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Cell cycle progression is an essential
regulatory component of phospholipid
metabolism and membrane homeostasis

Miguel Sanchez-Alvarez1,†,, Qifeng Zhang2, Fabian Finger1,‡,
Michael J. O. Wakelam2 and Chris Bakal1

1Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road,
London SW3 6JB, UK
2Lipidomics Facility, Babraham Institute, Cambridge CB22 3AT, UK

We show that phospholipid anabolism does not occur uniformly during

the metazoan cell cycle. Transition to S-phase is required for optimal mobil-

ization of lipid precursors, synthesis of specific phospholipid species and

endoplasmic reticulum (ER) homeostasis. Average changes observed in

whole-cell phospholipid composition, and total ER lipid content, upon

stimulation of cell growth can be explained by the cell cycle distribution

of the population. TORC1 promotes phospholipid anabolism by slowing

S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is

dependent on p53. We propose that coupling lipid metabolism to cell

cycle progression is a means by which cells have evolved to coordinate

proliferation with cell and organelle growth.
1. Introduction
Cell growth and proliferation requires the de novo synthesis of plasma membrane

and organelle endomembranes. The composition of the specific lipid species

which make up cell and organelle membranes in both growing cells, and in

daughter cells, is also of the utmost importance for cell homeostasis. For

example, the relative amounts of key components such as phosphatidylethano-

lamine (PE) and phosphatidylcholine (PC) species are essential for the optimal

function of the endoplasmic reticulum (ER) [1–4]. In addition, the levels of

lipid subspecies with specific acyl chain variants profoundly affect biological

phenomena as diverse as macrophage differentiation, early embryo development

and fertility [5–9].

In all eukaryotes the Protein Kinase B-Target of Rapamycin (PKB/AKT–TOR)

pathway promotes phospholipid anabolism by activating sterol response element

binding proteins (SREBPs), which are key transcriptional controllers of lipid and

phospholipid metabolism. The AKT–TOR pathway also promotes phospholipid

anabolism by regulating lipolysis and autophagy [10–16]. We have recently

demonstrated that TOR–SREBP regulation of lipid metabolism is required for

ER homeostasis [17]. Thus, in response to growth factors such as insulin, AKT–

TOR coordinately upregulates protein translation and lipid anabolism

[11,16,17]. But it still remains largely unclear as to how activation of AKT–

TOR–SREBP signalling is coordinated with cell cycle progression in order to

promote membrane homeostasis during growth and division.

While clearly lipid anabolism must be integrated with increased translation

and DNA synthesis during growth and cell cycle progression in order to ensure

daughter cells have similar lipid content to mother cells, the act of cell division

itself also involves profound changes in the architecture of cell membranes

[18–21]. For example, cytokinesis is driven by changes in the levels of several
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Figure 1. Cell cycle progression is integrated with ER homeostasis. (a) Genome-scale RNAi screens revealed a significant association of cell cycle progression with the
control of ER homeostasis. Depletion of G1/S-positive regulators increased UPR signalling and depletion of G2/M progression regulators decreased basal ER stress.
P-values denote enrichment significance for each functional class among hit lists [17]. (b,c) Regulators of G1/S progression (b) and G2/M progression (c) differentially
impact ER homeostasis, as assessed by levels of IRE1-dependent splicing of XBP1 mRNA. Total RNA was isolated from S2Rþ cells transfected for the indicated times
with specific dsRNAs and semi-quantitative RT-PCR analysis was performed for XBP1 mRNA species (upper band, unspliced XBP1 mRNA; lower band, spliced XBP1
mRNA). Quantitation is derived from three independent experiments.
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lipid species, which have specific roles in the stepwise

assembly and dynamics of regulatory complexes and cyto-

skeletal structures [22,23]. Consistent with a role of specific

lipid species during cell proliferation, a number of early studies

have suggested that the metabolism of specific lipids and

phospholipids may be regulated in cell cycle specific fashions

[20,21,24–26], and even demonstrated direct roles for cell cycle

regulators such as the checkpoint factor Cdk1/Cdc28 in the con-

trol of lipid metabolism and trafficking in yeast [27]. But how

lipid metabolism is regulated during periods of increased

growth, such as during the G1 phase of the cell cycle, versus

during other cell cycle phases, is very poorly understood.

Here, we show that lipid metabolism is tightly coordinated

with cell cycle progression in metazoan cells. The production of

key phospholipids that are essential for cell/organelle growth

and homeostasis occurs during distinct phases of the cell

cycle. Specifically, the G1/S transition is essential to sustain

the balance of specific PC and PE species. Cells unable to pro-

gress through the G1/S transition are able to generate biomass

de novo, but are unable to regulate PC and PE levels, which

leads to ER stress. Such ER stress can be rescued through the

exogenous supplementation of the relatively short, unsaturated

fatty acid oleate (C18 : 1). We show that TOR-SREBP signalling

is necessary, but not sufficient, for the regulation of lipid

metabolism during growth and proliferation, as SREBP targets

are fully activated only in cells that can progress through the

G1/S transition. Furthermore, TOR promotes lipid anabolism

not only by direct activation of SREBP, but also by regulating

cell cycle progression itself. The compartmentalization of

lipid metabolism across the cell cycle stages is dependent

on p53 activity, because depletion of this regulator allows

G1/S-stalled cells to synthesize the required phospholipid

species and relieves ER stress derived from G1/S arrest. More-

over, analysis of isolated G1 versus S/G2 populations

is compatible with a model by which lipid composition

changes observed in insulin-treated cells are explained by

changes in cell cycle distribution of the population. Kinetic con-

trol of cell cycle progression is thus an additional regulatory

layer of lipid metabolism that is integrated with membrane

homeostasis programmes.
2. Results
2.1. G1/S blockade during growth stimulation leads

to defective lipidostasis and endoplasmic
reticulum stress

We recently performed genome-scale RNA interference

(RNAi) screens in Drosophila cells for genes whose depletion

increases, or decreases, activation of the Inositol Requiring

Enzyme 1-X-box Binding Protein 1 (IRE1-XBP1) pathway,

which is triggered upon induction of ER stress. We found that

depletion of genes that promote G1/S transition upregulate

the Unfolded Protein Response (UPR), depletion of genes that

promote G2/M transition downregulate the UPR (figure 1a;

also see [17]). We validated these observations by real-time

polymerase chain reaction (RT-PCR) analysis of endogenous

XBP1 splicing, key regulators of cell cycle progression. Depletion

of G1/S-positive regulators, such as Cyclin D (CycD), Dp, E2f

transcription factor or the cyclin-dependent kinase 4 (CDK4)

all resulted in increased levels of IRE1-dependent splicing of

XBP1 (figure 1b). Conversely, depletion of different proteins

required for G2 progression and mitotic entry such as the

IplI-aurora-like kinase/aurora kinase B (ial) and polo kinase

were associated with lower levels of IRE1 activity as compared

with mock-transfected cells (figure 1c). Secondary screens

further suggested that cell cycle control integrates with lipid

metabolism through the action of SREBP, to ensure ER homeo-

stasis [17]. These observations supported a key role of cell

cycle regulatory networks in the control of lipid metabolism

and ER homeostasis.

We hypothesized that cell cycle regulators are unlikely

to play a role by directly modulating IRE1-XBP1 signalling,

but rather that defects in cell cycle progression lead to

imbalances in lipid composition that render cells unable to

meet the requirements for sustained cell growth and pro-

liferation. Consistent with this notion we found that

insulin stimulation, which promotes cell and ER growth,

leads to ER stress in Drosophila cells unable to progress

through G1/S, but has little effect on ER stress in
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Figure 2. Growth signalling requires progression to S phase to ensure ER homeostasis and the remodelling of ER architecture. (a) Stimulation of growth signalling
pathways by insulin is associated with loss of ER homeostasis upon blockade of G1/S progression. S2Rþ cells (106/ml density) were grown in the absence or in the
presence of 500 nM insulin, and blocked from undergoing G1/S transition (2 mM thymidine) or G2/M transition (20 mM nocodazole). Total RNA was extracted and
analysed by RT-PCR for IRE1-dependent XBP1 splicing (upper band, unspliced XBP1 mRNA; lower band, spliced XBP1 mRNA). (b) The induction of ER stress associ-
ated with the simultaneous stimulation of growth signalling and blockade of G1/S (500 nM insulin plus 2 mM thymidine, 18 h) can be rescued by the exogenous
supplementation of unsaturated free fatty acid oleate (0.25 mM, 6 h before harvesting). Total RNA was extracted and analysed by RT-PCR for IRE1-dependent XBP1
splicing (upper band, unspliced XBP1 mRNA; lower band, spliced XBP1 mRNA). n.s., Not significant, *: p , 0.05; p , 0.02; p , 0.005. (c,d) Quantitative imaging
of S2Rþ cells, treated as indicated, fixed and immunostained for ER. Automated image analysis was performed as detailed elsewhere [17]. Upper panels (c) show
representative snapshots of cells grown under the indicated conditions (blue, DNA; red, calreticulin/ER). Quantitation graphs (d ) were derived from well-averaged
values from six biological replicates, each containing approximately 1500 correctly segmented cells. Error bars depict +s.d.
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nocodazole cells arrested at G2/M (figure 2a,b; electronic

supplementary material, figure S1b). Insulin-mediated ER

stress in thymidine-arrested cells is due to a deficiency in

lipid metabolism because exogenous supplementation of

relatively short unsaturated fatty acid species (sodium

oleate, C18 : 1) can decrease ER stress in these cells

(figure 2b) [3,17,28]. Insulin stimulation also further exacer-

bates the ER stress that occurs following RNAi-mediated

depletion of the G1/S progression regulator Dp (electronic

supplementary material, figure S1c,d). Thus, we reasoned

that insulin stimulation increases the demand for lipid
precursors needed for cell/ER growth, and G1/S pro-

gression is required to satisfy this increase.

We previously showed that insulin stimulation results in

significant peripheral expansion and remodelling of the ER,

and that insulin-driven changes in ER architecture are depen-

dent on TOR and SREBP activity [17] (figure 2c,d). Therefore,

we aimed to determine whether similar defects in ER struc-

ture occurred in cells sustaining ER stress during G1/S

blockade by quantitative image analysis of the ER in single

cells [17]. Thymidine exposure alone did not provoke signifi-

cant alterations in ER morphology (figure 2c,d). Importantly,

http://rsob.royalsocietypublishing.org/
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insulin-dependent changes in ER architecture—namely, an

increased peripheral occupation of ER and diminished texture

features—were disrupted by blocking the progression of cells

through the G1/S boundary with thymidine (figure 2c,d) [17].

These observations further support the idea that progression

through G1/S is required for ER homeostasis and ER expan-

sion/remodelling in proliferating cells, presumably through

controlling the supply of lipid species to sustain membrane

synthesis.

SREBP acts downstream of insulin-AKT–TOR signalling

to regulate lipid metabolism, so that the availability of lipid

building blocks such as specific fatty acid species, matches

the demand for cell growth and concomitant ER expansion

[11,16,17]. Thus, the fact that insulin stimulation increases

ER stress in G1/S arrested cells, which can be prevented by

addition of exogenous fatty acids, could be explained by dys-

functional SREBP activity during the G1/S blockade. To

investigate SREBP activation and cell growth signalling

during G1/S arrest, we compared, by western blot analysis,

the pattern of relative activation of SREBP between normal

and G1/S-blocked cells following insulin stimulation. Despite

a moderate reduction (approx. 20%) as compared with unsyn-

chronized cells, insulin stimulation still robustly activates AKT
in G1/S-arrested cells, and results in cleavage of ER-localized

SREBP to its nuclear localized form to levels equivalent to

those of cells allowed to progress to G2/M (figure 3a). Para-

doxically, qRT-PCR analysis revealed a dramatic decrease in

mRNA levels of specific SREBP transcriptional targets, such

as the sphingosine kinase 1 (Sk1) and the fatty acid synthase

homologue (Fasn), in G1/S arrested cells, both in the absence

or the presence of insulin stimulation (figure 3b). Microarray-

based transcriptome profiling (figure 3c; electronic sup-

plementary material, table S1) further revealed that, despite

the cleavage and nuclear accumulation of SREBP in G1/S-

arrested cells, targets of SREBP transcription were downregu-

lated in cells unable to progress through G1/S (figure 3d ).

Thus, G1/S arrest does not directly affect insulin signalling

or SREBP cleavage per se, but significantly affects the tran-

scriptional output of cleaved SREBP. RNAi-mediated

depletion of the master regulator of G1/S progression Dp

resulted in a similar phenotype, demonstrating that G1/S

progression is required for SREBP activity (electronic sup-

plementary material, figure S2a,b). Taken together, our

observations support a model whereby insulin signalling

alone is necessary, but not sufficient (figures 1 and 2), for

SREBP-dependent transcription in G1/S-arrested cells. Failure

http://rsob.royalsocietypublishing.org/
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Figure 4. Insulin stimulation is associated with a delay in progression through S and G2 phases of the cell cycle. (a) Cell cycle profiles of S2Rþ cells grown under
either normal culture conditions (upper panel) or stimulated with 500 nM insulin for 16 h (lower panel). Estimated distributions across the cell cycle, according to
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rsob.royalsocietypublishing.org
Open

Biol.5:150093

5

 on July 4, 2016http://rsob.royalsocietypublishing.org/Downloaded from 
to activate SREBP in G1/S arrested cells dysregulates lipid

metabolism, and leads to a subsequent loss of membrane

homeostasis.

2.2. Insulin stimulation promotes a delay in S/G2-phase
progression

Because TORC1 signalling has been described as a key regula-

tor of S/G2 progression kinetics [29], we hypothesized that

the AKT–TOR pathway may regulate SREBP-dependent

transcriptional output not only by directly promoting SREBP

cleavage and nuclear translocation, but also indirectly by

promoting cell cycle progression into a phase that is more

permissive for SREBP activity. We profiled, using standard

cell cytometry procedures, the cell cycle distribution of cells

cultured in standard serum-containing growth media, as

compared with cells exposed to growth media and insulin

(figure 4a, upper panel). In the absence of insulin stimulation,

approximately 40% of proliferating S2Rþ cells are in G1,

approximately 20.5% are in S-phase transition, and approxi-

mately 35% are in G2/M. Insulin stimulation leads to an

approximate 25% increase in the number of S and G2/M

cells, and a decrease in the number of G1 cells (approx. 20%)

(figure 4a, lower panel). To determine how insulin stimulation

affects cell cycle progression, we briefly pulse-labelled cell

populations in S phase with the nucleotide analogue bromo-

deoxyuridine (BrdU) and estimated their progression time

through subsequent stages of the cell cycle by flow cytometry

(figure 4b,c) [29]. Untreated S2Rþ cells spend approximately
10 h progressing from S through G2/M. However, insulin

exposure significantly delayed the progression through these

phases of the cell cycle by approximately 6 further hours

(figure 4c,d). To determine the effects of insulin stimulation

on G2/M progression, we stained normal and insulin-treated

S2Rþ cells for the early mitotic marker phosphoserine 10 of

Histone H3 (figure 4d) [29], and observed that phospho-histone

H3 levels were significantly lower in insulin-treated cells. Taken

together these data demonstrate that insulin stimulation alters

cell cycle progression by decreasing the rate of progression

through S/G2 phase.

The TORC1-specific inhibitor rapamycin shortened the

residency time of cells on S/G2 phase, and significantly

reduced the delay induced by insulin exposure (figure 4b–d).

Importantly, TORC1 inhibition significantly increased levels

of phosphoserine 10 Histone H3 in a relatively short time

period (12–18 h), further supporting the idea that TORC1

decelerates S/G2 progression (figure 4b, right bars).

2.3. Lipid mobilization in response to insulin is
dependent on cell cycle stage

Our observations suggest that insulin regulates lipid metabolism

by simultaneously activating SREBP and slowing cell cycle

progression through S/G2 phases in a TORC1-dependent

manner. In support of this idea, neutral lipids in proliferating

S2Rþ cells accumulate in droplets, but are mobilized in response

to insulin stimulation [17]. However, we previously showed

that insulin-mediated lipid mobilization does not occur in

http://rsob.royalsocietypublishing.org/
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thymidine-treated cells, resulting in the accumulation of large

lipid droplets [17]. We reasoned that if insulin-mediated lipid

mobilization requires that cells progress through G1/S, RNAi

manipulation of downstream components of the insulin signal-

ling pathway and/or G1/S progression should also result

in similar defects in lipid mobilization, and result in ER stress.

Similarly, if lipid mobilization is enhanced in S/G2 phases,

inhibition of G2/M-positive regulators should result in the

deficient accumulation of neutral lipids. We thus tested how

downregulation of 96 different genes, which we had previously

identified as involved in the control of ER homeostasis and

included several cell cycle regulators (‘XH set’, electronic sup-

plementary material, table S2) [17], affected lipid mobilization

and ER stress in the absence and presence of insulin. In parallel,

we monitored ER stress across RNAi conditions+ insulin using

the validated XBP1-EGFP reporter that recapitulates IRE1-depen-

dent mRNA unconventional splicing [17]. In line with our

hypothesis, depletion of canonical components of the insulin

receptor (InR) signalling pathway such as TOR, AKT, Raptor or

the Phosphatidylinositol-dependent kinase (PDK) homologue

Pk61C, increased basal lipid accumulation (figure 5a), and greatly

diminished mobilization in response to insulin. Importantly,

depletion of the negative regulators of TORC1 signalling, such

as TSC2 or PTEN, resulted in opposite phenotypes to depletion

of TOR, AKT or PK61C, decreasing IRE1 steady-state activity

and reducing accumulation of LDs (figure 5a).

Depletion of genes that promote G1/S progression such as

CycD, CycE, cyclin-dependent kinase 4 (CDK4), deoxynucleo-

tide kinase (dnk), and Dp phenocopied RNAi-mediated

downregulation of positive growth factors, such as elevated

IRE1 signalling and changes in the subcellular distribution of

neutral lipids (figure 5a). Key positive regulators of G2 pro-

gression, which were identified in the screen as enhancers of

ER stress, such as ial, Myt1 or polo, were also found as enhan-

cers of lipid accumulation across both conditions. The fact that

RNAi targeting most G1/S regulators leads to significant

increases in cell size further supports our model that G1/S

arrest per se, and not defects in insulin sensitivity or down-

stream signalling, leads to defects in lipid mobilization

(figure 5b; see also figure 3a,b). Thus, while G1/S arrest does

not block cell growth, this arrest probably results in the shunt-

ing of lipid precursors towards triacylglyceride synthesis

and the formation of lipid droplets, and not, their incorporation

to into phospholipids [27].
2.4. Phosphatidylcholine and phosphatidylethanolamine
metabolism is regulated by cell cycle progression

We next sought to investigate how lipid species are modified

during insulin stimulation, and if the composition of lipid

membranes is affected by G1/S arrest. We focused specifically

on PC and PE species as (i) these are major constituents of

plasma and ER membranes in eukaryotes [1,26]; (ii) as such,

their relative levels in the ER membrane are major determi-

nants of ER homeostasis [2,26,30]; and (iii) we [17] and others

[31–33] have previously shown that their levels both regulate,

and are regulated by, SREBP and the ER homeostatic machin-

ery. Insulin stimulation of wild-type cells is associated with an

increase in net cellular content of PC and PE species (electronic

supplementary material, table S3). Upon species profiling, we

also observed that insulin exposure leads to changes in the

levels of particular PC and PE species. Specifically, insulin
leads to an increase in shorter fatty acid chain PC species

(12–18C), as well as a substantial relative decrease in a

number of longer fatty acid chain species (20–24C), as com-

pared with untreated cells (figure 6a; see also the electronic

supplementary material, table S3). We interpret that, in nor-

mally proliferating cells, insulin positively regulates the de
novo synthesis of specific, shorter fatty acid species that are

directly incorporated into PE and PC pools.

Further supporting that G1/S-arrested Drosophila cells are

not insulin-resistant, blockade of cell cycle progression at

G1/S, either by thymidine or by RNAi-mediated depletion of

the essential regulator Dp, did not abolish the increase in

total PC levels upon insulin stimulation (electronic supplemen-

tary material, figure S3a; see also figure 3a). However, total PC

was significantly diminished following insulin treatment,

when cells were not allowed to progress through G1/S

(electronic supplementary material, figure S3b). Furthermore,

G1/S arrest also prevented the insulin-mediated changes in

PC species composition that occur when cells are allowed to

progress to S phase (figure 6b,c; electronic supplementary

material, tables S4 and S5). For example, insulin stimulation

in combination with G1/S arrest leads to a relative increase

in a number of species of long fatty acid chains, including

species bearing C24/C26 acyl chains (figure 6; electronic sup-

plementary material, tables S4 and S5; right-hand arrows).

We observed similar changes when profiling PE species from

the same samples (electronic supplementary material, figures

S3a,b and S4).

To determine whether G1/S arrest in itself results in dysregu-

lation of PC and PE levels, we compared wild-type and G1/S

arrested cells in the absence of insulin. Global levels of PC and

PE species were significantly diminished across conditions that

impaired G1/S progression in the absence of insulin stimulation

(electronic supplementary material, figure S3c). In fact, the species

that exhibited the largest increase upon insulin stimulation in

wild-type cells (26 : 0/28 : 1/28 : 0) were also significantly

depleted in unstimulated G1/S-blocked cells as compared with

untreated wild-type cells (figure 6d,e). In fact, G1/S-blocked

cells exhibit alterations in their profiles of PC and PE species

that resemble those observed in SREBP-depleted cells

(figure 6d–f; electronic supplementary material, table S6) [17].

We also observed very modest, but significant alterations in the

overall degree of acyl chain saturation both in basal culture

conditions as well as upon insulin exposure, when comparing

wild-type cells with G1/S-arrested cells (electronic supplemen-

tary material, figure S3d–f). Altogether, these observations

further support the idea that the G1/S transition is an integral

component of the homeostatic response to insulin stimulation,

and acts by regulating lipid metabolism.

2.5. Lipidomics profiling reveals cell cycle stage
compartmentalization of lipid metabolism in
normal proliferating cells

We reasoned that if lipid metabolism is indeed a temporally

restricted process, we should observe fluctuations in the

levels of lipid species in normally proliferating cells in the

absence of any chemically or genetically induced cell cycle

arrest. Thus, we sorted live cells into G1 versus S/G2 cell

cycle fractions by fluorescence-activated cell sorting (FACS)

and analysed their relative composition in PC and PE species.

We observed significant differences in the relative PC/PE

http://rsob.royalsocietypublishing.org/
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Figure 5. (Caption overleaf.)
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Figure 5. (Overleaf.) Blockade of progression through G1/S does not abolish cell growth, but is required for ER homeostasis and lipid mobilization in proliferating
S2Rþ cells. (a) Averaged Z-scores following depletion of each gene targeted by RNAi in the XH set sub-library were hierarchically clustered. Blown-up blocks
(rightmost half of panel) show in higher detail selected clusters where the four Z-scores following gene depletion have a similarity value more than 0.78.
The function of each cluster was manually annotated (coloured hue boxes). Columns 1 – 4, from left to right: 1: XBP1 splicing assay under normal growth conditions;
2: XBP1 splicing assay upon insulin stimulation (500 nM, 16 h); 3: lipid droplet relative accumulation of neutral lipids [17] under normal growth conditions; 4: lipid
droplet relative accumulation of neutral lipids upon insulin stimulation. (b) Ranked cell size (normalized Z-scores) following the depletion of genes targeted by the
XH sub-library [17]. Here nuclear size is a used a proxy for cell size. Some key genes controlling cell growth signalling, cell cycle progression and/or phospholipid
metabolism are highlighted with red hue when their depletion increases average cell size, and with blue hue when depletion decreases it. The background grey box
delimitates the significance cut-off of Z+ 2.
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composition of the membranes of G1 versus S/G2 cells.

Notably, the difference in the lipid profiles between G1

cells versus S/G2 cells resembled the differences observed

when comparing mixed populations of cells grown in

normal conditions versus cells growing in the presence of

insulin (figure 7a,b; see also figure 6a–c; electronic sup-

plementary material, table S7). For example, S/G2-enriched

fractions exhibit a higher proportion of short PC/PE species,

and reduced levels of longer (24–26C) species, similar to

insulin-treated, unsorted cultures (12–18C) (figure 7a,b). We

further characterized the relative composition of PC and PE

species in sorted G1 versus S/G2 subpopulations from cell

cultures exposed for different times to insulin stimulation

(figure 7a,b, blue and white bar sets). Of note, relative

levels of PC/PE species in G1-sorted cells are indistinguish-

able from the relative composition of S/G2-sorted cells

when derived from cell cultures stimulated for long periods

of time with insulin. Because the composition of S/G2 cells

did not change to a comparable extent across the three differ-

ent insulin stimulation time points (electronic supplementary

material, table S6), we suggest the residency time in specific

stages of the cell cycle is an additional layer in the regulation

of complex lipid metabolism.

Although the lipid composition we measure is derived

from whole cells, we hypothesized that the architecture

and composition of the ER membrane is also regulated by

cell cycle progression. To discern how the cell cycle influ-

ences the ER membrane, we performed double-labelling

experiments in live cells by simultaneously targeting DNA

and ER contents with specific probes. As shown in

figure 7c, S/G2 cells exhibit a higher average ER membrane

content than G1 cells. Strikingly, insulin stimulation does

not lead to comparable changes in the average ER content

of each subpopulation (figure 7c). In fact, cell cycle

distribution alone predicted the overall ER content of a

non-segregated cell population (figure 7d,f; see figure 7e
for the considered segmentation thresholds). These obser-

vations further suggest that lipid metabolism and ER

homeostasis are regulated in a manner that is dependent

on cell cycle progression.

2.6. P53 is required for the temporal asymmetry of
phospholipid metabolism throughout the cell cycle

We sought to identify factors responsible for partitioning of

lipid metabolism into cell cycle stages. One candidate for

such a factor is the transcriptional master regulator p53,

whose activity is controlled in cell cycle dependent fashions

and has been previously described to functionally interact

in different contexts with SREBP [34–36]. In support of the

notion that p53 may regulate lipid metabolism directly,
and/or via control of cell cycle progression, we have

previously observed that depletion of p53 results in ER

stress, but only in cells simultaneously depleted of SREBP

(electronic supplementary material, figure S5a,b) [17]. We

decided to test whether p53 could be playing a role coupling

cell cycle progression with lipid metabolism and ER homeo-

stasis maintenance. Notably, p53 depletion by RNAi did not

provoke significant changes in the cell cycle profile of nor-

mally cultured cells or insulin stimulated cells (figure 8a;

see also figure 4). Thus, p53 does not function as a cell

cycle gatekeeper during proliferation that occurs in the

absence of any exogenous stress. However, p53 depletion

consistently alleviated the ER stress caused by G1/S block

in wild-type cells (figure 8b). Moreover, we observed p53

depletion allowed SREBP target genes to be expressed in

G1/S-arrested cells to levels comparable to cycling cells

(figure 8c). These effects are unlikely derived from differen-

ces in the regulation of the insulin-mediated signalling

activity upstream of SREBP, because we did not observe

significant changes when comparing wild-type cells with

p53-depleted cells across different conditions in terms of

AKT phosphorylation or SREBP cleavage (figure 8d ).

We further profiled the PC and PE relative composition of

cells stimulated to grow but blocked in G1/S, in the presence

or the absence of p53 RNAi. p53 depletion completely rescued

the alterations in growth-associated phospholipid metabolism

associated with G1/S arrest, to the point that the levels of many

phospholipid species recovered to levels comparable with

those of insulin-stimulated cells that are competent to progress

through G1/S (figure 8e; see also the electronic supplementary

material, table S8). Taken together, our data suggest that p53

acts to attenuate SREBP-mediated lipid metabolism in G1/S

arrested cells, but not during S/G2.

2.7. Endoplasmic reticulum stress results in a delay in
progression through S/G2 phase

Because TORC1-driven S/G2 progression kinetics appeared

to be a component of the ER homeostatic response in Drosophila
cells, we decided to test whether acute ER stress engages these

mechanisms. We monitored S/G2 progression in the presence

or the absence of the protein glycosylation inhibitor tunicamy-

cin (Tm), which provokes acute ER stress in S2Rþ cells in a

time-scale of approximately 2 h (electronic supplementary

material, figure S6). Acute exposure to Tm leads to an increase

in G2/M populations (figure 9a). BrdU pulse-labelling exper-

iments strongly suggested that these changes in cell cycle

profile following Tm exposure are due to a delay in progression

through S/G2/M phases (figure 9b,c). This cell cycle delay is

likely TORC1-dependent because concomitant exposure to

rapamycin largely abolished the cell cycle delaying effect

http://rsob.royalsocietypublishing.org/
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Figure 6. G1/S transition is required for insulin-mediated changes in phosphatidylcholine (PC) levels. (a) PC species of insulin-treated S2Rþ cells as compared with
normally cultured cells (expressed as a percentage). Three major groups of PC species are indicated with coloured backgrounds: magenta, short acyl chain species;
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of Tm (figure 9b, leftmost panel column; and figure 9c). We pro-

pose that challenges to ER homeostasis delay cell cycle

progression in a TORC1-dependent manner in order to regulate

lipid metabolism as part of a homeostatic response (figure 10).
3. Discussion
In this study, we show the regulation of PC and PE species, key

building blocks of plasma and organelle membranes, are differ-

entially regulated across the cell cycle. Furthermore, our
observations support the hypothesis that the ‘residency time’

in specific stages of the cell cycle is an intrinsic mechanism

that dictates the appropriate levels of specific lipid species. The

underlying mechanisms involve SREBP dependent transcrip-

tion, because we observe a pronounced attenuation in the

transcriptional output of key SREBP targets upon G1/S arrest.

SREBP is regulated both by AKT/TORC1-dependent signalling

[11,12,14–16,31] as well as structural aspects of nuclear organiz-

ation and cell cycle progression [15,37,38]. Here we show that

both regulatory routes are essentially integrated, as full

TORC1-mediated activation of SREBP requires TORC1-driven

http://rsob.royalsocietypublishing.org/
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Figure 7. Population-level changes in phospholipid species following insulin stimulation can be partially explained by changes in cell cycle progression. (a,b)
Heatmaps depict percent change in relative amounts of (a) PC species and (b) PE species. Top rows in (a) and (b) show changes resulting from insulin-stimulation
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G2 entry and progression delay. Finally, we demonstrate that

p53 is involved in coupling cell cycle progression to insulin-

promoted lipid metabolism. A potential key component of this

regulatory action could be an attenuation of SREBP transcrip-

tional activity by p53, preferentially during G1/S stages of the

cell cycle (figure 8c). The Drosophila homologue of p53 binds
the promoter sequences of several SREBP targets such as Fasn,
Sk1 or Cct1, all of which are important regulators of lipid and

phospholipid anabolism [39]. Moreover, p53 has previously

been reported as a specific negative regulator of SREBP both

in vitro and in vivo [36,40]. The physical and functional interplay

between p53 proteins and SREBP is currently a major focus of

http://rsob.royalsocietypublishing.org/
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Figure 8. P53 suppresses cell cycle dependent SREBP activity. (a) Cell cycle profile of p53 depleted S2Rþ cells in normal growth media (top panel), or following
insulin stimulation (bottom panel). For comparison the cell cycle profile of normal S2Rþ cells in the absence of proliferation is shown in figure 4a. (b) IRE1-
dependent splicing of the XBP1 mRNA was estimated from RT-PCR analysis (upper band: unspliced XBP1 mRNA; lower band: spliced XBP1 mRNA) in insulin-treated
G1/S arrested cells þ/ – p53 RNAi. (c) Normalized mRNA expression levels for the indicated genes in S2Rþ subjected to the following treatments and RNAi
transfections: 1: normal growth conditions/LacZ RNAi; 2: insulin (500 nM), 18h/LacZ RNAi; 3: insulin (500 nM)/thymidine (2 mM), 18h/Lac Z; 4: normal growth
conditions/p53 RNAi; 5: insulin (500 nM), 18h/p53 RNAi; and 6: insulin (500 nM)/thymidine (2 mM), 18h/p53 RNAi. (d) p53 depletion does not affect growth
signalling across the indicated conditions. S2Rþ were transfected for 96 h with the indicated dsRNA preparations, treated as indicated, and lysed for western
blot analysis. (e) Thymidine exposure abrogates phospholipid changes associated with insulin exposure in wild-type cells, but not in p53-depleted cells. Heatmap
values represent percentage change in relative amounts of PC (upper block sets) and PE (lower block sets) species. For each phospholipid class, the upper heatmap
block depicts data derived from mock-transfected cells and represents relative changes for each species upon insulin exposure, in the absence (upper row) or
presence (lower row) of thymidine. The lower heatmap block of each phospholipid class depicts data derived from p53-depleted cells, and represents relative
changes for each species upon insulin exposure, in the absence (upper row) or presence (lower row) of thymidine. Correlations for the phospholipid profiles between
absence and presence of thymidine blockade are shown for each RNAi background and each phospholipid class.
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attention in cancer metabolism biology [34,41]. To our knowl-

edge, our observations suggest for the first time that cell cycle

stage is a key contextual that decides the outcome of interactions

between SREBP and p53.

Dysregulation in the balance of desaturated/saturated

fatty acids (and their derivatives) in the ER membrane has

been linked with alterations of ER homeostasis—presumably

due to changes in the physical properties of the membrane

itself [2,8,42–44]. The biological role of different lengths in

the acyl chains, and their regulation, are less understood.

Acyl chain length can have a profound impact on the curva-

ture, fluidity and fusion rates of biological membranes [7].

Accumulation of longer acyl chain species has been previously

linked with environmental or metabolic stress in yeast, and

viral particle budding of hepatitis C [9]. This accumulation may

promote higher stability of particular membrane structures

[7,42,43]. The sharp increase in shorter PC and PE species

upon acute insulin stimulation (figure 5a) may have an oppos-

ing effect, facilitating dynamic remodelling and expansion of

the ER. A particularly intriguing possibility might be that

specific acyl chain lengths are required for the mobilization

of lipids in droplet stores [30,45,46]. In support of a model

whereby specific acyl chain lengths are required for mobiliz-

ation, impaired de novo synthesis of fatty acids, following

depletion of SREBP or G1/S regulators, leads to simultaneous

accumulation of neutral lipids in large, aberrant lipid droplets

([17,30,47] and this study).
Why may partitioning of lipid metabolism into distinct

cell cycle phases be necessary for cell homeostasis? First, as

one of the first steps in the Kennedy pathway—the main

pathway for PC and PE synthesis in normally proliferating

Drosophila cells—is the conjugation of choline to cytosine

diphosphate [26,30], it is possible that partitioning of phos-

pholipid metabolism throughout the cell cycle ensures

phosphatidylnucleotide availability during or after S phase,

where enhanced biosynthesis of nucleosides takes place

[48,49]. Further supporting this idea, the AKT/TOR/SREBP

axis itself is a major positive regulator of the pentose phos-

phate pathway and nucleoside metabolism, thus potentially

integrating cell growth control, lipid/membrane biosyn-

thesis, and nucleotide precursor metabolism [11,50]. Also,

dysregulation of membrane synthesis and integrity main-

tenance can have a dramatic impact on the process of

mitosis and cytokinesis [20,21,24]. Therefore, compartmenta-

lization of lipid metabolism during cell cycle progression

may act as a checkpoint strategy that ensures the changes

in lipid metabolism required for cytokinesis occur only after

successful duplication of genetic material [20,21,23,25,51].

Taken together we have shown there exists systems-

coordination of cell growth, cell cycle progression, lipid

metabolism and membrane homeostasis. Recent seminal

studies suggest that SREBP is a node in metabolic networks

where the actions of several oncogenes and tumour suppres-

sors, such as effectors of the Wnt/Hippo pathway and p53,

http://rsob.royalsocietypublishing.org/
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converge [34,41]. Together with the fact that loss of ER homeo-

stasis has been recursively linked with cancer progression

[52–54], this work could lead to a better understanding as

to how aberrant metabolism and cell cycle dysregulation are

integrated in cancer.
4. Material and methods
4.1. Cell culture and reagents
S2Rþ cells were grown in Schneider’s medium (Sigma) sup-

plemented with 10% fetal bovine serum (FBS; Gibco) and 1�
penicillin/streptomycin (Gibco) unless stated otherwise, at

258C. Hoechst 33258 and 33342, bovine insulin, tunicamycin

(Tm), thymidine, nocodazole, rapamycin and sodium oleate

(Na-C18 : 1), and anti-bromouridine monoclonal antibodies

were purchased from Sigma. Bodipy 493/510, ER Tracker

Green, Alexa-488 and Alexa-647 immunoconjugates were pur-

chased from Molecular Probes (Invitrogen). Phospho-histone

H3 pSer10 and dAkt pSer505 antibody was purchased from

Cell Signaling Technologies. RNAse A was purchased from

Ambion. Antibodies against total Drosophila Akt and dSREBP

have been developed by the Leevers and Rawson laboratories,

respectively [3,17,29]. Calreticulin antibody and a-tubulin anti-

body were purchased from Abcam and SeroTec, respectively.

4.2. RT, qRT-PCR and protein analysis procedures, and
RNA-microarray analysis

Detailed experimental methods have been described elsewhere

[17]. The sequences of primers for qRT-PCR analysis can be

found in [17]. Microarray analysis of gene expression described
in figure 3c,d was performed from total RNA extracted in two

consecutive steps of Trizol-chloroform purification. Total RNA

was processed and assayed for gene expression in an Affyme-

trix 2.0 platform (Harvard Medical School) from three

biological replicates (3 � 106cells per replicate).

4.3. dsRNA synthesis, RNAi treatment and siRNA
transfection

dsRNA synthesis was carried out using the MEGAScript T7

IVT kit (Ambion-Invitrogen) from T7 promoter-tailed PCR

products, and purified using vacuum-driven 96-well filter

plates (ThermoScientific). RNAi treatment through ‘bathing’

for RNAi screening was performed as described previously

[55]. Batch transfection for dsRNA and DNA was performed

using Effectene Reagent (Qiagen) following manufacturer’s

protocols. The following amplicons (www.flyrnai.org) were

routinely used for validation and biochemical experiments:

DRSC18359 (Raptor), DRSC37563 (SREBP), DRSC07402

(Dp), DRSC37618 (dp53), DRSC16655 (dE2f1), DRSC25031

(CycD), DRSC27263 (CDK4), DRSC07601 (dap), DRSC11228

(Myt), DRSC08509 (E(bx)) and DRSC03548 (ial).

4.4. High-throughput sample processing, automated
image acquisition and analysis for functional
genetic screenings

All automated sample processing and liquid handling was

performed on a Cell::Explorer station (PerkinElmer and

ThermoScientific). Methodologies and indicated specific

procedures for dataset generation for figures 1, 2 and 4

(xbp1-EGFP splicing reporter, ER architecture analysis and

http://www.flyrnai.org
http://rsob.royalsocietypublishing.org/
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lipid droplet assessment) have been published elsewhere

[17]. Fixation and phospho-histone H3 pSer10 staining was

performed as in previous reports [56]. Automated cell segmen-

tation and image analysis were performed using the Acapella

2.5 analysis platform as follows: (i) segmentation of nuclei

based on Hoechst 33258 signal; (ii) segmentation of cytoplasm

region based on tubulin signal; (iii) filtering of artefacts based

on low and high intensity thresholds, nuclear size and round-

ness, as well as removal of incomplete cell images; (iv)

computation of intensities on each channel, normalization of

pH3Ser10 signal to tubulin content; and (v) binning or counting

of mitotic cells based on manually assessed thresholds.

4.5. Cytometry procedures
All analytic cytometry procedures were performed on an LSRII

station (Becton Dickinson). Standard cell cycle profiling using

propidium iodide (PI) staining was performed according

to standard procedures. Briefly, approximately 2 � 106 cells

per condition were harvested by gentle scrapping and pipetting,

washed once in cold Seecof saline buffer (SSB: 6 mM Na2HPO4,

3.67 mM KH2PO4, 106 mM NaCl, 26.8 mM KCl, 6.4 mM MgCl2,

2.25 mM CaCl2, pH 6.8), resuspended in 200 ml of fresh SSB and

completed to 1 ml and a final 80% ethanol, and stabilized over-

night (O/N) at 2208C. After two washes in cold SSB, cells were

finally resuspended in a freshly made staining mix (PBS1X, 0.1%

Triton X-100, 40 mg ml21 propidium iodide, 5 U ml21 RNAse

A). After segmentation of whole cells based on Forward Scatter

and Side Scatter (FSC/SSC), PI signal intensity was normalized

as DNA content by estimated size (depth) and frequency

histograms were generated.

For pulse-labelling of cells entering S phase and immunos-

taining, we used a modified protocol from Wu et al. [29]. S2Rþ
cells treated with different conditions were exposed for

approximately 10 min to 5 mM BrdU, and then gently

washed with 2.5� volumes, two times in sterile SSB sup-

plemented with 1% FBS and five times in fresh medium.

Cells were then allowed to progress through cell cycle in the

indicated conditions for the indicated times before processing

for immunostaining. Cells were pelleted, washed twice in

fresh SSB and ethanol-fixed as indicated for propidium stain-

ing. Nuclear pellets were then washed twice in fresh SSB,

blocked and permeabilized in SSB-B (SSB, 0.5% TX-100, 2%

BSA) for 1 h, and then incubated with a 1 : 20 dilution of

anti-BrU antibody for 2 h at room temperature. After three

washes in SSB-T (SSB, 0.1% TX-100) samples were incubated

with 1 : 100 dilution of anti-mouse Alexa488 for 90 min, and

then washed thrice in fresh SSB. Stain-positive cells were

segmented and analysed for cell cycle progression.

Simultaneous labelling of nuclei and ER and ER-related

structures was performed applying a modified protocol [57].

Briefly, live cells corresponding to each treatment were pulse

labelled directly in the plate with 0.5 mg ml21 Hoechst 33342

and 10 nM ER Tracker Green for 15 min. Cells were then

gently scrapped and harvested and subjected to a brief step

of trypsinization (0.5 U, 2 min), and then washed once in ice-

cold complete medium. Cells were spinned and resuspended

in ice-cold SSB supplemented with 0.25% BSA, and analysed

for DNA and ER content signals.

Sorting of G1 versus S/G2 cells for lipidomics profiling

(approx. 5 � 105 sorted cells per condition and subpopulation)

was performed on a cooled FACS Aria system based on Hoechst

33342 staining after harvesting, brief trypsinization and trypsin

inactivation in fresh media on rotation for 30 min. Collection of

sorted samples was on ice-cold SSB supplemented with 0.25%

BSA before immediate pelleting and snap-freezing.
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4.6. Lipid analysis
All data shown were generated from three independent

biological replicates. Equal numbers of cells from each con-

dition (approx. 106 cells) were harvested by gentle pipetting,

washed twice in fresh Seecof buffer and snap frozen in an etha-

nol/dry ice bath until further analysis. Upon thawing, cell

pellets were subjected to Folch extraction and resuspended in

100 ml ethyl acetate/methanol 1 : 1. After appropriate dilution

to work concentration, the lipid extract was analysed by posi-

tive ESI-MRM with an AB Sciex 4000 QTRAP station via

loop injection with a Shimadzu Prominence HPLC autosam-

pler. Pump A flow rate was set at 0.2 ml min21 of mixed

solvents chloroform/isopropanol/methanol/water 2 : 5 : 2 : 1

(volume ratio). Pump B flow rate was set at 0.05 ml min21 of

isopropanol. The mixed solvents A and B were used for PC

and PE ESI ionization in a Turbo Spray ion source before

MRM analysis. The operation parameters of the 4000 QTRAP

for PC and PE analysis are detailed below.

PC analysis:

— Source/gas parameters: curtain gas (CUR): 25; collision

gas (CAD): medium; ion spray voltage (IS): 5500; temp-

erature (TEM): 650; ion source gas 1 (GS1): 35; ion

source gas 2 (GS2): 65; interface heater (ihe): on.

— Compound parameters: declustering potential (DP): 140;

entrance potential (EP): 10; collision energy (CE): 37; col-

lision cell exit potential (CXP): 11. MRM time: 30 ms.

Both Q1 and Q3 mass were set up at unit resolution.

PE analysis:

— Source/gas parameters: curtain gas (CUR): 25; collision

gas (CAD): medium; ion spray voltage (IS): 5500; temp-

erature (TEM): 600; ion source gas 1 (GS1): 35; ion

source gas 2 (GS2): 60; interface heater (ihe): on.

— Compound parameters: declustering potential (DP): 90;

Entrance Potential (EP): 10; collision energy (CE):

31; collision cell exit potential (CXP): 17. MRM time:

20 ms. Both Q1 and Q3 mass were set up at unit

resolution.

For the quantitation of the relative PC/PE species shown

across figures 6–8, we first calculated a weighted value for
each species as compared with total amounts of PC or PE,

respectively, and obtained averages of this normalized value

across three independent biological replicates. Subsequently,

a differential score was calculated for each species as the per-

centage change from the control average normalized value.
4.7. Data management, statistical analysis and analysis
software

Data analysis, presentation and analysis of statistical signifi-

cance were performed using the GRAPHPAD PRISM 6.0 software.

For the quantification of XBP1 mRNA unconventional splicing

by RT-PCR in the experiments shown in figures 1, 2 and 8, a

minimum of two technical replicates, each including two bio-

logical replicates (hence, at least four independent runs), were

analysed for Student’s t-test for the indicated sample pairs.

Cell cycle modelling (Dean–Jett–Fox algorithm) was per-

formed using the FlowJo cytometry package using raw

cytometry data. For the focused screens shown in figure 5,

robust Z-scores were calculated for each gene using averaged

values from replicates, and mean and standard deviation

values from control cells. Hierarchical clustering of the dsRNA

treatments according to their phenotypic signatures (figure 5a)

was based on Euclidean distances.
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