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This transcriptional heterogeneity has been linked to the  
differentiation potential of ESCs, with NANOGlo cells having an 
increased propensity to differentiate13 and elevated expression 
of differentiation markers compared with NANOGhi cells12,14,15. 
Experiments in sorted populations of cells have also linked tran-
scriptional and epigenetic heterogeneity by demonstrating dif-
ferences in DNA methylation between transcriptional states, 
such as gains in DNA methylation in NANOGlo and REX1lo 
(REX1 is also known as ZFP42) cells compared with, respectively, 
NANOGhi and REX1hi cells11,16. The development of single- 
cell techniques has allowed the transcriptional heterogeneity of 
ESCs to be studied in unprecedented detail, revealing a complex  
population structure and multiple sources of variation17,18. 
Using scBS-seq, we have also demonstrated DNA-methylation 
heterogeneity in ESCs at the single-cell level3. To further inves-
tigate the link between epigenetic and transcriptional hetero-
geneity in ESCs, we performed scM&T-seq on 76 individual 
serum ESCs and 16 ESCs grown in ‘2i’ media, which induces 
genome-wide DNA hypomethylation16.

We obtained an average of 2.7 million scRNA-seq reads per 
cell, and we excluded cells with fewer than 2 million mapped 
reads (Supplementary Table 1). We have previously shown that 
the scRNA-seq data generated by the G&T-seq method is of  
similar quality to that generated using the scRNA-seq protocol 
(Smart-seq2) alone7. In ESCs that met scRNA-seq quality-control 
criteria, we detected transcripts from between 4,000 and 8,000 
genes exceeding one transcript per million, consistent with previ-
ous measurements made using the method (additional scRNA-seq  
quality metrics are shown in Supplementary Fig. 2).

To assess the quality of the scBS-seq data, we compared the result-
ing single-cell methylomes with published data from 20 serum 
and 12 2i ESCs for which stand-alone scBS-seq was performed3. 
Sequencing of the scBS-seq libraries was performed at relatively 
low depth (an average of 11.1 million reads), with an average of 
3.15 million genomic reads mapped per cell (Supplementary 
Table 1). We excluded cells with a mapping efficiency of <7% or 
a bisulfite-conversion efficiency of <95% (as estimated by non-CpG 
methylation). Cells passing these quality-control steps had a mean 
mapping efficiency of 15.6% (compared to a mean of 17.2% for 
single ESCs with stand-alone scBS-seq3; Supplementary Table 1  
and Supplementary Fig. 3). The low mappability was not due 
to foreign DNA, as negative controls showed less than 2% align-
ment, but it can be explained by high primer contamination 
(Supplementary Fig. 3).

Because of the decreased sequencing depth, methylome coverage 
in scM&T-seq libraries was lower than that in scBS-seq libraries.  
However, genome-wide CpG coverage at matched sequencing depth 
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Multiparameter sequencing-based analysis of single cells is a  
powerful tool for dissecting relationships among epigenetic, 
genomic and transcriptional heterogeneity1. Recent advances 
have enabled single-cell genome-wide or reduced-representation 
bisulfite sequencing (scBS-seq or scRRBS2–4), making it possible 
to explore the intercellular heterogeneity of DNA methylation5,6.  
We and others have recently described methods for parallel genome 
and transcriptome sequencing in single cells7,8. Our method  
G&T-seq (genome and transcriptome sequencing) involves physical  
separation of RNA and DNA, which allows for bisulfite conver-
sion of DNA without affecting the transcriptome. Here we applied  
scBS-seq to genomic DNA purified according to the G&T-seq  
protocol to generate methylomes and transcriptomes from the same 
single cells (Fig. 1a and Supplementary Fig. 1). Parallel profiling 
using scM&T-seq will enable detailed study of the complex relation-
ship between DNA methylation and transcription in heterogeneous 
cell populations9,10 and may be used to provide multidimensional 
information in clinical contexts where material is severely limited 
(for example, in vitro fertilization).

To demonstrate the potential of the method, we applied 
scM&T-seq to mouse embryonic stem cells (ESCs). In the pres-
ence of serum, these cells constitute a metastable population 
with stochastic switching between transcriptional states11,12. 
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was consistent across protocols (Fig. 1b; Supplementary Fig. 3  
provides additional quality metrics, including an analysis of repre-
sentation bias in different contexts), and we found that scM&T-seq 
covered a large proportion of sites in different genomic contexts 
with sufficient frequency to enable the analysis of epigenome heter-
ogeneity across cells (Supplementary Figs. 4 and 5). To evaluate the 
potential coverage of scM&T-seq, we sequenced a randomly chosen 
subset of four libraries at increased depth (mean of 25.9 million 
raw reads), which yielded a CpG coverage in line with that of the 
other method (4.5 million, compared to 3.6 million mapped reads 
from 20.2 million raw reads for ESCs in stand-alone scBS-seq).  
Saturation depth was not reached in these four libraries (mean 
duplication rate of 25.5%), meaning that additional sequencing 
would yield greater coverage, as demonstrated previously3.

As additional validation, we assessed the ability to discriminate 
serum and 2i ESCs using either stand-alone scBS-seq or scM&T-seq,  
and we found similar degrees of separation consistent with bulk data 

sets published previously16 (Fig. 1c), with similar conclusions when 
using joint hierarchical clustering across all cells (Supplementary 
Fig. 6). Notably, the differences between protocols and biological 
batches had a substantially smaller effect (PC2, 3% variance) than 
cell type differences did (PC1, 48% variance), and by combining 
data across cells, we found that both protocols yielded genome-wide 
methylation profiles that accurately recapitulated bulk methyla-
tion profiles in the same cell type (Supplementary Fig. 7). Finally, 
we compared estimates of methylation heterogeneity in different 
genomic contexts, again finding good agreement between protocols 
(Fig. 1d). Taken together, these analyses provide confidence that 
the parallel scM&T-seq method yields results that are in agreement 
with data from stand-alone scBS-seq.

For subsequent analyses, we focused on serum ESCs only, as 
transcription and DNA methylation are uncoupled in 2i ESCs16,19. 
A comparison of the principal components derived from the two 
data types—gene-body methylation and gene expression—showed  
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figure 1 | Quality control and global methylation and transcriptome patterns identified in serum ESCs profiled using scM&T-seq. (a) Overview of the 
scM&T-seq protocol. (b) CpG coverage of single cells as a function of the number of mapped sequencing reads. Colored dots correspond to individual 
data points, and gray shaded areas denote the 95% confidence intervals of the locally fitted trend curves. (c) Joint principal-component analysis of the 
methylomes (gene-body methylation) of 61 serum ESCs and 16 2i ESCs obtained using scM&T-seq, as well as 20 serum ESCs and 12 2i ESCs sequenced using 
stand-alone scBS-seq3. Large outlined circles correspond to synthetic bulk data sets from the indicated cells. For comparison, we also included a bulk 
serum ESC DNA-methylation data set16. Cell type explained a substantially greater proportion of variance (PC1, 48%) than protocol did (PC2, 3%).  
(d) Comparison of epigenetic heterogeneity in different genomic contexts, considering 61 serum ESCs obtained using scM&T-seq and 20 serum ESCs 
sequenced using stand-alone scBS-seq3. (e,f) Clustering analysis of transcriptome and methylation data from 61 serum ESCs, considering gene-body 
methylation (e) and gene expression (f) for the 300 most heterogeneous genes (on the basis of gene-body methylation). The gene order was taken from 
individual clustering analysis on the basis of gene-body methylation, whereas cells were clustered separately using either DNA methylation or expression 
data and are color-coded by methylation cluster. The bar plots in the center show the heterogeneity in DNA methylation (left) and gene expression (right).
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that the global sources of variation were partially linked 
(Supplementary Figs. 8 and 9). However, a hierarchical cluster-
ing analysis of gene-body methylation and gene expression for the 
300 most variable genes (on the basis of DNA-methylation variance; 

Supplementary Fig. 10 presents alternatives) showed distinct clus-
tering of cells when either source of information was used (Fig. 1e,f).  
This suggests that global methylome and transcriptome profiles 
reveal complementary, but distinct, aspects of cell state. This is also 

86,350,000 86,400,000 86,450,000 86,500,000

M
et

hy
la

tio
n 

(%
)

C
or

re
la

tio
n 

(r
)

V
ar

ia
nc

e

–0.5

0

0.5

1.0

–1.0

0

25

50

75

100

500

1,000

0

E
xp

re
ss

io
n

Methylation (%)

3

2

1

0

0 25 50 75

Global methylation

LMR

Promoter (non-CGI)p300

Gene body
4

3

2

1

0

4

3

2

1

0

lo
g 10

 (
q

-v
al

ue
)

–1.0 –0.5 0 0.5
Pearson correlation

–1.0 –0.5 0 0.5 –1.0 –0.5 0 0.5

101(–) 415 (+)
Anxa3

31 (+)45 (–)

AU018091 2 (+)21 (–)
Esrrb

88 (–) 72 (+)11 (+)24 (–)

44 (+)77 (–)

E
xp

re
ss

io
n

Esrrb
TSS

P
ea

rs
on

 c
or

re
la

tio
n

–0.2

0

0.2

–0.3

GRCm38 chr12: 86,361,117 – 86,521,628 (161 kb)

ca

b

H3K27ac

Esrrb
LMR
p300

Super-enhancer
CGI

3

2

1

0

Esrrb
Esrrb

Tdh

Tdh

Dnmt3l

Tpm1

Tdh

Dnmt3l

Esrrb
Tdh

Esrrb

Prtg

Zfp42
Klf2
Zfp42

Fbxo15
Esrrb

Ooep

Spp1

Tet1Tet1
Tagln

Zfhx3
Cnn2

Zfp42

Fgf4
Tet1 Dnmt3l

Nr0b1

Upp1 Egf4
Tet2

Lpp
Tagln Krt8

Krt18
WIsPrtg

Zfhx3 Cdh1
Cldn6Id2
Cald1Tubb6

Parva

S
am

ple-speci�c
 correlation (r)

0
–0.025
–0.050
–0.075

Klf2 Cnn2

Tdh

Zfp42
Klf2

Tet1

Morc1 Manba

Rcor2

–0.1

0.1

Gen
e 

bo
dy CGI

H3K
4m

e1

In
te

rg
en

ic

In
tro

n
p3

00

Pro
m

. (
CGI)

Pro
m

. (
no

n-
CGI)

Exo
n

H3K
27

ac

H3K
27

m
e3

LM
R

Methylation (%)
0 25 50 75 100100

figure 2 | Genome-wide associations between methylation and transcriptional heterogeneity in mouse ESCs. (a) Correlation coefficients (Pearson r2)  
from association tests between gene expression heterogeneity of individual genes and DNA-methylation heterogeneity in alternative genomic contexts. 
Shown are the correlation coefficients for all genes versus the adjusted P value (obtained using Benjamini-Hochberg correction and denoted by dot size).  
A set of 86 known pluripotency and differentiation genes18 are highlighted in red. The blue horizontal line in each plot corresponds to the FDR 10% 
significance threshold. The total number of significant positive (+) and negative (−) correlations (FDR < 10%) for each annotation is shown at the top 
of each plot. Orange vertical bars correspond to the average correlation coefficient across all genes for a given context. (b) Representative zoomed-
in analysis for Esrrb. Shown from bottom to top are the annotation of the Esrrb locus with LMR, p300, super-enhancer and CGI sites indicated; the 
estimated methylation rate of 3-kb windows for each cell, with dot size corresponding to CpG coverage, dot colors corresponding to single cells,  
the solid black curve denoting the weighted mean methylation rate across all cells, and solid and dashed vertical lines delineating the position  
and transcription start site (TSS) of Esrrb, respectively; the correlation between the methylation rate and Esrrb expression for each region, with red 
shading in the curve corresponding to significant correlations (brighter red denotes higher significance) and the gray shaded area denoting the 95% 
confidence interval of the correlation coefficient; and the estimated weighted DNA-methylation variance between cells. The two scatter plots at the top 
right depict the association between DNA methylation at a p300 region (outlined in yellow) and at an LMR (outlined in blue) and Esrrb expression.  
(c) Gene-specific association analysis of correlations between DNA methylation in different genomic contexts and gene expression in individual cells. 
Shown are methylation-expression correlations for all variable genes in single cells, for each annotation, with the correlation obtained from matched 
RNA-seq and BS-seq of a bulk cell population superimposed16 (orange circles). Prom., promoter. Upper and lower hinges correspond to 75th and 25th 
percentiles, upper and lower whiskers correspond to maximum and minimum values within the 1.5× interquartile range, and dots denote outliers.
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consistent with previous observations that the transcriptome and 
methylome are partially uncoupled in serum ESCs16.

Next we tested for associations between the expression of individual 
genes and DNA-methylation variation in several genomic contexts 
(Online Methods and Supplementary Table 2), and we identi-
fied a total of 1,493 associations (false discovery rate (FDR) < 10%;  
Fig. 2a and Supplementary Tables 3 and 4), which were robust 
when we used a bootstrapping approach to subsample the set of 
cells (Supplementary Fig. 11). We found both positive and negative 
associations, highlighting the complexity of interactions between the  
methylome and the transcriptome9,10. Although methylation of  
non–CpG island (CGI) promoters is known to be associated with  
transcriptional repression, the role of enhancer methylation is less 
clear. Accordingly, negative correlations between DNA methylation 
and gene expression were predominant for non-CGI promoters,  
whereas distal regulatory elements including low-methylation 
regions20 (LMRs) had a more even balance of positive and negative 
associations (Fig. 2a and Supplementary Figs. 12 and 13). Associated 
genes were enriched for known pluripotency and differentiation 
genes18 (FDR < 1%, Fisher’s exact test; Supplementary Table 5).  
To our knowledge, our results provide the first evidence that heteroge-
neous methylation of distal regulatory elements (for example, LMRs) 
accompanies heterogeneous expression of key pluripotency factors 
in stem cell populations6,21. As an example, the expression of Esrrb, 
a known hub gene in pluripotency networks22, negatively correlates 
with the methylation of several LMR and p300 sites overlapping ‘super-
enhancers’ in the genomic neighborhood23 (Fig. 2b). We also found 
516 genes whose expression correlated with the overall methylation 
level (FDR < 10%), indicating substantial links between transcriptional 
heterogeneity and global methylation levels (Fig. 2a).

In addition to its utility in between-cell analyses, scM&T-seq can 
be used to correlate the methylome and transcriptome between 
genes in individual cells (Fig. 2c and Supplementary Table 6). 
We found that correlation between methylation and gene expres-
sion varied substantially between cells but was consistent in direc-
tion with matched RNA-seq and BS-seq data from a population of 
cells16. Again, this attests to scM&T-seq being sufficiently accurate 
to reliably study epigenome-transcriptome linkages. Our results 
also point to the possibility of heterogeneity between cells in the 
degree of coupling between the methylome and the transcriptome. 
Although we ruled out obvious confounding factors such as average 
methylation rate and sequence coverage (Supplementary Figs. 14 
and 15), more data will be required for an understanding of the 
possible technical components in these linkages.

Our work demonstrates that parallel profiling of the methylome 
and transcriptome from the same single cell is feasible and can yield 
data similar in quality to those obtained with methods profiling 
either feature in isolation. Use of scM&T-seq allows the relation-
ship between DNA methylation and expression to be studied at 
specific genes in single cells. We have confirmed a negative associa-
tion between non–CGI promoter methylation and transcription in 
single cells and identified both positive and negative associations 
at distal regulatory regions. The expression levels of many pluripo-
tency factors, such as Esrrb, were found to be negatively associated 
with DNA methylation, suggesting that an important mechanistic 
component of fluctuating pluripotency in serum ESCs is epigenetic 
heterogeneity. Finally, we have demonstrated that the strength of the 
connection between the methylome and the transcriptome can vary 
from cell to cell. scM&T-seq is a powerful approach for investigating  

the poorly understood connectivity between transcriptional and 
DNA-methylation heterogeneity in single cells and provides the 
potential to identify factors that regulate this relationship.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. scRNA-seq and scBS-seq data from all 92 ESC 
libraries and four negative controls are available in the Gene 
Expression Omnibus under accession GSE74535.
Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods 
Sample collection and single-cell sequencing. E14 mouse ESCs 
(the E14 cell line was a generous gift from A. Smith) were cultured 
in serum and leukemia inhibitory factor or in 2i media as described 
previously16 and subject to routine mycoplasma testing using the 
MycoAlert testing kit (Lonza). Single cells were collected by flow 
cytometry after ToPro-3 and Hoechst 33342 staining to select for 
live cells with low DNA content (i.e., G0 or G1 phase cells). Cells 
were collected in RLT Plus lysis buffer (Qiagen) containing 1 U/µl 
SUPERase-In (Ambion) and processed using the G&T-seq protocol7,  
except that after physical separation of mRNA and genomic DNA 
from single cells, the DNA was eluted into 10 µl of H2O.

Single-cell bisulfite libraries were then prepared as previously 
described3, with the following modifications. Conversion was  
carried out using EZ Methylation Direct bisulfite reagent (Zymo) 
on purified DNA in the presence of AMPure XP beads (Beckman 
Coulter) after G&T-seq. Purification and desulfonation of con-
verted DNA were performed with magnetic beads (Zymo) on 
a Bravo workstation (Agilent), eluting into the master mix for 
the first-strand synthesis. Primers for first- and second-strand 
synthesis contained a 3′-random hexamer, and biotin capture 
of first-strand products was omitted, but an extra 0.8× AMPure 
XP purification was performed between second-strand synthesis 
and PCR. Each pre-PCR AMPure XP purification was carried 
out using a Bravo workstation. To avoid batch effects, we pre-
pared all libraries in parallel in a 96-well plate. Purified scBS-seq  
libraries were sequenced in pools of 16–20 per lane of an Illumina 
HiSeq2000 using 125-bp paired-end reads.

RNA-seq libraries were prepared from the single-cell cDNA 
libraries using the Nextera XT kit (Illumina) as per the manu-
facturer’s instructions, but using one-fifth volumes. Multiplexed 
library pools were sequenced on one lane of an Illumina 
HiSeq2000 generating 125-bp paired-end reads.

Sequence data processing and raw data analysis. BS-seq  
read alignment. Sequencing data were processed as previously 
described3, with minor modifications. Briefly, we trimmed raw 
sequence reads to remove the first 6 bp (the 6N random prim-
ing portion of the reads), adaptor contamination and poor-quality 
base calls using Trim Galore (v0.3.8; parameters: --clip_r1 6 (or 9) 
--clip_r2 6 (or 9)). We aligned trimmed reads in single-end mode 
to the GRCm38 mouse genome assembly using Bismark24 (v0.13.1; 
parameters: --bowtie2 --non-directional). Methylation calls were 
extracted after duplicate alignments had been removed. (Note: 
because of the multiple rounds of random priming with oligo 1, 
the single-cell bisulfite libraries were nondirectional.)

RNA-seq read-alignment and gene expression quantification. 
GSNAP25 (version 2014.02.28) was used to align all RNA-seq 
libraries onto mouse genome assembly GRCm38 (with the --
use-splicing option). For computation of the table of transcrip-
tome raw read counts, an aligned read was counted toward 
a gene if it overlapped with any exonic region of that gene.  
To normalize transcriptome counts for library size, we used 
library size estimates obtained from DESeq2 (ref. 26). For compu-
tation of the transcriptome TPM (transcripts per million mapped 
reads) table, the output from cufflinks27 (with the --frag-bias- 
correct --compatible-hits-norm --multi-read-correct option) was  
normalized to TPM values. Ensembl annotation (version 75) was 
used whenever gene annotations were required.

BS-seq and RNA-seq quality assessment. We included four nega-
tive controls (empty wells) in the library-preparation procedure 
to exclude the possibility of DNA or RNA contamination. Single-
cell BS-seq libraries from negative controls had <2% mapping 
efficiency (the percentage of raw sequencing reads aligned), and 
scRNA-seq libraries from these samples had an alignment rate 
of <1%.

Single-cell BS-seq libraries with low alignment rates (<7% raw 
sequencing reads aligned) or poor bisulfite conversion (<95% on 
the basis of Bismark CHH and CHG methylation estimates) were 
excluded. Out of a total of 92 single-cell libraries, 81 passed this 
quality filter.

To identify low-quality scRNA-seq libraries, we required a mini-
mum of 2 million mapped reads. Four serum and two 2i ESCs were 
excluded on the basis of this criterion (Supplementary Table 1).

Of the 92 single-cell samples, 75 (61 serum ESCs and 14 2i ESCs; 
81.5%) passed quality assessment for both methylome and transcrip-
tome sequencing. Complete quality-control data for both scRNA-
seq and scBS-seq are provided as Supplementary Table 1.

Statistical analyses. Clustering analyses. The PCA analysis in 
Figure 1c was performed jointly on gene-body methylation of 12 
2i and 20 serum cells profiled by stand-alone scBS-seq3, 61 serum 
and 16 2i cells profiled by scM&T-seq, and a bulk BS-seq sample16 
and single-cell bulk methylation rates corresponding to genome-
wide averages.

DNA methylation–gene expression association analysis. For 
association analyses, gene expression levels were considered 
on a logarithmic scale, using log10 normalized TPM counts 
(described above). Binary single-base-pair CpG methylation 
states were estimated from the ratio of methylated read counts to 
total read counts. The methylation rate in different genomic con-
texts, such as gene-body, promoter and enhancer annotations, 
was estimated as the mean CpG methylation rate in the region 
defined by the context (Supplementary Table 2). Following the 
approach of Smallwood et al.3, we obtained weighted arithmetic 
mean and variance estimates for each context and cell, thereby 
accounting for differences in CpG coverage between cells.

For correlation analysis, genes with low expression levels or 
low expression and methylation variability between cells were 
discarded, according to the rationale of independent filtering28. 
First, a minimum expression level (at least 10 TPM counts) in at 
least 10% of all cells was required. From these, the 7,500 most 
variable genes were considered for analysis. Second, methylated 
regions were required to be covered by at least one read in at least 
50% of all cells. For association tests, all possible relationships 
between genes and methylated regions within 10 kb of the gene 
(upstream and downstream of gene start or stop) were considered. 
Association tests were based on the weighted Pearson correlation 
coefficient, thereby accounting for differences in CpG coverage 
between cells. Precisely, let e be a vector with expression rates 
of cells for a particular gene, m be the methylation rate of the  
associated region, and w be the weight corresponding to the 
number of covered CpGs within the region. Then the weighted 
Pearson correlation cor(e,m;w) between gene expression e and 
methylation m is 
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Here cov(x,y;w) is the weighted covariance, 

cov( , ; )
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and m(x;w) is the weighted arithmetic mean, 
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w
i ii
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Two-sided Student’s t-tests were performed to test for nonzero 
correlation, and P values were adjusted for multiple testing for 
each context using the Benjamini-Hochberg procedure. For the 
zoom-in plot in Figure 2b, we considered a sliding-window 
approach (3-kb windows with a step size of 1 kb) to estimate 
the methylation rate in consecutive regions. Each region was 
tested for association with gene expression, again using weighted  
correlation coefficients as defined above.

To correlate the methylation and expression of a single cell 
across genes (Fig. 2c), we filtered genes in the same way as 
described above and again used the weighted Pearson correla-
tion to test for associations.

R version 3.2.2 was used for all the analyses. The corresponding 
source code is available on GitHub (https://github.com/PMBio/
scMT-seq.git) and as Supplementary Software. SeqMonk version 
0.30 was used to compute methylation rates and CpG coverage 
for different regions (http://www.bioinformatics.babraham.ac.uk/
projects/seqmonk/). Ensembl annotation (version 75) was used 
whenever gene annotations were required.

24. Krueger, F. & Andrews, S.R. Bioinformatics 27, 1571–1572 (2011).
25. Wu, T.D. & Nacu, S. Bioinformatics 26, 873–881 (2010).
26. Love, M.I., Huber, W. & Anders, S. Genome Biol. 15, 550 (2014).
27. Trapnell, C. et al. Nat. Biotechnol. 28, 511–515 (2010).
28. Bourgon, R., Gentleman, R. & Huber, W. Proc. Natl. Acad. Sci. USA 107, 

9546–9551 (2010).

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

https://github.com/PMBio/scMT-seq.git
https://github.com/PMBio/scMT-seq.git
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/

	Figure 1 | Quality control and global methylation and transcriptome patterns identified in ser
	Figure 2 | Genome-wide associations between methylation and transcriptional heterogeneity in 
	Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity
	Methods
	ONLINE METHODS 
	Sample collection and single-cell sequencing.
	Sequence data processing and raw data analysis.
	Statistical analyses.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References


