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Over 20 years ago, the discovery of Xist as a critical component of X chromosome inactivation

revealed a fundamental role for long noncoding RNAs (lncRNAs) in epigenetic regulation

during mammalian development and foreshadowed a fascinating connection between RNA

and chromatin modification [1–3]. In the last decade, the field has exploded, heralded in part

by a 2007 landmark paper from the group of Howard Chang [4] describing that knockdown of

a lncRNA (Hox Antisense Intergenic RNA [HOTAIR]) was associated with loss of transcrip-

tional repression from a locus on another chromosome in trans.HOTAIR lncRNA—encoded

within theHOXC locus, although its expression seemed to be required for normal epigenetic

silencing ofHOXD genes—became one of the most well-known examples of functional

lncRNAs in the field of developmental epigenetics. Interest intensified when a subsequent

paper from the Chang lab [5] reported that targeted deletion of the orthologous locus in the

mouse (Hotair) caused homeotic transformations underpinned by derepression ofHoxD gene

transcription in vivo. Discovery of new lncRNAs and exploration of their potential actions and

effects during development and disease is a continued source of excitement [6,7]. But ques-

tions about the effects and actions ofHotair have been controversial, raised in part by work

from the group of Denis Duboule [8]. This debate is addressed directly in the current issue of

PLOS Genetics in a manuscript from Duboule’s laboratory [9] that reanalyzesHotair mutant

mice generated by the Chang lab, a formal comment in response to that manuscript from the

Chang lab [10], and this perspective.

A precise genomic organization conserved for hundreds of millions of years underlies the

complexity ofHox gene regulation. Expression of adjacentHox genes in specific spatiotempo-

ral domains helps to pattern and maintain the identity of developmental compartments along

the body and appendicular axes [8,11]. It is the latter part of that equation—maintenance of

developmental identity—for which genomic organization may be so important, and for which

epigenetic mechanisms play a critical role, because specific patterns ofHox gene transcription

can be faithfully maintained long after development has concluded, sometimes in cultured

cells outside the body [12].
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These considerations, together with previous studies on the role of noncoding RNA

(ncRNA) in the regulation ofHox gene expression in fruitflies [13], provided the backdrop for

the work of Rinn et al. [4] to exhaustively profile noncoding (and coding) RNAs transcribed

from the four humanHOX loci. In flies, ncRNAs were shown to act in cis via transcriptional

interference, so a potential trans-acting role forHOTAIR, from theHOXC to theHOXD clus-

ter, came as something of a surprise.

It is in this context—a function forHOTAIR?—that the current work [9,10] pertains. The

mouseHoxC cluster is ~140 kb in length;Hotair is a 2-exon transcript that lies in the region

betweenHoxc11 and Hoxc12. In the 2013 paper from Li et al., mice carrying an ~4 kb deletion

that removed both Hotair exons variably exhibited a homeotic posterior transformation with

five rather than six lumbar (L) vertebrae (L6 was transformed into the sacral (S)1 vertebra;

L6!S1), as well as wrist bone malformations and subtle caudal anterior transformations [5].

The authors also found thatHotair RNA was enriched in RNA immunoprecipitates (RNA-IP)

from E11.5 embryos using antibodies against components of the Polycomb repressive complex

2 (PRC2), which methylates histone H3 at lysine 27 (H3K27), or against the Lsd1 complex,

which demethylates histone H3 at lysine 4 (H3K4) in vivo [5]. Finally, the authors reported

that derepressed genes inHotair mutant tail tip fibroblasts, including multiple members of the

HoxD but notHoxC clusters, exhibited loss of H3K27me3 and gain of H3K4me3 [5]. Taken

together, this work has been at the foundation of the viewpoint thatHotair functions as a

trans-acting repressor ofHoxD gene expression via recruitment of PRC2 [4,5].

But this viewpoint has been controversial. Part of the controversy stems from a 2011 study

from the Duboule group [14] in which it was reported that E13.5 embryos or embryo fibro-

blasts carrying a complete deletion of the mouseHoxC locus exhibited no significant changes

inHoxD expression or chromatin marks. At the time, this observation was interpreted as a dif-

ference in function between humanHOTAIR and mouse Hotair. However, with publication of

the 2013 paper from the Chang group [5], claiming a conserved function with regard to trans-

acting repression ofHoxD genes, there seemed to be a direct conflict between the two sets of

observations [5,14].

How could the mice generated and studied by the Chang group, with a 4-kb deletion within

theHoxC cluster, exhibit a more severe phenotype with respect toHoxD gene regulation than

mice carrying a deletion of the entireHoxC cluster studied by the Duboule group? Li et al. [5]

suggested that deletion of the entire cluster might have removed genes with functions that

oppose that ofHotair and generously provided their animals (with the 4-kb deletion) to the

Duboule group for additional analyses. The current issue of PLOS Genetics features the manu-

script describing the results of this further investigation [9]. Although the analyses are exten-

sive, the results are simple to summarize: Amandio et al. [9] report that, in their hands, the

Hotair deletion allele generated by the Chang lab does not cause up-regulation ofHoxD genes

and associated homeotic transformations. Amandio et al. [9] do identify and confirm subtle

anterior transformations in caudal vertebrae but suggest that this difference may be caused by

changes inHoxC expression due to local effects of the deletion.

How can two groups reach essentially opposite conclusions studying the exact same allele?

We consider this apparent paradox with regard to both the whole animal and the transcrip-

tomic phenotypes. First, and as pointed out here in a formal comment from the Chang group

[10], their 2013 study [5] was carried out on an inbred background (C57BL/6), whereas the

Duboule group deliberately used a mixed background that includes both C57BL/6 and CBA

genomes [9,14]. Potential advantages of an inbred background include the ability to compare

mutant and nonmutant animals across space and time (although the Chang lab results are

based on litters that carry both mutant and nonmutant animals), whereas advantages of a

mixed background include the potential for inter-individual stabilization of variably expressed
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phenotypes due to canalization [15,16]. Indeed, the L6->S1 transformation causing 5 instead

of 6 lumbar vertebrae (the most important phenotype from the perspective of evaluating the

proposed effect of /Hotair/ on /HoxD/ derepression) is variably expressed. Li et al. reported

that 18/31 mutant embryos had 5 lumbar vertebrae compared to 1/11 non-mutants [5]. By

contrast, Amandio et al. [9] report that most of the embryos they examined, 8/10 mutant and

8/11 nonmutant, had 5 lumbar vertebrae. In other words, both mutant and nonmutant ani-

mals examined by the Duboule lab had the same phenotype described as characteristic for

mutants in the Chang lab.

In fact, the boundary between lumbar and sacral vertebrae has been an oft-studied and

intensive subject of investigation by mouse geneticists for decades and might best be described

as capricious. The total number of lumbar vertebrae (5 or 6) and “sacralization” of L6 vary not

only between inbred strains but also within the same strain and can be influenced by sex,

maternal diet, age, parity, litter size, and environmental temperature [17–19]. Although these

considerations do not change the statistical significance (p = 0.0002) of the observation by Li

et al. [5], they do call into question its biological significance, as pointed out more than 50

years ago by Earl Green [17], Anne McLaren [20], and Hans Grüneberg [21].

What about the different transcriptomic conclusions? Li et al. [5] generated RNA-Seq data

from duplicate cultures of tail tip fibroblasts (mutant, nonmutant, and heterozygous), whereas

the RNA-Seq studies of Amandio et al. [9] were obtained from duplicate microdissections of six

different E12.5 embryonic regions (forelimb, hindlimb, genital tubercle, and lumbosacral, sacro-

caudal, and caudal trunk). Li et al. had made their raw data publicly available, allowing Amandio

et al. to present and analyze RNA-Seq reads from both the tail tip fibroblasts and the embryonic

fragments with the exact same bioinformatics pipeline, from alignment to annotation to infer-

ences regarding differential expression. An example from the unique read count data is informa-

tive: in the study of Li et al.,Hoxd10 was the most highly expressedHoxD gene in tail tip

fibroblasts, and there were 4,4,7,8,15, and 15 unique reads for duplicates from nonmutant, het-

erozygous, and mutant cells, respectively. In contrast, in the caudal embryonic tissue (the poste-

rior-most trunk segment whereHotair is highly expressed), there were 1,654, 1,475, 1,289, and

1,315 uniqueHoxd10 reads, for duplicates from nonmutant and mutant tissues, respectively.

These data represent a general theme of the transcriptome studies from both groups: the tail tip

fibroblasts studied by Li et al. [5] expressHoxD genes (and, incidentally,Hotair) at very low lev-

els, whereas the embryonic tissue fragments studied by Amandio et al. [9] exhibit expression of

HoxD (andHotair) at much higher levels, allowing for statistically robust comparisons.

Additional studies in both papers [5,9] and additional Hotair alleles in other papers [22]

raise additional questions. How couldHotair affect cells or embryonic regions such as the fore-

limb or lumbar trunk where, according to Amandio et al. (9), its expression was not detect-

able? What might account for a subtle anterior vertebral transformation (in the caudal region),

a phenotype upon which both groups agree? This phenotype is typically caused by loss- rather

than gain-of-function alterations inHox genes. And to what extent are the phenotypes caused

by theHotair deletion due toHotair itself or cis-regulatory alterations inHoxC gene expres-

sion? Regardless, neither these questions nor their potential answers provide much additional

help in resolving the somewhat provocative query posed by Amandio et al: IsHotair homeotic

or homeopathic? Readers should reach their own conclusions based on the data [5,9,10], but

our collective impression is thatHotair is not quite homeopathic, but it is also not a major

determinant of developmental identity.

From the standpoint of mechanism, Hotair RNA was proposed to affect gene expression in

trans at least in part by targeting PRC2 to genes. However, questions also remain about the

potential biological significance of theHotair-PRC2 association. This is in part because Poly-
comb target genes identified by Li et al. [5] in tail tip fibroblasts (by H3K27me ChIP-seq) did

PLOS Genetics | DOI:10.1371/journal.pgen.1006485 December 15, 2016 3 / 5



not significantly overlap withHotair target genes identified by Amandio et al. in vivo [9].

Although several labs have observed and/or questioned how PRC2 interacts withHotair RNA

in vitro, an important challenge for the field is to understand what happens in vivo [23–25].

One of the reasons research in the lncRNA field has been both fruitful and controversial is

the ability of exquisitely sensitive genome-scale technologies to identify transcripts expressed

at very low levels, which is part of a more general debate about how to distinguish transcrip-

tional noise from transcription with a biological function [26,27]. Going forward, we believe

the developmental genetics community will best be served by studying lncRNAs and epige-

netic modulators that yield robust and highly penetrant whole-animal phenotypes, and that

may act by a variety of different mechanisms [6,7]. Fortunately, there are many from which to

choose [22,28] and evolutionarily informed strategies to guide that choice [29].

We also wish to comment that the specific controversy itself is not as important as the ways

in which it has been addressed. The Chang group made all of their data publicly available and

provided the mouse they generated to the Duboule group. This should be the norm across the

scientific community, but there are frequent exceptions, and the willingness of the Chang

group to share their data and resources should be noted and appreciated by all concerned. Fur-

thermore, the authors, reviewers, and editors of the Amandio et al. manuscript recognized the

importance of publishing (largely) negative data, which, in this case, is likely to have a substan-

tial impact on the field. Overall, transparency, open access principles, and collegiality are the

champions in the debate aboutHotair.
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