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Abstract

Background: Previously, a role was demonstrated for transcription in the acquisition of DNA methylation at
imprinted control regions in oocytes. Definition of the oocyte DNA methylome by whole genome approaches
revealed that the majority of methylated CpG islands are intragenic and gene bodies are hypermethylated. Yet, the
mechanisms by which transcription regulates DNA methylation in oocytes remain unclear. Here, we systematically
test the link between transcription and the methylome.

Results: We perform deep RNA-Seq and de novo transcriptome assembly at different stages of mouse oogenesis.
This reveals thousands of novel non-annotated genes, as well as alternative promoters, for approximately 10 % of
reference genes expressed in oocytes. In addition, a large fraction of novel promoters coincide with MaLR and ERVK
transposable elements. Integration with our transcriptome assembly reveals that transcription correlates accurately
with DNA methylation and accounts for approximately 85–90 % of the methylome. We generate a mouse model in
which transcription across the Zac1/Plagl1 locus is abrogated in oocytes, resulting in failure of DNA methylation
establishment at all CpGs of this locus. ChIP analysis in oocytes reveals H3K4me2 enrichment at the Zac1 imprinted
control region when transcription is ablated, establishing a connection between transcription and chromatin
remodeling at CpG islands by histone demethylases.

Conclusions: By precisely defining the mouse oocyte transcriptome, this work not only highlights transcription as a
cornerstone of DNA methylation establishment in female germ cells, but also provides an important resource for
developmental biology research.

Background
The DNA methylome is particularly dynamic during
germ cell specification and gametogenesis, relating to
the epigenetic reprogramming required to ensure the re-
newal of totipotency at each generation [1, 2]. DNA
methylation (DNAme) is globally erased during migra-
tion of primordial germ cells (PGCs) towards the genital
ridge, followed by de novo establishment of new methy-
lation landscapes that are different between male and

female germlines. In females, DNAme is established after
birth, during follicular growth, in oocytes in meiotic ar-
rest. Of particular interest, DNAme occurs at a subset of
CpG islands (CGIs) termed imprinted germline differen-
tially methylated regions (igDMRs); this gamete-derived
methylation is maintained allele-specifically after fertilisa-
tion and acts as the basis for regulating genomic imprint-
ing and its hundred mono-allelically expressed genes [3].
The recent development of methods combining bisulfite
conversion as a means to determine methylation levels
and high-throughput sequencing for low amounts of start-
ing material have allowed the detailed profiling of the
DNAme landscapes of germ cells and pre-implantation
embryos [4–7]. Notably, these studies have revealed that

* Correspondence: sebastien.smallwood@babraham.ac.uk;
gavin.kelsey@babraham.ac.uk
†Equal contributors
1Epigenetics Programme, Babraham Institute, Cambridge, UK
Full list of author information is available at the end of the article

© 2015 Veselovska et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Veselovska et al. Genome Biology  (2015) 16:209 
DOI 10.1186/s13059-015-0769-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-015-0769-z&domain=pdf
mailto:sebastien.smallwood@babraham.ac.uk
mailto:gavin.kelsey@babraham.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


whilst many CGIs are methylated in oocytes, most are not
related directly to genomic imprinting but, nevertheless, a
significant amount of oocyte-derived DNAme is present
in embryonic day (E)3.5 pre-implantation blastocysts
[5, 8, 9]. Yet, aside from this descriptive information,
the mechanisms by which DNAme is established and
regulated in oocytes, and its biological function aside
from genomic imprinting, are still largely unclear.
Acquisition of DNAme at a genomic locus is likely to

require integration of a combination of several factors,
such as DNA sequence, specific trans-acting factors, and
cross-talk between histone modifications and DNA
methyltransferases (DNMTs) [2, 10]. Focusing on the
Gnas imprinted locus, we established a functional link
between transcription across an igDMR from an up-
stream transcription start site (TSS) and establishment
of DNAme during oogenesis [11]. Similar results were
subsequently obtained by others, as well as for the Snrpn
imprinted locus [12, 13]. In addition, by performing
reduced representation bisulfite sequencing (RRBS)
in mature oocytes, we found that methylated CGIs
are preferentially located within transcription units,
highlighting a potential global role for transcription
in determining the DNAme landscape of female
germ cells [5]. This conclusion later received support
when the first whole genome DNA methylome of
these cells was reported, with evidence that gene
bodies were enriched in DNAme [4]. The mechanis-
tic role for transcription in DNAme establishment is
likely (at least in part) to be a consequence of how
the targeting of DNMT3A, and its co-factor DNMT3L, is
regulated by histone post-translational modifications.
Indeed, while histone 3 lysine 4 (H3K4) methylation has
been shown to inhibit interaction of DNMT3A and
DNMT3L with nucleosomes, H3K36me3 (a transcription
elongation mark) enhances DNMT3A activity [14, 15].
These properties of the de novo methylation complex sug-
gest that transcription could account for the majority of
the oocyte methylome. Yet to what extent transcription
controls DNAme establishment is undetermined and rep-
resents an unresolved question towards a full understand-
ing of epigenetic reprogramming during development.
Regulation of transcription in oocytes is unique

because of the distinctive nature and biological roles of
these cells. They are highly transcriptionally active prior
to and during the establishment of DNAme — with
abundant accumulation of transcripts — and transcrip-
tionally silent when mature. These transcripts serve not
only to control oogenesis but also as a “maternal pool”
for the regulation of pre-implantation development until
zygotic and mid-preimplantation embryonic gene activa-
tion [16]. While our knowledge of the mouse oocyte
transcriptome has greatly improved in recent years due
to the development of RNA sequencing (RNA-Seq) for

low amounts of input [4, 5, 16–18], such studies are lim-
ited because they relied on the annotated reference gen-
ome as a basis for their analysis, leading de facto to a
loss of potentially critical information. Indeed, we have,
for example, revealed that expression of imprinted genes
in oocytes can be controlled by non-annotated oocyte-
specific TSSs, and multiple studies in pluripotent and
somatic cells have revealed the existence of non-coding
RNAs (ncRNAs) which are not indexed in reference
annotations [11, 19]. Therefore, to properly evaluate
the contribution that transcription makes to patterning
the oocyte methylome, a comprehensive description of the
oocyte transcriptome and promoter use is required.
In this study, we set out to define precisely the correl-

ation between transcription and the DNAme landscape
in the following integrated approach. We sought to gen-
erate a high-quality transcriptome annotation by deep
RNA-Seq of oocytes during follicular growth at the time
of active de novo DNAme, with a particular focus on the
identification and characterization of novel genes and
TSSs; this analysis revealed a key role for transposable
element (TE) expression in determining oocyte-specific
transcription events. From nucleotide-resolution maps,
we analysed the distribution of DNAme in the oocyte,
and determined that the genome is partitioned into
large-scale hypermethylated and hypomethylated do-
mains, a distinctive feature of the oocyte methylome. By
integrating these datasets, we assessed the coincidence
of transcription units with hypermethylated domains. By
this analysis, transcription accounts for up to 90 % of
the methylome, but there are also exceptions to a simple,
transcription-dependent model. Finally, we functionally
demonstrated the requirement of transcription in estab-
lishing DNAme at all CpGs of a locus using transgenic
mice.

Results and discussion
Our deep RNA sequencing approach outclasses previously
published datasets
Several limitations were present in the datasets pub-
lished by us and others prior to and during the course of
this project, irrespective of their overall low sequencing
depth [4, 5, 16–18, 20, 21]. First, apart from one study
[16], only the poly-adenylated (poly(A))-enriched frac-
tion was sequenced, while much evidence demonstrates
the existence of long non-poly(A) transcripts transcribed
by RNA polymerase II in mammalian cells [22]. Second,
these data were mostly not strand-specific (i.e., there
was no information on transcription orientation), hence
limiting the accurate identification of alternative TSSs,
for example. Finally, the datasets were generated from
transcriptionally silent fully grown germinal vesicle and
metaphase II oocytes, after DNAme establishment, and
therefore potentially lacked transcripts expressed during
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early oocyte growth but degraded before the completion
of oocyte development.
To circumvent these limitations, we generated strand-

specific RNA-Seq libraries using ribosomal RNA depletion
on oocytes isolated at different stages of follicular growth
(i.e., non-growing oocytes (NGOs); growing oocytes (GOs;
GO1 for mice aged 8–14 days post-partum (dpp), GO2
for mice aged 15 dpp); fully grown oocytes (FGOs))
(Table 1; Fig. 1a). Libraries were sequenced with 100 base
pair (bp) paired-end reads, with a total number of reads
generated of ~280 million, of which ~190 million were
concordant paired-end reads. This resulted in a total of
129.7 Mbp covered by at least five unique reads, 80.7 Mbp
of which were located outside the reference genome anno-
tation (merging of Ensembl, University of California, Santa
Cruz (UCSC) and RefSeq non-redundant transcripts iso-
forms). This represented an increase of 203.5 % over all
the previously published datasets merged together (63.7
Mbp, 74.0 Mbp outside reference) (Fig. 1b; Figure S1a in
Additional file 1). In addition, we reliably identified (cov-
ered by at least five unique reads) 283,171 splice junc-
tions/exon boundaries matching the reference annotation
and 74,037 novel ones, representing again a significant in-
crease over the published datasets (258,033 and 33,782, re-
spectively) (Fig. 1c; Figure S1a in Additional file 1).

Definition of the mouse oocyte transcriptome
To generate our oocyte reference annotation, we used
Cufflinks, a genome-guided transcriptome assembler,
using a combination of strategies [23, 24]. We performed
Cufflinks on all datasets individually or merged, in de-
fault genome-guided mode or in reference annotation-
based transcript (RABT) mode [25]; this combination of
strategies was used because it was found that the different
options tested gave different results, necessitating a com-
posite approach for accurate assembly. Non-transcribed
reference annotated transcripts included in the RABT
mode (53–64 % total transcripts) were removed based on
their expression values (Figure S1b in Additional file 1).
All different assembly annotations were then merged into
a single oocyte transcriptome annotation using the pro-
gram Cuffmerge (Fig. 1a). It is known that Cufflinks can
generate artefacts [26], and the raw oocyte annotation had
to be curated step-by-step to remove new transcripts for

which true biological identity was contentious (Fig. 1a;
Figure S1c in Additional file 1; “Materials and methods”).
The final oocyte transcriptome annotation consists of

82,939 transcripts forming 39,099 expressed genes
(14,995 mono-exonic and 24,104 multi-exonic), where a
gene is a transcription unit that may comprise multiple
transcript isoforms. Out of these, 20,428 genes (52.3 %),
representing 6877 multi- and 13,551 mono-exonic genes,
were only found in our oocyte annotation, the rest cor-
responding to known or novel isoforms of transcripts
present in the reference annotation (Fig. 1d; Figure S1d
in Additional file 1; Table S1 in Additional file 2). How-
ever, some of these novel transcripts may still corres-
pond to known ncRNAs not present in the reference, as
well as incomplete annotations of extended known tran-
scripts. Therefore, for higher confidence in the identifi-
cation of genuinely novel genes, we excluded all genes
overlapping or in close proximity, on the same strand, to
reference genes or known ncRNAs from the NONCO-
DEv4 database (±1 kbp and ±5 kbp for multi- and
mono-exonic genes, respectively) [27]. Furthermore,
mono-exonic genes representing expressed independent
repetitive elements annotated in RepeatMasker were ex-
cluded. This strategy resulted in the higher confidence
identification of 3848 novel multi-exonic genes and 5165
novel mono-exonic genes (23.1 % of total; 13,809 tran-
scripts; Fig. 1d). It should be noted that using these em-
pirical criteria could have led to the removal of true
biological transcripts, and some artefacts may remain in
our final annotation. We have tested multiple parame-
ters of analysis, and we believe the approach presented
here was the most stringent possible and is fully ad-
equate for the characterization and analysis performed
below.

A fraction of novel oocyte transcripts are potentially coding
To validate our experimental approach, we examined
how many novel oocyte transcripts defined by our tran-
scriptome assembly could retrospectively be identified
using the previously published oocyte datasets. We ob-
served that 94.3 % of novel multi-exonic and 55.1 % of
novel mono-exonic genes are detected in these datasets
merged together (FPKM (fragments per kilobase of tran-
script per million mapped reads) > 0.008, defined using

Table 1 RNA-Seq samples and sequencing characteristics

Sample ID Type Age of mice (dpp) Oocyte size Number of oocytes Raw sequencing reads Uniquely mapped reads

NGO Non-growing oocytes 5 10–40 μm 1545 44,111,934 31,173,658

GO1 Growing oocytes 8–14 25–70 μm 1990 67,882,721 42,709,253

GO2 Growing oocytes 15 50–70 μm 1510 118,463,451 82,037,819

FGO Fully grown oocytes 20 >70 μm 832 47,855,997 35,107,487

Total 5877 278,314,103 191,028,217

Veselovska et al. Genome Biology  (2015) 16:209 Page 3 of 17



the same approach as in Figure S1b in Additional file 1),
and logically the overlap is greater for more highly
expressed genes (Figure S2a in Additional file 1). We
also validated by RT-PCR a random selection of novel
genes (14) with a 100 % success rate for both multi- and
mono-exonic genes (Figure S2b in Additional file 1).
While novel genes represent 23.1 % of all expressed

genes in our oocyte transcriptome, they are, on average,
shorter than reference genes (median of 2.5 kbp and
19.1 kbp, respectively) and represent only 7.6 % of the
genomic fraction occupied by all expressed genes. In
addition, the expression level of reference genes is sub-
stantially higher than that of novel genes (median FPKM
of 2.65 and 0.19, respectively, from GO2 oocytes; Fig. 2a).

It is legitimate to assess what proportion of the novel
oocyte genes is likely to have biological function. There-
fore, we tested the potential of novel transcripts to
encode proteins through the use of the specialised pro-
grams Coding Potential Calculator (CPC) and Coding-
Non-Coding Index (CNCI) [28, 29]. CPC identified 841
mono- and 834 multi-exonic genes (18.6 % of all novel
genes) and CNCI 100 mono- and 188 multi-exonic
genes (3.2 %) as having coding potential. Even if predic-
tions based on such bioinformatic tools must be consid-
ered with care (the overlap between CPC and CNCI is
small — 171 genes), this suggests that we have identified
a substantial number of ncRNAs. Interestingly, novel
genes that appear to be oocyte-specific as they are not

Fig. 1 Oocyte transcriptome assembly. a Overview of the strategy used for the oocyte transcriptome assembly, with the different oocyte stages
sequenced in relation to DNAme establishment (top), the curations made to the raw Cufflinks annotation (bottom left) and the corresponding
changes in transcript numbers (bottom right). b Fraction of the genome covered by at least five non-redundant reads in our datasets, our merged
datasets (Merged) and the merged published oocyte RNA-Seq datasets (Published; Table S2 in Additional file 2). c Number of reference splice sites
covered by at least five non-redundant reads in our datasets, our merged datasets (Merged) and the merged published oocyte RNA-Seq datasets
(Published). d Composition of the oocyte transcriptome: novel NONCODE corresponding to non-reference transcripts present in the NONCODEv4
database (±5 kbp); ref. novel TSS corresponding to reference transcripts for which an upstream TSS active in oocytes has been identified; mono.
repeats corresponding to mono-exonic transcripts matching expressed TEs; proximity ref. corresponding to transcripts within 1 kbp or 5 kbp of
reference genes for multi-exonic and mono-exonic transcripts, respectively. FPKM fragments per kilobase of transcript per million mapped reads
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detected beyond the four-cell stage (~56 %; see below
and Fig. 2b, c) are more likely to be non-coding than the
novel genes detected in other developmental stages or in
somatic tissues (49 versus 122 genes with coding poten-
tial based on both CPC and CNCI, respectively). Focus-
ing on the protein domains of these coding-potential
genes using blastx tool hits to the Uniprot database [30],
we observed that at least nine novel genes possess
known protein domains. Of interest, these include the
Hop1p, Rev7p, and MAD2 (HORMA) domain, a
chromatin-binding domain found in proteins regulat-
ing meiotic chromosome behaviour and DNA repair
during meiosis. Interestingly, known proteins with

HORMA domains have been demonstrated to play
key roles in oogenesis [31].

Identification of novel oocyte transcripts specifically
expressed in female germ cells
If transcription patterns the DNA methylome of the
oocyte, it is interesting to assess how many such tran-
scription events are unique to the oocyte. To determine
the fraction of novel transcripts that are specifically
expressed in oocytes, we investigated their expression pro-
files in PGCs, throughout pre-implantation embryonic de-
velopment (zygote to morula), in embryonic stem cells
(ESCs) and various somatic tissues using relevant publicly

Fig. 2 Characteristics of the novel oocyte genes identified. a Cumulative distributions of length and FPKM values of oocyte transcripts matching
the reference annotation, known long ncRNAs (lncRNAs), and novel transcripts with and without protein-coding potential. b Hierarchical clustering
of novel oocyte genes according to their relative expression (mean centred, log transformed FPKM, merged datasets) in oocytes versus
PGCs, pre-implantation embryos, embryonic stemm cells, mouse embryonic fibroblasts and adult somatic tissues (Diff. cells) (see Table S2
in Additional file 2 for the full list of datasets). c Relative (left) and absolute (right) expression levels of novel oocyte genes in the largest
clusters identified. The number of genes and corresponding percentages are indicated under each cluster. Expression values are log transformed FPKM.
d Pie charts representing the proportion of TSSs overlapping CGIs, TEs or neither (NA) for reference genes, novel upstream TSSs of reference genes and
novel genes. For each category, the proportion of each TE family is displayed as a bar graph. e Venn diagram representing the numbers of upstream
TSSs of reference genes identified in our transcriptome assembly, in PGCs, early embryos and somatic tissues
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available datasets (Table S2 in Additional file 2). Since
most of these datasets are not strand-specific, we only
analysed novel transcripts that do not overlap with others
(2221 multi-exonic and 3210 mono-exonic genes). We
performed hierarchical clustering analysis for novel genes
expressed in at least one developmental stage (FPKM ≥
0.1; 2075 multi-exonic and 2188 mono-exonic genes;
Fig. 2b, c; Figure S2c in Additional file 1) and we observed
that ~56 % of novel genes were classified as potentially
oocyte-specific (54.1 % of multi- and 58.1 % of mono-
exonic genes; principally clusters 1 and 2; Fig. 2c) based
on their expression being detected in oocytes and up to
four-cell embryos only, in accordance with a recent study
examining timing of degradation of maternally provided
transcripts after fertilisation [16] (Fig. 2b, c). Focusing on
the PGC:oocyte transition, we determined that only 13.2
% of novel genes appear to be expressed already in PGCs
(principally cluster 4), suggesting a profound remodelling
of the transcriptome during specification of oocytes. How-
ever, it should be noted that inaccuracies could potentially
arise from comparing datasets generated by different
methods, and we cannot exclude at this stage that some of
the novel oocyte genes are expressed at low levels at other
developmental stages but are not detected in the respect-
ive datasets analysed.

Characterization of novel transcription start sites reveals
the contribution of transposable elements to the oocyte
transcriptome
Previous results from our laboratory highlighted, in the
context of genomic imprinting, the existence of alterna-
tive TSSs in oocytes non-annotated in the genome refer-
ence [11]. To investigate this genome-wide, we focused
on genes for which TSSs are located in separate novel
exons and outside reference TSS-associated CGIs. Using
these criteria, we identified new upstream promoters ac-
tive in oocytes for 1849 multi-exonic reference genes
(10.8 % total expressed; Fig. 1d). Of note, the median
distance between the reference and novel TSS was 5.3
kbp. Similar to novel genes, 79.9 % of these novel TSSs
can be retrospectively classified as expressed/active in
published oocyte datasets, and RT-PCR assays confirmed
the expression of nine out of twelve randomly selected
novel TSSs (this incomplete success could be attributed
to limitation in primer design and sensitivity of detection
in material of limiting availability; Figure S3a, b in
Additional file 1). Interestingly, novel upstream TSSs
of reference genes are less often located within CGIs
compared with reference-annotated TSSs (8.7 % ver-
sus 49.4 %, respectively). This is similar to all novel
transcripts identified in our oocyte annotation, with
only 4.6 % (410) having a CGI-associated TSS (62 %
for CGI-associated TSSs of reference genes expressed
in the oocytes) (Fig. 2d).

By measuring the activity of the novel upstream TSSs
of reference genes in other developmental stages, we
found that 35.7 % appear to be oocyte-specific, as they
were not detected in PGCs, eight-cell embryos, morula
or any of the other cell types examined (1560 analysed
genes with TSSs not overlapping with other genes)
(Fig. 2e; Figure S3f in Additional file 1). Importantly,
only 30.3 % of all novel upstream TSSs were detected in
PGCs, highlighting again the substantial remodelling of
the transcriptome associated with oocyte specification.
Classifying genes based on their expression from up-
stream or reference TSSs shows that the most com-
mon pattern is that the gene is expressed from the
upstream TSS in oocytes, but from the reference TSS
in PGCs, embryos and differentiated cells (Figure S3f
in Additional file 1).
Next, we aimed to identify common features for the

novel TSSs active in oocytes (novel transcripts plus
alternative TSSs of reference genes). A particularity of
oocytes is the high transcriptional activity of TEs, and it
was reported that TEs could act as promoters for a lim-
ited number of transcripts in mouse oocytes and ESCs
[17, 32, 33]. To investigate this further, we first quan-
tified the expression of TEs in our oocyte datasets.
This revealed that the ERVK and especially MaLR
families from the long terminal repeat class are highly
expressed, in accordance with previous observations
[33, 34] (Figure S3c in Additional file 1). Importantly,
we found that TE-associated TSSs are found in 34.6
% (3121) of novel genes, and in 20.4 % (377) of novel
upstream TSSs of reference genes; this is significantly
higher than for annotated TSSs of expressed reference
genes (478; 2.5 %). However, and of particular inter-
est, only MaLR and ERVK elements act as TSSs more
often than expected by chance based on occupancy of
intergenic regions by individual TE families, with 282
novel upstream TSSs of reference genes and 2607
TSSs of novel genes coinciding with these TEs (Fig. 2d;
Figure S2d in Additional file 1). Of note, the expression of
novel genes with MaLR- and ERVK-associated TSSs (me-
dian FPKM values 0.259 and 0.325, respectively) is higher
than novel genes with TSSs in unique sequences (median
FPKM value 0.168, GO2 dataset) (Figure S3e in Additional
file 1). In addition, ERVK and MaLR elements associated
with promoters of novel genes are hypomethylated
(18.3 % and 8.7 %, respectively) compared with the
genome average (36.8 % and 33.4 %, respectively) and
intergenic regions (28.0 % and 17.1 %, respectively).

The oocyte DNA methylome is composed of large-scale
hypermethylated and hypomethylated domains
Previous studies based on whole-genome bisulfite se-
quencing revealed that the global DNAme level in
fully grown germinal vesicle oocytes is approximately
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40 % [4, 35], with a strongly bimodal distribution of
methylation of CpGs, in contrast to what is observed
in sperm, ESCs and typical somatic tissues. By examining
in detail the oocyte DNA methylome, we observed that
methylated and unmethylated CpGs are not distributed
randomly throughout the genome. Instead, analysis of
DNAme levels of consecutive 1 kbp genomic windows
revealed that methylated CpGs tend to cluster together,
such that the DNA methylome is composed of large-scale
hypermethylated domains (HyperD) and hypomethylated
domains (HypoD) (Fig. 3a, b).
To assess the extent of the DNA methylome that de-

pends on transcription, we defined HyperDs and
HypoDs bioinformatically. For this, as described in detail
in the “Materials and methods” section, we determined
the methylation level of genomic intervals corresponding
to 50 consecutive CpGs (median size of 5.4 kbp), with
overlapping steps of ten consecutive CpGs. We then
merged consecutive windows with similar methylation
levels, using cutoffs of 75–100 % and 0–25 % for HyperDs
and HypoDs, respectively. For better correlation between
transcription and DNAme (see below), we excluded from
the domain definitions genomic regions corresponding to
promoters and CGIs, as these features are likely to be
unmethylated and would split one HyperD into several
HyperDs but still potentially associated with one tran-
scriptional unit (the correlation between transcription and
CGI methylation is investigated separately below). We also
excluded regions with 50 % or higher methylation in
DNMT3A- or DNMT3L-deficient oocytes or early NGOs,
as it was not possible to conclude how much of the ultim-
ate DNAme in these regions could be a result of de novo
events (Figure S4a, b in Additional file 1). Of note, all the
analyses listed below were also performed using domains
defined with genomic windows of ten consecutive CpGs
with five consecutive CpG steps (median size 940 bp); the
results being essentially the same, we describe results only
for the former (50/10) conditions for clarity.
Our experimental approach resulted in the definition

of 21,044 HyperDs and 25,165 HypoDs (46,209 domains
in total; Additional file 4). Importantly, the majority of
genomic CpGs are represented within HyperDs and
HypoDs with 30.7 % and 50.7 % total CpGs, respectively,
the remaining corresponding principally to promoters
and CGIs (11.2 %) and regions with intermediate levels
of methylation in FGOs (5.5 % total CpGs, 25–75 %
methylation level) (Fig. 3c). As expected, 90.0 % of CpGs
in HyperDs are methylated (≥75 % DNAme, average
methylation 91.4 %) and 89.3 % of CpGs in HypoDs are
unmethylated (≤25 % DNAme, average methylation 8.3 %),
validating the accuracy of our approach and the concept of
large-scale domains (Fig. 3d). HyperDs appeared smaller
with an average size of 35.9 kbp (median 20.9 kbp)
compared with 59.2 kbp (median 24.9 kbp) for

HypoDs, reflecting the overall genome methylation
(40 %) (Fig. 3e). Of note, the average CpG density was
similar for HyperDs and HypoDs (1.8 and 1.7, respectively;
Fig. 3e).

Hypermethylated domains overlap with active transcription
units
In order to test the strength of the association between
transcription and DNAme, we quantified the proportion
of each domain overlapped by transcription events.
Based on our oocyte transcriptome annotation, 74.3 % of
HyperDs are overlapped by transcripts for at least 50 %
of their length (63.2 % for 80 % of their length; Fig. 3f ).
Since our oocyte transcriptome assembly was very strin-
gent and the Cufflinks assembly could have missed some
transcripts, we also defined transcribed units as regions
with a minimum of three overlapping reads in at least
one of our oocyte RNA-Seq datasets. Based on this, we
found that 79.8 % of HyperDs are associated with tran-
scription events (>50 % of the domain overlapped by a
transcription unit; Fig. 3f ). When considering the total
length of all HyperDs together, 88.8 % overlaps with
transcription units. Logically the correlation with tran-
scription is dependent on the size of the HyperD, but
interestingly the overlap with transcription units is
higher for large domains (91.1 % of HyperDs >50 kbp
are overlapped by transcription units for >50 % of the
domain, which is 20.9 % of all HyperDs) compared with
small domains (71.9 % of HyperDs <10 kbp — 22.2 % of
all HyperDs), suggesting that some short domains in
particular may require additional mechanisms for their
DNAme establishment (Figure S5a, b in Additional file 1).
Despite the strong association with transcription, our

analysis revealed that 2052 HyperDs (9.8 % of total) and
some parts of HyperDs do not appear to be associated
with transcription events (<5 % of their length overlaps
transcribed regions). Of note, these apparently non-
transcribed HyperDs are relatively short compared with
all HyperDs, with an average size of 17.5 kbp (median
13.1 kbp). We set out to identify other features of these
HyperDs that could contribute to DNAme establish-
ment. We found that, compared with transcriptionally
silent HypoDs, these HyperDs are enriched in ERVK ele-
ments, and also in intermediate levels of methylation
(25–50 %) in NGOs or DNMT3A- and DNMT3L-
deficient oocytes. However, these features represent only
1.7 % of the total length of all HyperDs. Nevertheless,
when considered with transcription, this revealed that
only 9.5 % of the combined length of HyperDs is un-
accounted for (Figure S5b in Additional file 1). Evidently,
it could be that our RNA-Seq strategy failed to capture
some transcription events. This is difficult to assess, but
seems less likely for highly transcribed regions, and
lowly transcribed regions are usually hypomethylated
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(see below). Another explanation for this could relate to
DNAme spreading, as observed in different contexts
such as TEs, but this remains controversial and has not
been shown in a germ cell context [36]. Alternatively, a
transcription-independent mechanism could exist, based
possibly on the interaction of DNMT3A/3L with specific
histone marks other than H3K36me3. Further develop-
ment of ChIP-Seq protocols for low amounts of starting
material would be necessary to investigate this.

Having found a significant proportion of novel transcripts
identified by our deep RNA-Seq approach, we investigated
in more detail how this class contributes to the DNAme
landscape. Our oocyte transcriptome contains 83.0 % of the
methylated CpGs versus 75.3 % for the reference an-
notation: 4.5 % of methylated CpGs are within new
genes. Focusing on transcripts expressed from TEs as
promoters, for both novel genes and alternative up-
stream TSSs, a direct association was found for 4.7 %

Fig. 3 Oocyte methylome and correlation with transcriptome. a Visualization of the DNAme landscapes of FGOs and sperm using 2-kbp running
genomic windows with a 1-kbp step. Quantification is absolute percentage of DNAme, with the x-axis set at 50 % methylation. b Distribution of
1-kbp genomic windows in FGOs and sperm according to their percentage of DNAme. c Distribution of genomic CpGs according to the
following features: HyperDs and HypoDs, TSSs and CGIs, regions with intermediate methylation (25–75 %), regions with >50 % DNAme in
DNMT knock-outs (Dnmts KO) and NGOs, and none of the above (Other). d Violin plot representation of DNAme of CpGs in FGOs in the
entire genome (All) and in HyperDs and HypoDs (open circles represent the mean, dark circles the median, and black line the 1.5 × interquartile range).
e Boxplot representation of the distribution of length, CpG density and GC content within HyperDs and HypoDs (lines represent the median and
crosses the mean). f HyperDs ordered according to their increasing overlap with transcription in oocytes, based on the expressed reference genes
(Ref. FPKM > 0.001), our transcriptome assembly, our assembly combined with read contigs, our assembly/contig combined with transcribed regions of
partial DNAme (>25 %) in DNMT KOs and NGOs. g HypoDs ordered according to their increasing overlap with transcription in oocytes, based on the
expressed reference genes (Ref. FPKM > 0.001), our transcriptome assembly, our assembly excluding genes with FPKM≤ 0.5 alone or including also
alternative TSSs. h Genomic location of CGIs and igDMRs in relation to expressed genes in the reference annotation and our oocyte
transcriptome assembly
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of methylated CpGs in oocytes. Similarly, novel genes
and TE-regulated transcripts account for 2.9 % and
5.7 % of methylated CGIs, respectively.

Some expressed genes escape DNA methylation
If transcription were the predominant factor in deter-
mining DNAme in oocytes, it would be surprising to
find active transcription units devoid of DNAme.
Therefore, we investigated HypoDs for which our oo-
cyte annotation revealed substantial overlap with tran-
scription. These correspond to 26.2 % of all HypoDs
(overlap of >50 % with transcription units), or 16.1 %
of the total length of HypoDs, which is quite a significant
proportion (Fig. 3g; Figure S5c in Additional file 1). Of
note, transcribed HypoDs are relatively small (median
length 9.4 kbp), with 51.9 % and 23.3 % of these domains
shorter than 10 kbp and 5 kbp, respectively. This size con-
sideration could explain why they escape de novo methy-
lation since short genes typically have low enrichment in
H3K36me3 irrespective of expression level [37].
We found that long transcribed HypoDs are frequently

associated with genes with very low FPKM values and,
in accordance with previous observations, we observed
that gene body DNAme levels are positively correlated
with transcription levels, likely reflecting degree of
H3K36me3 enrichment [4]; indeed, genes with <0.5
FPKM are more often unmethylated than methylated,
while the proportion of methylated genes increases with
increasing FPKM value (Figure S5e in Additional file 1).
We found that 46.2 % of transcribed HypoDs (median
length 14.7 kbp, accounting for 11.0 % of the total length
of HypoDs) are associated with genes with <0.5 FPKM.
In addition, we found that some of the HypoDs defined
(14.2 %; 972) correspond to alternative downstream pro-
moters active in oocytes according to our transcriptome
assembly; these are shorter on average (median length
4.4 kbp) and could be protected from de novo methyla-
tion by H3K4me2/me3 marks [15] (Fig. 3g; Figure S5c
in Additional file 1). Taking into consideration our
transcription-based model for de novo DNA methyla-
tion, 9.2 % of all HypoDs (3.7 % of total length of
HypoDs) appear to be transcribed (>50 % overlap)
but their methylation status is not directly explained
(Figure S5d in Additional file 1).
This prompted us to investigate how many expressed

genes escape DNAme. We first identified 318 genes with
gene-body DNAme <25 %, but with characteristics of
normally methylated genes (FPKM > 1 and at least 10
kbp in size). To examine this further, we generated con-
tigs (at least three mapped reads) for each dataset and
analysed the methylation level of each gene using a run-
ning window strategy. This approach was used to limit
potential Cufflinks artefacts, where only a fraction of the
wrongly annotated gene would actually be transcribed

and methylated. This confirmed 52 large and highly
expressed genes (41 genes present in the reference anno-
tation) as unmethylated throughout their entire gene
body, and therefore in contradiction to our transcription-
based model (Table S3 in Additional file 2). Of note, these
genes are expressed at high levels throughout folliculogen-
esis, prior to and after the onset of DNAme targeting. Al-
though gene ontology analysis failed to report significant
enrichment for the 41 reference genes, it nevertheless
regrouped genes important for meiosis and germ cell de-
velopment (Sohlh2, Slit3, Syce1, Tes), known transcription
regulators (Foxo6, Zbtb38, and Zfp219), as well as mem-
bers of the Sox and Pax families (Sox13, Pax6).

Transcription and DNA methylation establishment at CGIs
and igDMRs
Having demonstrated the substantial contribution of
transcription to the global DNA methylome, we next fo-
cused on specific genomic features: CGIs. Our oocyte
annotation redefined CGI location compared with the
reference annotation, and these can be divided into four
groups: 9439 CGIs associated with the most upstream
TSS of the gene (41.0 % of total); 1666 CGIs intragenic
but associated with downstream/alternative TSSs of the
gene (7.2 % of total); 5043 CGIs intragenic and not over-
lapping a TSS (21.9 % of total); 6861 intergenic CGIs
(29.8 % of total). Of relevance, and highlighting the ben-
efits of our transcriptome assembly approach, we found
that 18.6 % of intergenic CGIs according to the reference
annotation are associated with genes in oocytes, and
13.6 % of CGIs originally classified as the most upstream
TSS are found to be intragenic.
Based on whole-genome bisulfite sequencing data in

FGOs, 2047 CGIs were found to be hypermethylated
(≥75 %; 9.1 % total CGIs) and 19,547 hypomethylated
(≤25 %; 87.1 % total CGIs). We found that 86.5 % (1771)
of the methylated CGIs are located within transcription
units, while 3.8 % (78) are associated with the most up-
stream TSS and 9.7 % (198) are intergenic (Fig. 3h). Of
note, 47.9 % (135) of the methylated CGIs overlapping
the most upstream TSSs in the reference annotation
become intragenic in our oocyte transcriptome. This
results either from the existence of alternative up-
stream TSSs, or from new overlapping transcripts that
are in ~25 % of the cases transcribed in the antisense
orientation and regulated by a promoter located down-
stream of the methylated CGI.
Looking in more detail into the exceptions to a

transcription-based mode strictly based on our Cufflinks
assembly, we found a large fraction of intergenic CGIs
(48 %) were still overlapped by transcribed units defined
as regions with at least three overlapping reads in at
least one of the oocyte RNA-Seq datasets; this was the
case for only 15.7 % of unmethylated intergenic CGIs
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(Chi-squared test, p value <0.0001). Similarly, we ob-
served a tendency for DNAme to extend beyond the 3′
end of a gene (for the top 40 % of genes based on their
expression, DNAme is still above 75 % at 1 kb down-
stream) and 18.7 % of methylated intergenic CGIs over-
lap with the first 1 kbp downstream of a gene. For the
remaining TSSs and intergenic CGIs, we investigated
their methylation level in NGOs, oocytes deficient in
DNMT3A and DNMT3L, and sperm, but found less
than ten to be methylated in these cases.
We next asked whether all CGIs located within tran-

scription units acquire DNAme, as might be predicted
from a transcription-based model. Out of the 2863 intra-
genic unmethylated CGIs, 41.5 % are in close proximity
(within 2 kbp) of the most upstream TSS, or overlap-
ping, or in close proximity to a “downstream” alternative
TSS, which might preclude their de novo methylation
on the basis of spread of H3K4 methylation. In addition,
41.5 % of intragenic unmethylated CGIs are embedded
within larger hypomethylated domains, mostly located
within weakly transcribed gene bodies that do not sup-
port DNAme establishment. Ultimately we found only
136 CGIs unmethylated but located within a highly tran-
scribed unit and surrounded by a hypermethylated do-
main. In this case, their methylation state could relate to
general mechanisms protecting against DNAme at these
genomic elements, and their capability to adopt specific
chromatin signatures solely based on their GC-rich se-
quence [38, 39]; further improvement in ChIP-Seq meth-
odologies will allow this possibility to be investigated in
more detail. In conclusion, we found that the transcrip-
tome not only defines a large fraction of methylated
CGIs, but could also account for the hypomethylated
state of the majority of CGIs.
Having shown that transcription correlates with CGI

methylation, we focused on the specific subclass of these
genomic features: igDMRs. Based on the reference anno-
tation, 5 out of 23 maternal igDMRs overlap promoter
regions (Peg10, Peg3, Slc38a4, AK008011, and Impact),
the remainder being within annotated transcription
units. Our transcriptome assembly now allows us to
identify novel upstream TSSs for the Peg10, Peg3, and
Impact genes, and novel transcripts transcribing through
the AK008011 and Slc38a4 igDMRs (Fig. 3h; Figure S6
in Additional file 1). A recent publication identified 11
new putative maternal igDMRs [7], and our transcrip-
tome revealed an intragenic location for nine of them.
For the remaining two, AK086712 and Pvt1, the associ-
ated igDMRs appear to be intergenic according our tran-
scriptome, but are nevertheless located with HyperDs.
These results highlight that transcription is the only
common feature of maternal igDMRs, to our knowledge,
and could link oocyte-specific signalling pathways to the
establishment of genomic imprinting.

Transcription is functionally required for DNAme
establishment at the Zac1 locus
Using a mouse model we originally provided a functional
demonstration of the importance of transcription in the
establishment of DNAme at the igDMRs of the Gnas
locus [11]. For technical reasons, however, the poly(A)
cassette strategy we used to block transcription was not
fully efficient, resulting in variable loss of methylation
between mice and precluding the use of this model for
more refined and mechanistic analysis. In addition the
Gnas locus is particularly complex with multiple
igDMRs controlling expression of multiple transcripts
(including antisense). For these reasons, we decided to
test in more detail the role of transcription in DNAme
targeting at another, more tractable locus.
We decided to focus on the imprinted gene Zac1

(Plagl1) principally because of the simplicity of the locus
(only one imprinted gene, with igDMR overlapping the
annotated canonical promoter), and because a human
imprinted disorder is associated with ZAC1 igDMR loss
of methylation (transient neonatal diabetes mellitus)
[40]. We previously identified by 5′ RACE (rapid ampli-
fication of 5′ complementary DNA ends) an oocyte al-
ternative TSS, located ~30 kb upstream of the Zac1
promoter (which is not active in oocytes), regulating the
expression of a new Zac1 transcript we named Zac1o
[11]. Our transcriptome assembly validated the existence
of Zac1o, and also revealed the presence of another, ap-
parently non-coding transcript sharing the Zac1o CGI as
promoter, but transcribed in the opposite direction, a
transcript we named Zac1oAS (“AS” for antisense;
Fig. 4a). Strikingly, a HyperD overlaps nicely with the
oocyte Zac1 transcription unit, which is particularly ap-
parent at the 3′ end, where the HyperD and Zac1o tran-
scription unit terminate at essentially the same genomic
location (Fig. 4a). We generated a conditional knockout
of the Zac1o promoter, resulting in the loss of expres-
sion of Zac1o and Zac1oAS in oocytes when crossed
with the female germline specific CRE deleter transgenic
line Zp3-Cre (Figure S7a, b in Additional file 1). As ex-
pected from the predictions of our transcription-based
model, we found that DNAme fails to be established at
the Zac1 igDMR in the absence of transcription, and this
loss of methylation is consistent across littermates and
litters (Fig. 4b; Figure S7c in Additional file 1). Import-
antly, this was also the case for the majority of the gene
body CpGs we tested, not just within the igDMR
(Fig. 4b).
While the hypomethylated state of the Zac1 igDMR is

maintained after fertilisation and throughout develop-
ment in embryos produced from Zac1o-deleted oocytes,
CpGs located within the Zac1o gene body but outside
the igDMR regained methylation, most likely following
embryonic implantation [41] (Fig. 4c). Of interest, deletion
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in early embryos of the promoter regulating Zac1o tran-
scription using Sox2-Cre mice did not affect methylation
of the igDMR, in accordance with the nature of genomic
imprinting, and revealing that transcription is not
required for the maintenance of imprints (at least at
Zac1) (Figure S7d in Additional file 1). Loss of
methylation at the Zac1 igDMR is functionally signifi-
cant, since it is associated with twofold up-regulation
and bi-allelic expression of Zac1 transcripts in all tis-
sues tested, assessed by crossing Zac1o−/− females
with Mus castaneus males (Fig. 4d). To validate fur-
ther this imprinting defect, we also examined the
chromatin signature of the Zac1 igDMR by performing
ChIP analyses in Zac1o+/+ and Zac1o+/− (maternal dele-
tion in oocytes) embryos (Figure S7e in Additional file 1).
This revealed that in embryos inheriting the Zac1o dele-
tion from the oocyte, both parental alleles of the igDMR
adopt a paternal epigenotype. Specifically, we noted a loss
of the characteristic igDMR allele-specific histone modifi-
cation signature: there was gain of H3K4me3 and H3K9ac
on the maternal allele, marks normally enriched on the

unmethylated paternal allele in Zac1o+/+ embryos, and a
marked decrease of the repressive H3K9me3 and
H4K20me3, both enriched on the methylated maternal al-
lele in Zac1o+/+ embryos. This observation is reminiscent
of those made in embryos 9.5 days post coitum derived
from Dnmt3L−/− females that lack female germline-
derived DNAme [42].

Transcription is required for full chromatin remodelling at
the Zac1 igDMR
Using our Zac1o mouse model, we sought to investigate
in more detail components of the mechanism linking
transcription and DNAme. Aside from the role of
H3K36me3 in promoting DNMT3A activity, transcrip-
tion could be implicated in chromatin remodelling at
CGIs, ensuring that protective marks are erased [2]. Im-
portantly, the chromatin modifier H3K4me2 demethylase
KDM1B has been implicated in DNAme establishment at
the Zac1 igDMR [43], and this prompted us to investigate
a potential link between KDM1B and transcription. For
this we optimised a ChIP-quantitative PCR assay based on

Fig. 4 Transcription is required for DNAme targeting at the Zac1 locus. a Visualization of the Zac1 transcripts in somatic tissues (top) and in oocytes
(bottom), as well as the DNAme landscape at this locus in FGOs. Deletion of Zac1o promoter is indicated by del. above the Cufflinks annotation, and
below the DNAme profile are indicated the regions (IN1, IN2, IN3, igDMR) that are subsequently assessed for DNAme in (b, c). b DNAme status of Zac1
igDMR and Zac1o/Zac1oAS intragenic regions in Zac1o+/+ and Zac1o−/− FGOs. DNAme was assessed by bisulfite sequencing (BS-PCR) and each line
represents an individual unique clone, with open circles representing unmethylated CpGs and closed circles methylated CpGs. c DNAme (BS-PCR) status
of the Zac1 igDMR and Zac1o IN2 intragenic region in Zac1o+/+ and Zac1o+/− neonatal (postnatal day 2 (P2)) brain. d Sequence traces (left) of RT-PCR
products from neonatal brain from Castaneus crosses to Zac1o+/+ and Zac1o−/−; the asterisk indicates the T/C single-nucleotide polymorphism. Zac1o
and Zac1 expression assessed by quantitative RT-PCR (right) in Zac1o+/+ and Zac1o+/− neonatal brain (***p < 0.001, **p < 0.01, Student’s
t-test). e ChIP-quantitative PCR quantification of H3K4me2 and H3K36me3 enrichment in growing oocytes (15 dpp) at Zac1 igDMR, Zac1o
intragenic regions and Zac1o intergenic regions (ND non-determined, *p < 0.05, **p < 0.01 Student’s t-test)
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a previously published micro-ChIP protocol [44]. We pre-
pared chromatin from ~2000 growing oocytes (15 dpp)
for each genotype (Zac1o+/+ and Zac1o−/−), performed
immunoprecipitation followed by whole genome amplifi-
cation in duplicate with multiple quantitative PCR assays
per genomic location (intergenic, intragenic, igDMR). To
test the accuracy of our protocol, we investigated neutral
loci expressed or not in oocytes (Zp3, Ppia, Fam164b;
Figure S7f in Additional file 1). Focusing on the Zac1
locus, and as mentioned above, in the absence of Zac1o
transcription we found a significant decrease in H3K36me3
within the Zac1o gene body and igDMR. Importantly,
we also found that H3K4me2 levels at the igDMR
were significantly higher in Zac1o−/− oocytes versus
Zac1o+/+ oocytes (Fig. 4e). This result strongly sug-
gests a connection between transcription and recruit-
ment of KDM1B at the Zac1 igDMR, and ultimately
that transcription could be implicated in different
levels of chromatin remodelling. Of relevance, it was
recently reported that human KDM1B binding is
enriched in active gene bodies, and it co-precipitates
with elongating RNA polymerase II and other tran-
scription elongation factors [45]. Development of reli-
able ChIP-Seq methods for low cell numbers will
allow the connection between transcription and
KDM1B at other igDMRs to be investigated in more
detail; in addition, it will be important to address
more widely the dependence on KDM1B of CGIs
methylated in oocytes.

Conclusions
Our work reveals that the real oocyte transcriptome is
only approximated by the publicly available reference
annotations. Indeed, we identified thousands of novel
genes, coding or non-coding and, in particular, we dis-
covered that many of these transcripts are linked to the
de-repression and high expression of TEs from the
MaLR and ERVK families in oocytes. Importantly, our
transcriptome assembly can be used as a general re-
source for other scientists and developmental biology
questions.
With this transcriptome assembly, we determined that

transcription events could account for 85–90 % of
DNAme established in the oocyte, including methylated
CGIs and igDMRs; however, a small number of expressed
genes escape DNAme, as well as a small number of CGIs
within active transcription units. By establishing a tight
genome-wide correlation between DNAme and active
transcription units, as well as functionally demonstrating
this at specific genomic loci, our work has wider implica-
tions. Indeed, it suggests that gene expression perturba-
tions during oocyte follicular growth could result in
alterations in DNAme in mature gametes, including at
CGIs. Since a fraction of the oocyte DNA methylome is

maintained to some extent in pre-implantation embryos
just before the embryonic onset of de novo methylation
(the biological consequence of this remains unclear), en-
vironmentally induced changes in gene expression in
female germ cells could lead to alterations in the epige-
nome of the next generation, with possible transgenera-
tional effects [5, 8].
It is difficult to precisely dissect the mechanisms by

which transcription promotes DNAme establishment in
oocytes due to the difficulty in obtaining large numbers
of these cells. Nevertheless, in vitro biochemical evi-
dence demonstrating a role for H3K36me3 in promoting
DNMT3A catalytic activity is obviously central to our
understanding, especially since DNMT3B is not active in
oocytes. However, and surprisingly given our findings,
recent work in mouse ESCs, derived neuronal progeni-
tors, and the human colorectal carcinoma HCT116 cell
line have showed that it is principally DNMT3B (and to
a lesser extent DNMT3A) that is associated with gene-
body methylation [46, 47]. Elucidating how DNMT3A
specificity towards certain genomic features varies de-
pending on the cellular context would be important to
understand DNAme dynamics during early embryonic
development and germ cell specification.
By revealing that H3K4me2 removal from the Zac1

igDMR is impaired in the absence of transcription, our
results suggest that the role of transcription in DNAme
targeting is likely more complex than a simple inter-
action of DNMT3A with H3K36me3, and could involve
the recruitment of histone remodellers or modifiers re-
quired for DNAme establishment. Transcription could
also indirectly promote complete DNAme establishment
by promoting nucleosome displacement, thus ensuring
that all CpGs of a given locus can be accessed by the
large DNMT3A/3L protein complex, and this is particu-
larly relevant since growing oocytes are in meiotic arrest
and not dividing [2].

Materials and methods
Mouse experimental procedures
All experimental procedures were approved by the Ani-
mal Welfare and Ethical Review Body at the Babraham
Institute and were performed under licenses issued by
the Home Office (UK) in accordance with the Animals
(Scientific Procedures) Act 1986.

RNA-Seq library preparation
Oocytes were collected from 5–20-day-old C57BL/6Babr
mice and RNA was extracted using TRIsure reagent
(Bioline) followed by RNA Clean & Concentrator (Zymo
Research) with on-column DNAse treatment (RNase-
free DNase I, Life Technologies). Ribosomal RNA was
depleted from total RNA using Ribo-Zero Magnetic Kit
(Human/Mouse/Rat — Low Input, Epicentre). Libraries
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from GO1 and GO2 were prepared using ScriptSeq v.2
RNA-Seq Library Preparation Kit (Epicentre). To generate
sequencing libraries from NGOs and FGOs reverse tran-
scription was performed using SuperScript III (Life Tech-
nologies), followed by second DNA strand synthesis using
dUTPs instead of dTTPs and DNA polymerase I (NEB); li-
braries were constructed using the NEBNext DNA Library
Prep Master Mix Set for Illumina (NEB), including dUTP
excision step by USER Enzyme (NEB) before PCR.

Library sequencing and mapping
NGO, GO1, GO2 and FGO RNA-Seq libraries were se-
quenced with 100-bp paired-end reads on an Illumina
HiSeq1000. Raw reads were trimmed to remove both
poor quality calls and adapters using TrimGalore v.0.2.8
and mapped to the mouse genome (GRCm38 assembly)
using TopHat v.2.0.9 (option –g 1). Published RNA-Seq
datasets (Table S2 in Additional file 2) were re-mapped
using the same approach in conjunction with gene models
from Ensembl release 70, except for the Park et al. dataset,
for which TopHat v.2.0. 9 (options – color –quals –g 1)
was used. Mapping of reads to repetitive elements is de-
scribed in Additional file 3.
BS-Seq published datasets (Table S2 in Additional file 2)

were trimmed using TrimGalore v.0.2.7 with default
parameters, aligned to the mouse genome GRCm38 as-
sembly using Bismark v.0.10.1 (options –pbat, –phred33-
quals) [48]. CpG methylation calls were extracted from
the deduplicated mapping output ignoring the first 4
bp of each read (for post-bisulfite adaptor tagging
(PBAT) libraries with 4N adapters) using the Bismark
methylation extractor (v0.10.0; –no_overlap –report
–ignore 4 –ignore_r2 4 for paired-end mode; –report
–ignore 4 for the single-end mode).

Oocyte transcriptome assembly
Transcriptome was assembled using Cufflinks v.2.1.1
[23, 24] with default parameters (genome-guided Cuf-
flinks) on a single dataset created by remapping NGO,
GO1, GO2, and FGO RNA-Seq datasets (no gene model
specification and merging using SAMtools v.0.1.18) and
as RABT assembly [25] (option –g) on individual NGO,
GO1, GO2, and FGO and merged GO1 and GO2 data-
sets. For the RABT output, threshold FPKM values to
filter non-transcribed transcripts were determined as the
point of maximum difference between the values of cu-
mulative distributions of FPKM values of transcripts in
the annotation and of random size-matched intergenic
regions using a custom R script. FPKM values were
determined using Cufflinks v.2.1.1 with -G option.
Transcripts that did not exceed the threshold FPKM
were removed. Annotation from genome-guided Cuf-
flinks and filtered annotations from RABT assembler
were merged into a single annotation by Cuffmerge.

Potential artefacts in the assembly were detected by visual
inspection. Modifications of the annotation GTF file were
performed using custom Perl and Java scripts available on
request. More details about identification and assessment
of the artefacts in the assembly are in Additional file 3.

Curation of the raw Cufflinks annotation
First, transcripts present in the individual datasets but
omitted by Cuffmerge were re-integrated. In some in-
stances, reference transcripts were wrongly assigned
FPKM values of 0 by Cufflinks, and re-quantifying the ex-
pression of these genes independently led to an increase
in almost 2000 predominantly multi-exonic transcripts. In
addition, a large number of mono-exonic transcripts
(48,232) were found in the raw oocyte annotation, sug-
gesting that some of them could be artefacts; therefore, we
applied more stringent criteria for this category. For in-
stance, we removed transcripts without clear directionality
information, and transcripts located in introns of multi-
exonic genes with the same strand orientation that could
correspond to remnants of nascent transcripts. We re-
moved mono-exonic transcripts wrongly defined because
of issues with the read aligner TopHat (in which a read
can be aligned to multiple positions with the same map-
ping score). We also observed numerous mono-exonic
transcripts of the same directionality grouped in clusters,
and these were frequently found 3′ of multi-exonic tran-
scripts. Since these arrays could result from the incom-
plete annotation of single longer genes or extended multi-
exonic transcripts, we merged those transcripts present
within a 2-kbp genomic interval of a 3′ end (after having
tested multiple size windows and assuming that, theoretic-
ally, the number of independent mono-exonic genes on
the same strand and on the opposite strand 3′ to a gene
should be the same). Finally, since mono-exonic genes can
be small, their FPKM values can be relatively high, result-
ing in artefacts caused by the background noise in RNA-
Seq datasets. We therefore re-quantified mono-exonic
genes based solely on read count, and removed low-
expressed ones based on cutoffs determined using nor-
malised random intergenic regions. By performing these
corrections on the raw Cufflinks output, the number of
multi-exonic transcripts was increased from 65,334 to
67,112 and the number of mono-exonic transcripts was
decreased from 48,232 to 15,827. Of note, the majority of
removed transcripts were shorter than 1 kbp, while the
additional transcripts recovered were predominantly lon-
ger than 5 kbp (Fig. 1a; Figure S1c in Additional file 1).
The output of our Cufflinks assembly and curation is pre-
sented as an annotation track (.gtf file) in Additional file 5.

Transcriptome-related bioinformatic analyses
The reference transcriptome used in this study was gen-
erated using Cuffmerge (Cufflinks v.2.1.1) by merging
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Ensembl, UCSC and RefSeq gene models downloaded
from UCSC Table Browser as available on 1 October
2014. Genes were defined as in Cuffcompare within
Cufflinks v.2.1.1 output. Oocyte gene coordinates were
defined as the most upstream start and the most down-
stream end coordinates from all transcripts per gene.
Transcripts were categorised into reference and novel by
Cuffcompare, with categories =, c, j, and o marking the
transcripts of reference genes and categories i, u, and x
novel transcripts.
CGIs and igDMRs were defined as published [7, 9, 49,

50] and lifted over using the UCSC liftover tool into the
GRCm38 assembly, removing CGIs on Y chromosome.
CGIs were classified as TSS-associated if they overlap
the most upstream TSS of a gene ±100 bp, intragenic if
they overlap the gene but are not at the TSS, and inter-
genic without gene overlap. Coordinates for TEs (L1 and
L2 LINEs, S2 and S4 SINEs, ERV1s, ERVKs, ERVLs,
MaLRs) for the mouse GRCm38 genome build were
generated using RepeatMasker. TSSs were classified
as CGI-associated if a first base pair of a gene or
transcript ±100-bp overlapped a CGI and as TE-
associated if a first base pair of a gene or transcript
overlapped a TE on the same strand.
Expression of assembled transcripts in published oocyte,

embryonic, and differentiated cell datasets (Table S2 in
Additional file 2) was quantified using Cufflinks v.2.1.1
(option -G). Expression of genes was determined as a sum
of FPKM values of all transcripts per gene. Expression
levels in individual embryonic datasets (single cells) were
merged per stage taking the total read count in each data-
set into consideration. Expression of upstream and refer-
ence TSSs at each stage or cell type was estimated in
Seqmonk for exons containing upstream or reference
TSSs as read count quantification corrected for length and
then manually corrected for read count in individual or
merged datasets to obtain RPKM values.
To perform hierarchical clustering, only genes with a

FPKM value of at least 0.1 in at least one dataset were
selected. Log transformed values were mean-centred and
clustered based on Pearson’s correlation using the hclust
function in R v.3.0.2. All statistical analyses (chi-squared
tests) were performed in R v.3.0.2.

Genome-wide DNA methylation analysis
To define hyper- and hypomethylated domains (HyperD,
HypoD), probes were designed over CpGs with data
[35], merging 50 consecutive CpGs with step size of ten
CpGs. Methylation percentage level was then quantified
taking into account only CpGs covered by at least five
reads and a minimum of three positions to count a
probe. Exported data were then processed using custom
Perl scripts (available on request) as shown in Figure S4 in
Additional file 1. Overlapping windows with methylation

level >75 % and <25 % were merged into HyperDs and
HypoDs, respectively, splitting overlapped regions be-
tween HyperDs and HypoDs into halves. Then, neigh-
bouring domains of the same status were merged if a
gap between them was <2 kbp, or if there was a
small domain (<1 kbp) of the opposite status between
them. Small domains (<2 kpb) were then removed
and, again, neighbouring domains of the same status
were merged if a gap between them was <2 kbp.
For correlation with the transcriptome, CGIs, TSSs,

and 1-kbp regions (three CpGs with at least three
reads) with ≥50 % methylation in NGOs or DNMT3A-
or DNMT3L-deficient oocytes were excluded from the
domains using a custom Perl script. TSSs excluded
from the domain designation were defined as 2-kbp re-
gions downstream of a gene’s most upstream TSS. If a
domain was divided into more parts, the information
about the parental domain was preserved for adequate
correlation with transcription and other features.
Oocyte contigs were defined as genomic regions with

three or more reads on the same strand in at least one
of the oocyte datasets. Enrichment in ERVK elements
and in intermediate levels of methylation (25–50 %) in
NGOs or DNMT3A- and DNMT3L-deficient oocytes
was quantified by the comparison of numbers of non-
transcribed (<25 % overlap by transcripts) HyperDs and
HypoDs with >50 % overlap with these features, requir-
ing p value <0.0001 in chi-squared test.
A FPKM threshold of 0.5 for gene bodies remaining

unmethylated was defined by quantification of the
proportion of unmethylated gene bodies from all gene
bodies with increasing FPKM values (0–0.1, 0.1–0.2,
0.2–0.3, etc.). Below a FPKM of 0.5, more genes were
unmethylated than methylated. CpG density and GC
content were quantified using a custom Perl script from
GRCm38 genome assembly. All methylation levels were
quantified in Seqmonk, using the following parameters:
three CpGs with a minimum of three reads depth to count
a probe for gene bodies; ten CpGs with a minimum of five
reads depth for CGIs; a minimum of five reads depth for
individual CpGs. Statistical analyses were performed in R
v.3.0.2.

Generation of Zac1o conditional deletion mice
The targeting construct was prepared using homologous
recombination in bacteria. We inserted one loxP site
upstream (2.6 kbp) of the Zac1o first exon and one loxP
downstream together with a neomycin selection cassette
flanked by Frt sites. The targeting construct was electro-
porated in C57BL/6J Bruce4 ESCs, and correct integra-
tion assessed by Southern blot. Chimeric mice were
generated by injecting targeted ESCs into C57BL/6J
blastocysts and crossed with female Flpe-Cre mice for
excision of the selection cassette. Specific deletion of
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the Zac1o first exon and promoter in oocytes was per-
formed by crossing with Zp3-Cre mice. For experiments
with allelic information, Zac1o-floxed or Zac1o-deleted
female mice were crossed with M. castaneus wild-type
males (CAST/EiJ).

Bisulfite-PCR sequencing and COBRA analysis
Oocytes were collected by mouth pipetting as previously
described [11], and lysed at 37 °C for 1 h (SDS 0.5 % final,
EDTA 0.5 mM final, phosphate-buffered saline, 10 μg of
proteinase K). Bisulfite conversion was performed directly
on cell lysates. For tissues, DNA was first purified using
phenol-chloroform extraction, 500 ng used for bisulfite
conversion, and 50 ng equivalent in each PCR reaction.
Bisulfite conversion was performed using a commercial
kit according to the manufacturer’s recommendations
(Sigma, Imprint DNA modification kit, two-step
protocol). PCR was performed using Pfu Turbo Cx
Polymerase (Stratagene). Primer sequences are avail-
able upon request. Cloning and analysis were per-
formed as described elsewhere [5], with 20–25 clones
analysed per genomic region and removal of clones
with identical patterns of conversion based on both
CpG and non-CpG methylation. For COBRA analysis,
DNA methylation of the Zac1 igDMR was assessed
using Taq1 restriction endonuclease.

Chromatin immunoprecipitation in oocytes
Growing oocytes were collected from 15-dpp females as
previously described [11], fixed at room temperature in 4
% formaldehyde for 15 min, washed in phosphate-
buffered saline with a final wash in less than 5 μl, snap-
frozen and stored at −80 °C before lysis. In total, 2180
Zac1o-deleted and 1975 wild-type oocytes were proc-
essed. Lysis and immunoprecipitation were performed
using the True MicroChIP kit (Diagenode AB-002-0016)
with the following modifications. Aliquoted oocytes were
lysed using 50 μl total lysis buffer tL1 and incubated on
ice for 10 min. Equivalent of 150 μl of ice-cold HBBS buf-
fer was added and all lysates were pooled together in 1.5
ml TPX microtubes (Diagenode). Chromatin shearing
was performed using the Bioruptor (Diagenode) with five
active cycles (30 s ON, 30 s OFF). Tubes were
centrifuged at 14,000 g for 15 min at 4 °C and super-
natant collected in a 1.5-ml low-binding tube. Ice-cold
complete ChIP buffer tC1 (200 μl) was added, and the
total volume was divided in three, equally. H3K36me3
(0.25 μg; Active Motif, 61102), 0.5 μg of H3K4me2
(Abcam, ab32356) and 0.25 μg of IgG (Abcam, ab46540)
antibodies were used per immunoprecipitation according
to the manufacturers’ protocols, except that DNA purifi-
cation following removal of cross-links was performed
using AMPure XP beads (1.8× ratio, Agencourt). Immuno-
precipitated material was separated in two equally, and

whole-genome amplification was performed according to
the manufacturer’s protocol (WGA4, Sigma-Aldrich,
starting from step 6) for nine cycles. We subsequently
submitted 1 μl to 15 additional amplification cycles
for agarose gel visualisation purposes. The remaining
amplified material was purified using AMPure XP beads
according to the manufacturer’s recommendations (1.8×
ratio, Agencourt), and quantitative PCR performed, with
quantification as relative enrichment to IgG and correc-
tion for primer efficiency. For Zp3, two independent PCR
assays were designed for intergenic surrounded regions,
two for the promoter region, and three for the gene
body; for Ppia, this was two intergenic, two promoter,
and four intragenic regions; for Fam164b, this was two
intergenic, two promoter, and three intragenic regions;
for the Zac1/Zac1o regions, this was two independent
assays for intergenic regions, two for the Zac1o pro-
moter, three for Zac1o intragenic regions, and three for
the Zac1 igDMR. All primer sequences are available
upon request.

Chromatin immunoprecipitation in embryos
ChIP of native chromatin was carried out as described
previously [42]. Three ChIP assays were performed using
independent chromatin preparations, with anti-H3K4me3
(Diagenode pAb 030-050), anti-H3K9ac (Merck-Millipore
06-942), anti-H3K9me3 (Merck-Millipore 07-442) and
anti-H4K20me3 (Merck-Millipore 07-463). Analysis of
immunoprecipitated chromatin was done as follows: in the
input and antibody-bound fractions for each antiserum
used, the parental alleles were differentiated by direct se-
quencing of the PCR products encompassing a strain-
specific single-nucleotide polymorphism in the regions of
interest. Input and antibody-bound fractions were quanti-
fied by real-time PCR amplification with a SYBR Green
mixture (Roche) using a LightCycler® 480II (Roche) instru-
ment. Background precipitation levels were determined by
performing mock precipitations with a non-specific IgG
antiserum (Sigma C-2288) and were only a fraction of the
precipitation levels obtained with specific antisera. Bound/
input ratios were calculated and normalised to those for
the imprinted KvDMR, which we showed to be similar in
wild-type and mutant embryos.

Data availability
The datasets supporting the results of this article are
available in the Gene Expression Omnibus repository,
under accession number [GEO:GSE70116].
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