 have been

implicated in autophagy activation through the interaction with the

WD40 CTD of ATG16L1 (Boada-Romero et al, 2013; Hu et al, 2016).

However, as yet, it is not clear whether these represent true non-

canonical autophagy pathways. A Crohn’s disease-associated point

mutation T300A is located near the C-terminal domain of ATG16L1

and has been implicated in affecting autophagic processes, including

one dependent on the WD40 CTD (Kuballa et al, 2008; Lassen et al,

2014; Boada-Romero et al, 2016). However, we found no obvious

difference in GFP-LC3 recruitment to entotic vacuoles in ATG16L1�/-

� HCT116 cells expressing T300 or T300A versions of ATG16L1

(Fig EV5A). Similarly, monensin was able to drive GFP-LC3 recruit-

ment to latex bead-containing phagosomes equally well in both T300-

and T300A-expressing cells (Fig EV5B and C). These results support

previously reported data where the T300A mutation was shown not

to affect LAP (Martinez et al, 2015). It is still possible that under

some contexts, such as inflammatory bowel disease, an increased

ATG16L1 cleavage influenced by the T300A polymorphism may

affect ATG16L1 WD40 CTD-dependent non-canonical autophagy.

The extent to which non-canonical autophagy is important

within biological systems is currently unclear. Our data provide a

clear strategy to identify and explore the consequences of processes

that activate and depend on non-canonical autophagy. The

ATG16L1 E230 mouse model provides a new in vivo system to

investigate the physiological and pathophysiological roles of non-

canonical autophagy. Indeed, we have been able to confirm a role

for LAP in dendritic cell presentation of exogenous antigens on

MHC class II. Previous studies have demonstrated that influenza A

virus-induced LC3 lipidation was independent of FIP200 levels and

could be detected at the plasma membrane of infected cells (Beale

et al, 2014). These data would be consistent with non-canonical

autophagy, but this possibility had not been explored. In this study,

using our ATG16L1 mutants, we have now revealed M2 protein-

dependent activation of non-canonical autophagy during influenza

infection. This illustrates the possibility of distinguishing genetically

between the canonical and non-canonical autophagy pathways by

manipulating the WD40 CTD of ATG16L1.

Our results, and those of others, provoke a re-evaluation of data

that has been interpreted assuming LC3 lipidation to be synony-

mous with canonical autophagy. This is particularly important in

the context of host:pathogen interactions where invading microbes

utilise ion channels to subvert host cell physiology, and where the

host may employ LAP-like processes to effect cell-autonomous

defence. We suggest that examining the dependence of LC3 lipida-

tion on the ATG16L1 WD40 CTD in these contexts will provide a

relatively simple means to distinguish whether the processes

involved represent canonical or non-canonical autophagy. Further,

by specifically inhibiting non-canonical autophagy, we can begin to

tackle the important questions regarding the function and mecha-

nisms of LC3 lipidation in this pathway.

Materials and Methods

Cell culture

HCT116 cells were cultured in McCoy’s 5A (Lonza) with 10% foetal

bovine serum (FBS Sigma), 1% penicillin and streptomycin.

HCT116 T300A cells were kindly provided by Dr. David Boone

(Indiana University School of Medicine). J774.A1, HEK293, MDCK

(a kind gift from Dr. P. Digard) and mouse embryonic fibroblast

(MEF) cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM; Gibco Life Technologies) containing 10% foetal bovine

serum (FBS Sigma), 1% penicillin and streptomycin. Atg16L1�/�

MEFs were provided by Dr. Shizuo Akira (Osaka University).

MCF10A cells were cultured in DMEM/F12 (Gibco) containing 5%

horse serum (Sigma), EGF (20 ng/ml), hydrocortisone (0.5 mg/ml),

cholera toxin (100 ng/ml) and insulin (10 lg/ml). All cells were

maintained in an incubator at 37°C with 5% CO2.

Antibodies and reagents

Antibodies used in this study are anti-LC3A/B (4108, Cell Signalling,

WB 1:1,000, IF 1:100), anti-ATG16L1 (PM040, MBL, IF 1:1,000;

8089, Cell Signalling, WB 1:1,000), anti-ATG5 (2630, Cell Signalling,

WB 1:1,000), anti-GAPDH (25778, Santa Cruz, WB 1:2,000), anti-

huLAMP1 (611043, Becton Dickinson, IF 1:100), anti-ATP6VV0d1

(56441, Abcam, WB 1:1,000), anti-WIPI2 (MCA5780GA, Bio-Rad, IF

1:100), anti-FlagM2 (F1804, Sigma), anti-M2 (ab5416, Abcam, IF

1:100), HRP-conjugated anti-mouse (7076, Cell Signalling, WB

1:1,000) or anti-rabbit (7074, Cell Signalling, WB 1:1,000). Alexa

Fluor 568 anti-rabbit (A11011, Thermofisher, IF 1:500). Monensin

(M5273), PP242 (P0037), wortmannin (W1628) and amantadine

(A1260) were obtained from Sigma. Bafilomycin A1 (1334) was

obtained from R&D Systems. PDGF was obtained from Peprotech

(100-14B).

IAV reverse genetics and infection

Stocks of influenza A virus PR8 (strain A/Puerto Rico/8/1934) and

MUd, a resistant PR8 variant carrying segment 7 of IAV strain

A/Udorn/307/1972 (Noton et al, 2007) were generated using the

eight plasmid-based systems as previously described (de Wit et al,

2004) and propagated on MDCK cells. For infection, cells were first

washed with serum-free DMEM and incubated with virus in serum-

free DMEM at 37°C. After 1 h, the medium was replaced with

DMEM containing 10% FBS. For immunofluorescence, imaging cells

were fixed at 16 h p.i. using 4% paraformaldehyde in PBS.

Plasmid construction and retroviral transduction

Flag-S-tagged Atg16L1 constructs were generated as previously

described (Gammoh et al, 2013). Briefly, human ATG16L1 was

inserted into pBabe Flag-S retroviral vector using SalI cloning sites.
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Alanine point mutants were generated using QuikChange Site-

directed Mutagenesis Kit (Stratagene). Primers see Table 1. Stable

cell lines expressing ATG16L1 constructs were generated by retrovi-

ral transduction and selection as described previously (Gammoh

et al, 2013). Briefly, cells were seeded and infected by centrifugation

and stable cells were selected with puromycin (HCT116 0.8 lg/ml,

MEF 1.5 lg/ml, MCF10A 2.5 lg/ml) for 2–5 days. HCT116 cells

were transduced with a retroviral vector generated using M4P-GFP-

LC3B (kind gift from F. Randow, Cambridge) and selected for eGFP

expression by FACS-assisted cell sorting (Cell Phenotyping Hub,

Department of Medicine, University of Cambridge).

CRISPR/Cas9-mediated knockout of ATG16L1

To generate ATG16L1 KO in MCF10A GFP-LC3 cells, gRNA sequence

(GTGGATACTCATCCTGGTTC) with overhangs for containing a BpiI

site was annealed and cloned into the pSpCas9(BB)-2A-GFP

(Addgene, 48138; deposited by Dr. Feng Zhang) digested with the

BpiI restriction enzyme (Thermo Scientific, ER1011). The recombi-

nant plasmid was introduced into MCF10A GFP-LC3 cells via

AMAXA nucleofection (Kit V) along with a pBABE-puro construct

(Addgene, 1764; deposited by Dr. Hartmut Land). Cells were selected

with 2.5 lg/ml puromycin (P8833, Sigma) for 48 h, and single cell

clones were obtained by limiting dilution. After clonal expansion,

ATG16L1�/� clones were selected based on the absence of ATG16L1

protein as detected by Western blot.

To generate ATG16L1 KO in HCT116 cells, gRNA (ATTCTCTGC

ATTAAGCCGAT) was designed to target exons shared by all

predicted transcripts with a high predicted activity (Doench et al,

2014) and specificity score (Hsu et al, 2014) and cloned into the BpiI

site of pSpCas9(BB)-2A-puro V2.0 (Addgene, 62988; deposited by Dr

Feng Zhang), cells were transfected using Lipofectamine 2000TM

(Invitrogen) according to manufacturer’s instructions and selected

with puromycin (4 lg/ml), and single cell clones generated.

Successful knockout of ATG16L1 was confirmed by Western blot

and genome sequencing of the target site.

Western blotting

Cells were scraped into ice-cold RIPA buffer (150 mM NaCl, 50 mM

Tris–HCl, pH 7.4, 1 mM EDTA, 1% Triton X-100 (Sigma, T8787),

0.1% SDS (Sigma, L3771), 0.5% sodium deoxycholate (Sigma,

D6750) and lysed on ice for 10 min. Lysates were centrifuged for

10 min at 10,000 g at 4°C. Supernatants were then separated on 15

or 10% polyacrylamide SDS–PAGE gels and transferred to

polyvinylidene difluoride membranes. Membranes were blocked in

TBS-T supplemented with 5% BSA for 1 h at room temperature and

incubated overnight at 4°C with primary antibodies diluted in block-

ing buffer. They were then incubated with a horseradish peroxidase-

conjugated secondary antibody (Cell Signaling Technology, 7074S),

and proteins were detected using enhanced chemiluminescence (GE

Healthcare Life Sciences, RPN2209). Densitometry analysis was

performed using ImageJ software.

Immunoprecipitation

MEF Atg16L1�/� cells expressing Flag-S-tagged ATG16L1 constructs

were seeded into each of 4 × 144 mm tissue culture dishes per

condition. After 48 h, cells were treated � monensin with a final

concentration of 100 lM for 1 h. Dishes were washed twice with

ice-cold PBS and lysed in 2 ml of lysis buffer (50 mM Tris–HCI,

15 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM PMSF, 10 mM

NaVO4 and protease inhibitor cocktail). Samples were centrifuged at

4°C, 1,500 g for 15 min. The Triton-soluble material was pre-cleared

for 1 h at 4°C using immunoglobulin G (IgG) conjugated 4%

agarose bead slurry (Sigma). Pre-cleared supernatant was added to

an S-protein agarose bead slurry (Novagen) for 6 h at 4°C. Samples

were washed 3 times in lysis buffer and proteins eluted by addition

of sample buffer followed by boiling for 5 min and analysed by

Western blotting.

For some experiments, immunoprecipitated material was anal-

ysed by mass spectrometry using mass spectrometry. Briefly,

samples were run a short distance (� 5mm) into an SDS–PAGE gel,

which was then stained with colloidal Coomassie stain (Imperial

Blue, Invitrogen). The entire stained gel pieces were excised,

destained, reduced, carbamidomethylated and digested overnight

Table 1. Primers for site-directed mutagenesis of human ATG16L1
(623 amino acid isoform).

Mutant Forward

E324A For CGCATGACGGAGCGGTCAACGCAGTG

E324A Rev CACTGCGTTGACCGCTCCGTCATGCG

N326A For CATGACGGAGAGGTCGCCGCAGTGCAGTTCAG

N326A Rev CTGAACTGCACTGCGGCGACCTCTCCGTCATG

M342A For GCCACTGGAGGCGCGGACCGCAGGGTG

M342A Rev CACCCTGCGGTCCGCGCCTCCAGTGGC

N386A For CTTACCTATTAGCAGCTTCAGCTGATTTTGCA
AGCCGAATC

N386A Rev GATTCGGCTTGCAAAATCAGCTGAAGCTGCTA
ATAGGTAAG

K410A For GGCCACAGCGGGGCAGTCCTCTCTGCC

K410A Rev GGCAGAGAGGACTGCCCCGCTGTGGCC

L412A For CACAGCGGGAAAGTCGCCTCTGCCAAGTTCC

L412A Rev GGAACTTGGCAGAGGCGACTTTCCCGCTGTG

H428A For GATTGTCTCAGGAAGTGCCGACCGGACCCTCA
AAC

H428A Rev GTTTGAGGGTCCGGTCGGCACTTCCTGAGACA
ATC

N453A For GCAGGATCCAGCTGCGCTGACATTGTTTGCAC

N453A Rev GTGCAAACAATGTCAGCGCAGCTGGATCCTGC

F467A For GTGTAATGAGTGGACATGCTGACAAGAAAATT
CGTTTCTG

F467A Rev CAGAAACGAATTTTCTTGTCAGCATGTCCACT
CATTACAC

K490A For GATGAACTGTTAGGGGCGATCACTGCTCTGGAC

K490A Rev GTCCAGAGCAGTGATCGCCCCTAACAGTTCATC

D536A For CAAATGCGGCTCTGCCTGGACCCGGGTTG

D536A Rev CAACCCGGGTCCAGGCAGAGCCGCATTTG

N581A For CAGCTCTTCTATCGCTGCGGTGGCGTGGG

N581A Rev CCCACGCCACCGCAGCGATAGAAGAGCTG
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with trypsin (Promega sequencing grade, 10 ng/ll in 25mM ammo-

nium bicarbonate). The resulting tryptic digests were analysed using

LC-MS/MS on a system comprising a nanoLC (Proxeon) coupled to

a LTQ Orbitrap Velos Pro mass spectrometer (Thermo Scientific).

LC separation was achieved on a reversed-phase column (Reprosil

C18AQ, 0.075 × 150mm, 3 lm particle size), with an acetonitrile

gradient (0–35% over 180min, containing 0.1% formic acid, at a

flow rate of 300 nl/min). Mass spectrometric data were processed

using Proteome Discoverer v1.4 (Thermo Scientific) and searched

against the mouse entries in Uniprot 2013.09.

Membrane fractionation

HCT116 cells were seeded per condition on a 15-cm dish and

cultured for 48 h. Cells put in suspension and treated with 100 lM
monensin for 1 h. Input, cytosol and membrane fractions were

isolated using the Mem-Per Plus Membrane Protein Extraction Kit

(89842, Thermofisher) following product guidelines. Protein

concentration was measured by BCA assay and equal amounts

loaded onto polyacrylamide gels for SDS–PAGE analysis.

Immunofluorescence

Unless otherwise indicated, immunofluorescence was performed as

previously described (Jacquin et al, 2017). Briefly, cells were fixed

with ice-cold methanol at �20°C for 5 min. Cells were blocked in

5% BSA in PBS for 1 h at room temperature and incubated in

primary antibody in blocking buffer overnight at 4°C. Following

washing, cells were stained with appropriate secondary antibodies

and DNA stained by DAPI before being mounted using Prolong Gold

Antifade (P36934, Thermofisher). Image acquisition was made

using a Zeiss LSM 780 confocal microscope (Carl Zeiss Ltd), using

Zen software (Carl Zeiss Ltd).

Latex bead LC3-associated phagocytosis assay

Cells were plated on glass coverslips and the following day,

3-micron uncoated polystyrene beads (672326, Polysciences) were

added for 4 h before addition of 100 lM monensin for 1 h. The cells

were washed with PBS and fixed with methanol at �20°C for 5 min

before processing for immunofluorescence.

Apoptotic cell LC3-associated phagocytosis assay

MEF cells were plated on 35-mm glass-bottomed dishes (MatTek).

Apoptotic corpses were prepared by UV crosslinking CellTracker

Red (Invitrogen, C34552) stained HCT116 ATG16L1�/� cells with

two rounds of 8,000 lJ using a UV stratalinker 2400 (Stratagene).

Corpses were then added to MEF cells at a ratio of 5:1. After 14 h,

cells were imaged live using a confocal Zeiss LSM 780 microscope

(Carl Zeiss Ltd) equipped with a 63× oil immersion objective. The

presence of GFP-LC3 on 20 apoptotic cell-containing phagosomes

was quantified per condition per experiment.

Macropinocytosis assay

GFP-LC3-expressing MEF cells were plated on 35-mm glass-

bottomed dishes (MatTek). The next day cells were serum starved

for 24 h followed by stimulation with media containing 0.1 lg/ml

PDGF and 0.1 mg/ml tetramethylrhodamine conjugated dextran

(fluoro-Ruby; D-1817 Life Technologies). Live microscopy was

performed in an incubation chamber at 37°C, with 5% CO2. Images

of newly formed, dextran-containing macropinosomes, were

acquired in live cells using a confocal Zeiss LSM 780 microscope

(Carl Zeiss Ltd) equipped with a 40× oil immersion 1.4 NA objec-

tive, using Zen software (Carl Zeiss Ltd).

Entotic Corpse assay

MCF10A GFP-LC3 cells were plated on glass coverslips overnight to

allow cell-in-cell structures to form and mature, followed by treat-

ment with 100 lM monensin for 1 h. Cells were washed and

processed for immunofluorescence. LAMP1-positive corpse-

containing vacuoles were analysed for GFP-LC3 signal.

VacA toxin assay

MEF cells were plated on 35-mm glass-bottomed dishes (MatTek)

and treated with VacA toxin (10 lM; kindly provided by Dr.

Timothy Cover) as previously described (Florey et al, 2015).

Bone marrow-derived dendritic cell (BMDC) isolation

C57/BL6 wild-type and ATG16L1 E230 mice, aged 13–15 weeks,

were used to obtain BMDCs. A neomycin-targeting vector for

Atg16L1 was generated with two stop codons introduced into exon

6 after amino acid position 230. R1 ES cells were electroporated

with linearised targeting vector and G418 resistant clones screened

by Southern blot and PCR. Positive clones were injected into C57/

B6 blastocysts. Chimeric founder mice were crossed with C57/B6

females and the neomycin cassette removed by crossing F1

offspring with FlpO transgenic mice and then crossed with a C57/

B6 background. The E230 mice are available from Drs Ulrike Mayer

and Thomas Wileman. Bone marrow cells were isolated by flushing

tibias and femurs with PBS + 2% FBS. Cells were pelleted and

resuspended in 1 ml Red Blood Cell lysis buffer (150 mM NH4Cl,

10 mM KHCO3, 0.1 mM EDTA) for 2 min at room temperature.

Cells were pelleted and resuspended in RPMI 1640 (Invitrogen

22409-031), 10% FBS, 1% Pen/Strep, 50 lM 2-mercaptoethanol

supplemented with 20 ng/ml murine GM-CSF (Peprotech, 315-03),

10 ng/ml murine IL-4 (Peprotech, AF-214-14) and 50 ng/ml

Fungizone (Amphotericin B; Gibco, 15290018). Media was

refreshed on days 3 and 6 and used for antigen presentation assays

on day 8.

Antigen presentation assay

2.5 × 105 in vitro differentiated BMDCs were plated in 24-well plates

and incubated for 24 h with different concentrations of Ea-GFP anti-

gen (kindly provided by Dr. Michelle Linterman, Babraham Insti-

tute). Cells were collected and incubated for 10 min at 4°C for with

FC blocking media (eBioscience, 14-0161-82), before staining with

biotin-labelled Y-Ae antibody (eBioscience, 13-5741-85), which

recognises the Ea-MHCII complex, for 1 h at 4°C. Cells were washed

before incubation with PE-labelled anti-CD11b (clone M1/70, BD

Horizon, 562287), APC-eFluor780-labelled anti-CD11c (clone N418,
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eBioscience, 47-0114-82), Alexa Fluor 700-labelled anti-MHC class II

(clone M5/114.15.2, eBioscience, 56-5321-82) and PE-labelled strep-

tavidin (eBioscience, 12-4317-87) for 1 h at 4°C. Cells were analysed

by flow cytometry using a Fortessa A (Becton Dickinson) machine

and data analysed using FlowJo software.

Statistics

Data were analysed by a two-tailed unpaired Student’s t-test, using

Prism 6 software.

Expanded View for this article is available online.
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