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SUMMARY

An in vivo model of antiangiogenic therapy allowed
us to identify genes upregulated by bevacizumab
treatment, including Fatty Acid Binding Protein 3
(FABP3) and FABP7, both of which are involved in
fatty acid uptake. In vitro, both were induced by hyp-
oxia in a hypoxia-inducible factor-1a (HIF-1a)-depen-
dent manner. There was a significant lipid droplet
(LD) accumulation in hypoxia that was time and O2

concentration dependent. Knockdown of endoge-
nous expression of FABP3, FABP7, or Adipophilin
(an essential LD structural component) significantly
impaired LD formation under hypoxia. We showed
that LD accumulation is due to FABP3/7-dependent
fatty acid uptake while de novo fatty acid synthesis
is repressed in hypoxia. We also showed that ATP
production occurs via b-oxidation or glycogen deg-
radation in a cell-type-dependent manner in hypox-
ia-reoxygenation. Finally, inhibition of lipid storage
reduced protection against reactive oxygen species
toxicity, decreased the survival of cells subjected
to hypoxia-reoxygenation in vitro, and strongly im-
paired tumorigenesis in vivo.

INTRODUCTION

Normal cells produce energy mainly through oxidative phos-

phorylation (OXPHOS) in themitochondria. Most cancer cells un-

dergo ametabolic shift toward glycolysis to produce energy, and

toward anabolic pathways to synthesize proteins and lipids.

Both of these processes promote rapid tumor cell growth (Cairns

et al., 2011). The upregulation of glycolysis in normoxic cancer
cells is known as the Warburg effect (Koppenol et al., 2011), a

phenomenon that is characterized by an increased glycolytic

flux with lactate production from pyruvate even in the presence

of abundant O2 (Vander Heiden et al., 2009).

Oncogenes upregulate the transcription of various glycolytic

genes (Levine and Puzio-Kuter, 2010), and the tumor suppressor

p53 has a role in regulating glycolysis and OXPHOS (Maddocks

and Vousden, 2011; Vousden and Ryan, 2009).

Hypoxia also has a major role in metabolic reprogramming

of tumor cells and is considered to be a hallmark of cancer (Ha-

nahan and Weinberg, 2011). The hypoxic environment of a tu-

mor leads to stabilization of the hypoxia-inducible factor-1a

(HIF-1a). HIF-1a stimulates glycolysis through induction of

glucose transporters (GLUT) and glycolytic enzymes (hexoki-

nase-2 [HK2], phosphofructoknase-1 [PFK1], and lactate dehy-

drogenase A [LDHA]), and inhibition of mitochondrial respiration

by pyruvate dehydrogenase kinase 1 (PDK1) (Semenza, 2010).

Tumor hypoxia is mainly caused by defective vasculature in

fast-growing tumor tissues, leading to diminished O2 and

nutrient supplies. HIF-1a initiates angiogenesis by induction of

vascular endothelial growth factor (VEGF-A) and other angio-

genic factors (Chen et al., 2009; Hickey and Simon, 2006;

Rey and Semenza, 2010). Antiangiogenic therapies have been

demonstrated to induce hypoxia within tumors, resulting in

both increased local invasion and distant metastatic spread

(Azam et al., 2010). Understanding the biology of hypoxia

induced by such therapies is essential for improving them

and discovering new targets to overcome therapy resistance

(Bridges and Harris, 2011).

In this work, we used a mouse xenograft model of human U87

glioblastoma cells established in severe combined immunodefi-

ciency (SCID) mice, which recapitulates the clinical pattern of

initial tumor stabilization on anti-VEGF therapy followed by re-

growth and resistance. We used bevacizumab, a monoclonal

antibody that recognizes and inhibits all human VEGF isoforms.
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To analyze the effects of chronic bevacizumab therapy in tumors

that had grown through early growth arrest, we identified upre-

gulated genes using an Affymetrix array for human genes.

Many genes that are already known to be HIF-1a targets were

induced, including genes involved in metabolic processes (Gor-

dan et al., 2007; Stubbs and Griffiths, 2010). Surprisingly,

numerous genes involved in glycogen and lipid metabolism

were strongly induced, including PYGL and FABP3 and FABP7.

Our goal in this study was to determine the roles of FABP3 and

FABP7 in adaptation to hypoxia. We report that hypoxia induces

a HIF-1a-dependent accumulation of lipid droplets (LDs). LD

storage in hypoxia is due to induction of adipophilin (ADRP),

which is required for the formation of LD membranes, and to up-

take of fatty acids (FAs) through induction of FABP3 and FABP7

rather than de novo FA synthesis. We showed that ATP pro-

duction occurs via b-oxidation or glycogen degradation in a

cell-type-dependent manner in hypoxia-reoxygenation. Finally,

we analyzed the effect of inhibiting LD accumulation in hypox-

ia-reoxygenation, and found that lipid storage is essential for

protection against reactive oxygen species (ROS) toxicity, cell

survival, and tumor growth.

RESULTS

Analysis of Genes Induced by Hypoxia Resulting from
Bevacizumab Therapy in U87 Xenografts
Analysis of genes induced after bevacizumab therapy in U87

xenografts showed an induction of expression of many genes,

HIF-1a upregulation, and induction of necrosis, validating the

idea that in vitro pathways can be regulated in vivo in cancer

(Li et al., 2011). Gene-expression analysis showed that

numerous HIF-1a targets were induced, including CA9 (Tan

et al., 2009). HIF-1a targets involved in metabolic pathways

were among the most upregulated genes (Table S1).

A link between increased lipid metabolism and development

of cancer has been reported many times (Swinnen et al.,

2006). In cancer cells, several enzymes involved in de novo FA

synthesis are either upregulated or activated, and lipogenesis

is active (Menendez and Lupu, 2007). However, these enzymes

were not induced after bevacizumab treatment. Instead, genes

involved in FA desaturation, elongation, uptake, and transport

were upregulated. In particular, FABP3 and FABP7, which are

essential for FA uptake, showed some of the highest fold

changes (Table S1). They are part of a larger family of cyto-

plasmic proteins comprising nine members (FABP1–FABP9)

(Smathers and Petersen, 2011; Storch and McDermott, 2009).

FABPs are expressed in a tissue-specific manner, with breast,
Figure 1. Hypoxia Induces HIF-1a-Dependent Accumulation of LDs and

(A) LD levels in cells cultured in normoxia or hypoxia for 48 hr. LDs and nuclei w

complex (100 mM for 16 hr; Sigma) was used as a control.

(B) CAIX expression in U87 spheroid revealed by immunofluorescent staining usi

stained with DAPI (blue).

(C) LD levels in cells cultured in normoxia or hypoxia for 48 hr.

(D) LD levels in cells cultured in normoxia or hypoxia for 48 hr.

(E) mRNA levels in cells incubated in normoxia or hypoxia.

(F) mRNA levels in cells incubated in normoxia or hypoxia for 48 hr.

Error bars represent SD. See also Figure S1.
muscle, and heart distribution for FABP3, and brain distribution

for FABP7 (Smathers and Petersen, 2011; Storch and McDer-

mott, 2009). Strong evidence suggests a broad role for FABPs

in the intracellular transport and metabolism of long-chain FA

(LCFA). More specifically, the role of FABP3 is evident from the

phenotype of FABP3 knockout mice, which show a rate of palmi-

tate uptake reduced by 50% in cardiac myocytes and reduced

muscle b-oxidation (Binas et al., 1999). FABP7 binds long-chain

polyunsaturated FA (PUFA), allowing uptake and intracellular

trafficking (Xu et al., 1996), and is involved in proliferation and

invasion of melanoma cells (Slipicevic et al., 2008). High expres-

sion of FABP7 in glioblastomas is associated with poor prog-

nosis and more invasive tumors (Kaloshi et al., 2007).

Hypoxia Induces a HIF-1a-Dependent Accumulation
of LDs in Tumor Cells
LDs are dynamic lipid storage organelles that are found in most

eukaryotic cells. LDs consist of amonolayer of polar lipids (phos-

pholipids and cholesterol) that surrounds a core of neutral lipids,

triglycerides (TGs), and sterol esters. We assessed the abun-

dance of LDs in hypoxia (0.1% O2) as key components of lipid

metabolism using LD540, a lipophilic dye based on the Bodipy

fluorophore (Spandl et al., 2009). The oleate/bovine serum albu-

min (oleate/BSA) complex was used as a positive control. LD

accumulation was observed after hypoxia in various cell lines

(Figures 1A and S1A).

A 3D spheroid system showed a gradient of O2 characterized

by a large hypoxic central area. U87 spheroids showed LD ac-

cumulation in the hypoxic core domain, where CAIX was also

induced (Figure 1B). Hypoxic cells contained numerous cyto-

plasmic droplets with the typical electron microscopic appear-

ance of neutral fat (Figure S1B).

Inhibition of HIF-1a expression led to a decrease in LD levels

after hypoxia, as observed by confocal microscopy and fluores-

cence-activated cell sorting analysis (Figures 1C, 1D, and S1C).

We examined the effect of the peptide dimethyloxaloylglycine

(DMOG), which activates HIF-1a, and found that DMOG treat-

ment led to LD accumulation (Figure S1D).

FABP3, FABP7, and ADRP Are Induced under Hypoxic
Conditions in a HIF-1a-Dependent Manner
Having determined that LD accumulation in hypoxia occurs in a

HIF-1a-dependent manner, we investigated the genes involved.

Fapb3, Fabp7, and Adfp were upregulated after hypoxia at the

RNA and protein levels (Figures 1E and S1E). They were induced

in a HIF-1a-dependent but HIF-2a-independent manner (Figures

1F, S1F, and S1G). FABP7 was more highly expressed in MCF-7
Increases FABP3, FABP7, and ADRP Expression in Tumor Cell Lines

ere stained with LD540 (green) and DAPI (blue), respectively. The oleate/BSA

ng a specific antibody (red). LDs were stained with LD540 (green). Nuclei were
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cells with undetectable levels of FABP3, whereas FABP3 was

more highly expressed in U87 cells with undetectable levels of

FABP7. These proteins were also mainly expressed in the spher-

oid’s hypoxic core (Figure S1H).

We previously showed that bevacizumab treatment decreases

vessel number in U87 tumor xenografts (Li et al., 2011). Here, we

triple stained serial sections of frozen tumor xenografts with

DAPI (nucleus), hematoxylin and eosin (H&E), and specific anti-

bodies (Figure S1I). In bevacizumab-treated U87 xenografts,

staining for the hypoxia marker pimonidazole revealed clear hyp-

oxic regions surrounding necrotic areas (Figure S1I), whereas

untreated tumors showed numerous blood vessels and no pimo-

nidazole staining (data not shown). ADRP, FABP3, and to a

lesser extent FABP7 stainings colocalized with pimonidazole in

hypoxic regions of U87-treated xenografts (Figure S1I), but not

in control xenografts (data not shown).

FABP3, FABP7, and ADRP Are Essential for the
Formation of LDs under Hypoxic Conditions
To determine whether FABP3, FABP7, and ADRP are required

for LD accumulation in hypoxia, we inhibited their expression us-

ing pools of specific small interfering RNA (siRNA) (Figure S2A).

Knockdown of FABP3, FABP7, or ADRP expression in U87

and T98G (glioblastoma cell lines), or in MCF-7 and MDA-MB-

231 cells (breast cancer cell lines) significantly decreased the for-

mation of LD after hypoxia, as shown by confocal microscopy

(Figures 2A and S2B). Flow-cytometric analysis of LD formation

showed the same results (Figures 2B, 2C, and S2C). We

observed an inverse correlation between O2 concentration and

LD levels with the highest levels observed in anoxic cells (Figures

2B and 2C). In these experiments, we used the ADRP siRNA re-

sults in normoxia as the baseline LD standard to normalize the

data, as no LD was detectable by microscopy. The effect of

FABP3 inhibition on LD storage was more pronounced in U87

cells, and the effect of FABP7 depletion was more marked in

MCF-7 cells, a result that paralleled protein and RNA expression

(Figures 2B and 2C). We noticed that the combination of FABP3

and FABP7 siRNAs in cotransfection experiments did not

enhance the results observed with individual knockdowns (Fig-

ures 2B and 2C).

LD Accumulation in Hypoxia Is due to FA Uptake while
De Novo Lipid Synthesis Is Repressed
Sterol regulatory element binding protein 1 (SREBP1) and

SREBP2 regulate lipid and cholesterol metabolism gene expres-

sion by binding to sterol regulatory elements. SREBP activity is

subject to a feedback regulation by sterols through regulated

intramembrane processing of the inactive precursor (Ben-

goechea-Alonso and Ericsson, 2007). When cells are grown in

medium supplemented with 1% lipoprotein-deficient serum

(LPDS) instead of full serum, SREBPs are activated due to the

alleviation of sterol inhibition (Yang et al., 2002).
Figure 2. FABP3, FABP7, and ADRP Are Essential for the Formation of

(A) LD levels in cells cultured in normoxia or hypoxia for 48 hr. LDs were stained

(B) LD levels in U87 cells cultured in normoxia, hypoxia (0.1 or 1% O2), or anoxia

(C) LD levels in MCF-7 cells cultured in normoxia, hypoxia (0.1 or 1% O2), or ano

Error bars represent SD. See also Figure S2.
As expected, normoxic cells cultured in LPDS medium

showed a small but significant increase in LD levels, probably

via induction of endogenous lipogenesis through SREBP1/2

activation (Figures 3A and S3A). In contrast, LD formation in hyp-

oxia was markedly impaired using LPDS (Figures 3A and S3A),

and specific knockdowns did not lead to decreased LD levels

in hypoxia in LPDS medium (Figures 3A and S3A). These results

show that extracellular FAs are required for LD accumulation in

hypoxia. Fatostatin, a small molecule that inhibits the activation

of SREBPs (Kamisuki et al., 2009), was used to analyze whether

LD changes obtained with LPDS were SREBP1 dependent (Fig-

ures 3B and S3B). In normoxia, induction of LD accumulation by

LPDSwas reduced by Fatostatin, whereas no significant change

in LD levels was observed in hypoxia, showing that the LD

buildup in hypoxia was SREBP independent (Figures 3B and

S3B). The profile of TG species with various acyl carbon and

double-bond numbers, and total TG levels showed a significant

increase in the rate of hypoxia-stimulated TG synthesis (Figures

3C and S3C). We also noticed differences between cell lines for

specific TG species. TGs with three double bonds showed

significantly decreased levels in hypoxia in MCF-7 cells, but

were significantly increased in U87 cells (Figure 3C). In addition,

the metabolic conversion of labeled precursor pyruvate to lipids

was significantly decreased in hypoxia (Figure 3D), and the up-

take of deuterium from heavy water into TGs was significantly

decreased in hypoxia (Figure S3D). Furthermore, hypoxia

decreased the activity of the O2-dependent stearoyl-CoA desa-

turase-1 (SCD1) (Figure S3E). SDC1 flux, as measured by the

ratio C16:1/C16:0 (SCD index), was significantly inhibited by

hypoxia (Figure S3E). Altogether, these results indicate that py-

ruvate-dependent de novo lipogenesis (DNL) is not the origin

of the LD accumulation in hypoxia.

Next, we assessed the effect of the exposure to hypoxia on FA

composition in cells by gas chromatography (GC). Levels of

palmitate (C16:0), stearate (C18:0), and linoleate (C18:2n-6)

were significantly increased in hypoxia (Figure 3E). Palmitate

and stearate are saturated FAs. Linoleate, an essential PUFA,

cannot be synthesized by mammalian cells and needs to be ac-

quired from the diet. This result is clearly consistent with an

increased FA uptake in hypoxia.

FABPs are involved in FA uptake and transport, and ADRP can

also stimulate LCFA uptake (Gao and Serrero, 1999). Therefore,

we measured FA uptake in hypoxia using a fluorescent palmitate

analog (C16-BODIPY). Its uptake was clearly increased in a

dose- and time-dependent fashion under all transfection and

O2 tension conditions. C16-BODIPY uptake was significantly

enhanced in hypoxia (Figure 3F). FABP3, FABP7, and ADRP

knockdowns resulted in decreased C16-BODIPY uptake (Fig-

ures 3F, 3G, and S3F).

Recently, a switch from pyruvate oxidation to reductive gluta-

mine metabolism for DNL was shown in hypoxia (Metallo et al.,

2012). Therefore, we examined LD formation with or without
LDs under Hypoxic Conditions

with LD540 (green). Nuclei were stained with DAPI (blue).

for 48 hr.

xia for 48 hr.
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glutamine in medium, and observed no statistically significant

difference between culture conditions (Figure S4G), and no

role for glutamine in hypoxic LD formation.

These results suggest that induction of FABP3 or FABP7 is

required for FA uptake and LD accumulation in hypoxia. These

data, in conjunction with the limited role of SREBPs in hypoxia,

demonstrate that LD accumulation is due to extracellular FA up-

take rather than de novo synthesis.

FABP3, FABP7, and ADRP Are Essential for Cell Growth
in Conditions of Hypoxia and Hypoxia-Reoxygenation
The observation that FABPs induce FA uptake in hypoxia sug-

gests that the resulting LD accumulation is an adaptive response

to hypoxic conditions and could play an important role in cell

survival.

We measured LD levels in a panel of eight different breast

cancer cell lines based on cancer subtype and estimated the

cell numbers in normoxia and hypoxia (Figure S4A). The breast

cancer cell lines showed higher LD levels than a noncancerous

breast cancer cell line (MCF10a), and triple-negative cell lines

showed higher basal levels of LD than receptor-positive cell

lines. Finally, higher LD levels correlated with an increased ability

of breast cancer cells to survive under hypoxia (Figure S4A).

We did not observe a great effect on cell number after our

target proteins were silenced in cells continuously cultured in

normoxia or hypoxia (Figures 4A and S4B). Interestingly, greater

effects were revealed in spheroid and clonogenic assays.We as-

sessed the effect of ADRP, FABP3, and/or FABP7 knockdown

on 3D growth by using a spheroid model that closely mimics

the tumor microenvironment and hypoxic range (Figures 4B

and S4C). Inhibition of LD accumulation using specific siRNAs

led to a significant decrease in spheroid size (Figures 4B and

S4C). The clonogenic assay showed that the knockdowns signif-

icantly reduced the number of cells that were able to form col-

onies (Figure 4C). Intriguingly, this inhibition wasmore significant

in cells incubated in hypoxia. In the clonogenic assay experi-

ment, cells were grown for 3 days in hypoxia and then for

10 days in normoxia (Figure 4C). This hypoxia-reoxygenation

step explained the stronger effect on cell survival observed in

the clonogenic assay compared with the proliferation assay.

Taken together, these data demonstrate that prevention of LD

formation had a greater effect on cell growth during reoxygena-

tion (Figure 4C) than hypoxia alone (Figure 4A). Hypoxia-reoxy-

genation phases characterize the intermittent hypoxia that

tumors undergo due to an abnormal vascularization resulting in

the disruption of blood flow. After inhibiting the expression of

FABP3, FABP7, or ADRP, we placed the cells in hypoxia and as-

sessed the cell number after reoxygenation over time. Control
Figure 3. LD Accumulation under Hypoxic Conditions Is due to FA Upt

(A) LD levels in cells cultured in normoxia or hypoxia, 10% FCS, or 1% LPDS me

(B) LD levels in cells cultured in normoxia or hypoxia, 10% FCS, or 1% LPDS

Calbiochem) for 48 hr.

(C) TG levels in cells cultured in normoxia or hypoxia for 48 hr.

(D) Incorporation of [2-14C]-pyruvate into cellular lipids was measured in counts

(E) Palmitate (C16:0), stearate (C18:0), and linoleate (C18:2n-6) levels in cells cul

(F) C16-BODIPY uptake in cells cultured in normoxia or hypoxia for 48 hr after F

(G) C16-BODIPY uptake in cells cultured in normoxia or hypoxia for 48 hr.

Error bars represent SD. See also Figure S3.
cells showed the highest increase in cell number after 2 days

of reoxygenation, and a slower recovery rate was observed for

cells with low hypoxic LD levels cause by specific knockdowns

(Figures 4D and S5A). We also assessed cell viability using the

trypan blue exclusion test. There were delays in growth after

hypoxia and recovery after reoxygenation in both cell lines.

A decrease in cell viability after specific knockdown associ-

ated with a decrease in cell number, which was maintained dur-

ing the recovery phase, was observed only in MCF7 cells

(Figure S4D).

Taken together, these results suggest that lipid storage in hyp-

oxia is essential for cell recovery after restoration of normoxic

levels of O2 to hypoxic cells.

FAs and Glycogen Stored during Hypoxia Are
Essential for ATP Production and Survival in
Hypoxia-Reoxygenation
Wedetermined the rate of disappearance of LDs during hypoxia-

reoxygenation. As expected, depletion of FABP3, FABP7, or

ADRP significantly decreased the formation of LDs after 2 days

of hypoxia (Figure 5A). During reoxygenation, LD levels gradually

returned to those observed in normoxic conditions after 4 days in

culture (Figure 5A).

The lipolysis of TGs to free FAs enables the production of ATP

in themitochondria via b-oxidation. Therefore, it seems likely that

the regulation of LD levels may play a key role in regulating ATP

levels. In control cells, we noted a strong increase in ATP levels

after hypoxia-reoxygenation, reaching normoxic values after

only 24 hr (Figures 5B andS5A). In breast cancer cells, the reduc-

tion of LD levels was inversely proportional to an increase in ATP

levels during reoxygenation, and MCF-7 and MDA-MB-231 cells

deficient for hypoxic LD accumulation showed a moderate in-

crease in ATP production (Figures 5B and S5A). No such signif-

icant difference was noticed in U87 or T98G cells (Figures 5B and

S5A). Cells were treated with etomoxir (EX) (Figures 5C, 5D, S5A,

and S5B) or trimetazidine (TMZ) (Figures 5C, 5D, and S5C), two

specific inhibitors of FA b-oxidation. In breast cancer cells, the

results showed the same extent of growth inhibition and reduced

ATP levels after reoxygenation as observed after specific knock-

downs, whereas no such effect was observed in glioblastoma

cells (Figures 5C, 5D, and S5A–S5C). Similarly, there was no ef-

fect on viable cell number in U87 cells compared with MCF-7

cells (data not shown).

This result suggests that the poor recovery of LD-deficient

breast cancer cells after hypoxia-reoxygenation is at least partly

due to lack of ATP production via b-oxidation.

To further investigate the discrepancy between cell types

regarding ATP production, we directly measured b-oxidation
ake, but Not DNL

dium for 48 hr.

medium, and treated with or without Fatostatin (20 mM, catalog no. 341329;

per minute for cells cultured in normoxia or hypoxia for 24 hr (CPM).

tured in normoxia or hypoxia for 48 hr.

ABP3 knockdown.
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flux after 2 days of normoxia/hypoxia, with or without reoxygena-

tion, using EX has a control (Figure 5E). In normoxia, FA oxidative

flux was 30-fold greater in MCF-7 compared with U87 cells,

whereas hypoxia induced a decreased flux in both cell lines (Fig-

ure 5E). Importantly, hypoxia-reoxygenation led to an increased

b-oxidation flux in MCF-7 compared with hypoxia (Figure 5E).

We previously showed that glycogen metabolism is upregu-

lated in response to hypoxia through the induction of Glycogen

Synthase 1 (GYS1) and PYGL, and that metabolism of glucose

via glycogen sustains the pentose phosphate pathway, leading

to ROS removal and cell proliferation (Favaro et al., 2012). The

increased glycogen stores in hypoxia could provide an alterna-

tive energy source during hypoxia-reoxygenation. Glycogen

levels were higher in U87 compared with MCF-7 cells (Figures

5F and S1B), and increased levels in hypoxia were followed by

a regular decrease over time in reoxygenated cells, reaching nor-

moxic levels after 3 days (Figure 5F). We transfected cells with

PYGL siRNA to inhibit glycogen degradation and usage, leading

to glycogen accumulation in all O2 concentrations (Figure 5F). In-

hibition of PYGL expression decreased both cell number and

ATP levels after hypoxia-reoxygenation in U87 cells, but not in

MCF-7 cells (Figures 4D and 5B).

In normoxia, treatment with increasing doses of EX led to a

strong LD accumulation in MCF-7 cells at higher doses, but

only a moderate increase in U87 cells, suggesting a higher flux

through b-oxidation in MCF-7 cells (Figure 5G). In hypoxia-reox-

ygenation, treatment with EX led to slightly higher LD levels

compared with untreated U87 cells, whereas a robust LD accu-

mulation was observed in MCF-7 cells (Figure 5H). Furthermore,

the knockdown of PYGL led to a quicker rate of disappearance of

LDs after hypoxia followed by reoxygenation (Figure 5H).

To further investigate metabolic differences between glioblas-

toma and breast cancer cells, we used two metabolic inhibitors:

2-deoxyglucose (2-DG), which blocks glycolysis and inhibits py-

ruvate oxidation due to depletion of pyruvate, and oligomycin, an

ATP synthase inhibitor that abolishes OXPHOS and b-oxidation.

2-DG induced a severe decrease in ATP levels in U87 cells in

hypoxia-reoxygenation, even at low doses, whereas the inhibi-

tory effect on cell number was similar in both cell lines (Fig-

ure S5D). Blocking mitochondrial ATP production by oligomycin

significantly decreased ATP levels in both cell types during reox-

ygenation, whereas cell number was only affected for MCF-7

cells (Figure S5E). These results suggest that breast cancer cells

are dependent on mitochondrial ATP production via b-oxidation,

and glioblastoma cells are dependent on glycolysis and/or

OXPHOS for recovery after hypoxia-reoxygenation.

Altogether, these data reveal that cells recovering after hypox-

ic phases synthesize ATP through different pathways depending

on their tissue of origin. In normoxia, ATP generation via glycol-

ysis and OXPHOS seems to be an important mechanism in both

cell lines. However, in MCF-7 cells, LDs provide substrates for
Figure 4. FABP3, FABP7, and ADRP Are Essential for Cell Survival und

(A) Cell counts after 1–6 days in normoxia or hypoxia.

(B) Volume measurements and microscopy images of spheroids grown for 1–6 d

(C) Clonogenic assay for cells cultured in normoxia or hypoxia for 72 hr and then

(D) Cell numbers after 48 hr in normoxia or hypoxia and then incubation in norm

Error bars represent SD. See also Figure S4.
energy production via b-oxidation after hypoxia-reoxygenation,

whereas U87 cells degrade glycogen to synthesize ATP through

glycolysis and/or OXPHOS.

FABP3, FABP7, and ADRP Are Essential for ROS
Removal, NADPH Production, and Survival in Conditions
of Hypoxia and Hypoxia-Reoxygenation
Nicotinamide adenine dinucleotide phosphate (NADPH) is

derived mainly from glucose flux through the pentose phosphate

pathway and glutamine flux through themalic enzyme. NADPH is

required to generate reduced glutathione (GSH), which is used

for antioxidant mechanisms and leads to decreased ROS levels.

Several steps in the metabolism of lipids involve oxidation of the

reduced form of NADPH. FA synthesis requires NADPH to sup-

ply reducing equivalents. Moreover, inhibition of b-oxidation

causes depletion of NADPH levels (Smeland et al., 1992; Pike

et al., 2011).

We observed increased ROS levels in control hypoxia, with a

further increase after short-term hypoxia-reoxygenation and a

gradual decrease to normoxic values after 8 hr of reoxygenation

(Figures 6A and S6A). Control cells treated with the antioxidants

N-acetyl-cysteine (NAC) or the cell-permeable superoxide dis-

mutase (SOD) mimetic MnTMPyP (Figures 6A and S6A) showed

a significant decrease in ROS levels. Inhibition of LD formation

drastically enhanced ROS levels compared with control (Figures

6A and S6A).

A significant decrease in NADPH levels and a corresponding

increased NADP+/NADPH ratio were evident in hypoxia (Figures

6B and S6B). FABP3-, FABP7-, or ADRP-depleted cells ex-

hibited a significant decrease in NADPH levels and an increase

in the NADP+/NADPH ratio (Figures 6B and S6B). These values

consistently returned to values comparable to normoxic levels

after 4 days of hypoxia-reoxygenation (Figures 6B and S6B).

We treated cells with hydrogen peroxide (H2O2) in normoxia

and observed ROS levels similar to those detected in cells incu-

bated in hypoxia (Figure 6C). When hypoxic cells were incubated

in 1% LPDS medium to prevent LD formation, ROS levels were

severely induced compared with normoxic or hypoxic cells

cultured in normal medium (Figure 6C). For treatment of cells

with oleate, we either incubated cells without oleate/BSA for

2 days in hypoxia or preloaded cells with oleate/BSA overnight,

before incubation in hypoxia or treatment with H2O2. In all situa-

tions, the addition of extracellular free FA led to decreased ROS

levels (Figure 6C).

To assess whether ROS accumulation also affected cell num-

ber as a result of LD depletion, we treated cells with FABP3,

FABP7, or ADRP siRNAs with or without antioxidant (Figure 6D).

After hypoxia-reoxygenation, treatment led to an increased num-

ber of cells depleted for LD (Figure 6D).

Taken together, these results strongly suggest that lack of FA

uptake and inhibition of LD storage in hypoxia lead to increased
er Hypoxic Conditions

ays.

incubated for 10 days in normoxia.

oxia for 0–48 hr.
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levels of ROS. Thus, we conclude that lipid storage is essential

for protection against ROS toxicity during hypoxia with or

without reoxygenation.

FABP3 or FABP7 Knockdown Impairs the In Vivo Growth
of Tumor Xenografts
To determine the in vivo effect of LD depletion, we established

U87 cell lines with a stable knockdown of FABP3 or FABP7,

and a control, using lentiviral transduction particles containing

FABP3 or FABP7 small hairpin RNA (shRNA) expression cas-

settes and a nontargeting shRNA sequence (Figure S7A). Stable

knockdowns significantly decreased the formation of LDs during

hypoxia (Figure S7B), cell number after hypoxia-reoxygenation

(Figure S7C), and spheroid size (Figure S7D).

We injected the stable cell lines subcutaneously into nude

mice and monitored tumor growth. Inhibition of FABP3 or

FABP7 expression resulted in a profound delay in tumor growth

as compared with the control group (Figures 7A and S7E). In

particular, we noticed that tumors in the FABP3/7 shRNA groups

reached volumes of 595.1 ± 92.9 and 545.9 ± 94.1 mm3, respec-

tively, after 53 days, whereas volumes in the control group were

610.2 ± 63.3 mm3 after only 35 days (Figure 7A). Tumors in each

groupwere collected when a size of�600mm3was reached and

examined for expression of various markers.

Tumors derived from U87 cells with stable FABP3 or FABP7

knockdown still showed a decrease in FABP3 or FABP7 mRNA

levels (Figure 7B). Furthermore, the expression of FABP3/7 at

the RNA level nicely correlated with the size of FABP3/7 shRNA

tumors, and some tumors started to grow more rapidly as

FABP3/7 expression was restored, whereas shRNA knockdown

started to be less efficient after more than 50 days of growth (Fig-

ures S7E and S7F).

FABP3 and FABP7 knockdowns led to a significant decrease

in levels of necrosis (7.6% ± 3.3% and 22.0% ± 4.6%, respec-

tively, versus 37.1% ± 5.3% for the control group) and hypoxia

as determined by pimonidazole staining (4.4% ± 1.1% and

7.8% ± 1.9%, respectively, versus 20.0% ± 5.5% for the control

group; Figure 7C). Tumor growth inhibition was also associated

with an inhibition in LD formation, as tumors with FABP3 and

FABP7 knockdowns showed decreased lipid staining (1.3% ±

0.6% and 1.7% ± 0.4%, respectively versus 22.3% ± 2.2% for

the control group; Figure 7C). FABP3 and FABP7 depletions

were respectively associated with a significant 1.3-fold and

1.6-fold decrease in the expression of the proliferation-associ-

ated marker Ki67 when compared with the control group

(37.2% ± 3.0% and 29.7% ± 3.4%, respectively, versus 48.5%

± 2.1% for the control group; Figure 7C). No significant differ-

ence among the three groups was observed for expression of
Figure 5. FAs and Glycogen Stored during Hypoxia Are Essential for A

(A) LD levels in cells cultured in normoxia or hypoxia for 48 hr and then incubate

(B) ATP levels in cells cultured in normoxia or hypoxia for 48 hr and then incubat

(C) Cell number after 48 hr in normoxia or hypoxia and then incubation in normo

(D) ATP levels in cells cultured in normoxia or hypoxia for 48 hr and then incubat

(E) b-oxidation in cells cultured in normoxia or hypoxia for 48 hr and then incuba

(F) Glycogen levels in cells cultured in normoxia or hypoxia for 48 hr and then inc

(G) LD levels in cells cultured in normoxia or hypoxia with an increasing EX conc

(H) LD levels in cells cultured in normoxia or hypoxia for 48 hr and then incubate

Error bars represent SD. See also Figure S5.
the cell-death-associated marker cleaved caspase-3, excluding

the possibility that apoptosis was contributing to tumor growth

suppression in vivo (Figure 7C). Altogether, these results suggest

that FABP3 and FABP7 represent strong candidates for anti-

cancer therapy.

DISCUSSION

In this paper, we report a new role for genes that are induced by

hypoxia and involved in FA uptake and lipid storage. We show

that LD storage in hypoxia is essential for cell growth and survival

in the reoxygenation phase.

FAs can be obtained from the diet or synthesized de novo

(Swinnen et al., 2006). In adult, normal, nonadipose tissues,

the majority of FAs are acquired from the circulation, and DNL

and expression of lipogenic enzymes are low. In contrast, cancer

cells exhibit a shift in lipid metabolism as most of the lipogenic

enzymes are upregulated or activated. However, we found that

the mRNA levels of lipogenic enzymes were not altered after

bevacizumab treatment, and pyruvate-dependent DNL was

reduced in hypoxia.

Our results show that hypoxia induces a HIF-1a-dependent

accumulation of LDs in tumor cell lines. LDs have long been

recognized, based on light microscopy, to accumulate in hypox-

ic cells (Zoula et al., 2003), and studies have shown increased

lipid metabolism in hypoxia (Laurenti et al., 2011; Mylonis

et al., 2012; Shen et al., 2012). TGs contained in LDs are

degraded to generate free FAs when cells need to produce

ATP via b-oxidation, or to synthesize membranes. Several pro-

teins located at the surface of LDs (HIG2, Perilipin, ADRP, and

Tip47) are essential for their membrane integrity (Bozza and

Viola, 2010; Farese and Walther, 2009). HIG2 and ADRP are

induced by hypoxia (Gimm et al., 2010; Saarikoski et al., 2002).

ADRP expression also selectively stimulates LCFA uptake, and

its downregulation reduces FA uptake (Faleck et al., 2010; Gao

and Serrero, 1999).

FABP3 and FABP7 were upregulated in a murine xenograft

antiangiogenic model (Table S1). Several previous works

observed that hypoxia was associated with a dependency on

extracellular FA and a reduction in de novo FA synthesis (Kam-

phorst et al., 2013; Young et al., 2013). Nevertheless, we estab-

lish amechanism bywhich FABPs lead to FA uptake into hypoxic

cells.

A recent study (Metallo et al., 2012) showed a switch between

pyruvate oxidation to reductive glutamine metabolism for DNL in

hypoxia, but it also showed that tumor cells exhibit an overall

decreased DNL in hypoxia. This is in accord with our results

showing that DNL is significantly impaired in hypoxia in vitro,
TP Production and Survival after Hypoxia-Reoxygenation

d in normoxia for 1–4 days.

ed in normoxia for 0–48 hr.

xia for 0, 24, or 48 hr ± Etomoxir (EX, 100 mM).

ed in normoxia for 0–48 hr ± EX (100 mM).

ted in normoxia for 0–24 ± EX (100 mM).

ubated in normoxia for 0–72 hr.

entration (0, 25, 50, 100, 200, and 400 mM) for 48 hr.

d in normoxia for 1–3 days ± EX (100 mM).
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and that PDK1/3 are induced by bevacizumab treatment in vivo

(Table S1). However, we showed that the major source of LD

accumulation in hypoxia is glutamine independent.

We conclude that LD storage is essential for survival after

hypoxia-reoxygenation based on the observations that (1) free

FAs are critical for ATP production via b-oxidation and (2)

increased LD levels protect against ROS toxicity. b-oxidation is

energetically very efficient (1 molecule of palmitate yields 129

molecules of ATP) but is O2 dependent and hence is extremely

sensitive to blood flow. ATP production via b-oxidation during

hypoxia-reoxygenation was observed only in breast cancer

cells. In glioblastoma cells, glycogen stored during hypoxia is

the major alternative ATP source through glycolysis/OXPHOS

after reoxygenation.

Mitochondrial ROS production increases in hypoxia (Guzy

et al., 2005; Guzy and Schumacker, 2006). It is also well estab-

lished that a sudden restoration of O2 to hypoxic cells can

cause substantial ROS accumulation and cell death (Prabhakar

et al., 2010). During b-oxidation, acetyl-CoA enters the TCA cy-

cle, where it is broken down to CO2. This produces the

reducing equivalent NADH, which fuels mitochondrial respira-

tion, or the reducing equivalent NADPH. It has been reported

that inhibition of b-oxidation by EX decreases NADPH levels

and increases ROS levels (Pike et al., 2011). Also, FAs can

be modulators of cellular production of ROS (Schönfeld and

Wojtczak, 2008). Indeed, saturated free FAs, especially free

palmitate, lead to the production of ROS. In our work, the addi-

tion of oleate protected against ROS cytotoxicity, as channeling

of saturated FAs toward TGs stored in LDs directed free FAs

away from pathways that lead to ROS production (Listenberger

et al., 2003). In addition to ATP or ROS modulation, other

mechanisms could explain our observations. The inhibition of

FABP3/7 or ADRP could also limit the capacity of cells to

handle lipolysis products, inducing ceramide production and

cell death.

Intermittent hypoxia can positively modulate cancer develop-

ment, inducing tumor growth, angiogenic processes, chemore-

sistance, and radioresistance (Toffoli and Michiels, 2008). The

functions of glycogen and lipid storage in cell survival in hypox-

ia-reoxygenation could be key regulators of cancer cells and po-

tential targets for therapy. In recent years, the lipid metabolism

pathway has emerged as a potential target for cancer therapy

(Abramson, 2011). Several inhibitors of the lipogenic pathway

that exhibit antitumor activity have been discovered using pre-

clinical models. In particular, chemical inhibition of FA synthase

or acetyl-CoA carboxylase has led to decreased growth and sur-

vival in various cancer cell types (Flavin et al., 2010; Wang et al.,

2010). Other studies have shown the importance of b-oxidation

in the development of cancer (Khasawneh et al., 2009; Samudio
Figure 6. FABP3, FABP7, and ADRP Are Essential for NADPH Productio

Reoxygenation

(A) ROS levels in cells cultured in normoxia or hypoxia for 48 hr and then incuba

(B) NADP+/NADPH ratios in cells cultured in normoxia or hypoxia for 48 hr with

(C) ROS levels in cells were cultured for 48 hr in normoxia, ±H2O2 (0.5mM), or hypo

with oleate/BSA (100 mM) for 48 hr, or preincubated with oleate/BSA (100 mM) o

(D) Cell number after 48 hr in normoxia or hypoxia and then incubation in normo

Error bars represent SD. See also Figure S6.
et al., 2010). A recent study also demonstrated that monoacyl-

glycerol lipase (MAGL) drives tumorigenesis through the lipolytic

release and remodeling of free FAs, and that exogenous sources

of FAs can contribute to malignancy in cancers lacking MAGL

activity (Nomura et al., 2010). Other findings suggest that cancer

cells can use lipoprotein lipase to acquire free FAs from the cir-

culation by lipolysis, to fuel their growth (Kuemmerle et al., 2011).

Our results do not exclude the possibility that diacylglycerol acyl-

transferases (DGATs) also contribute to TG synthesis. Similarly,

althoughwe have shown that DNL is reduced by hypoxia, it is still

possible that lipid synthesis at the basal level is a key contributor

to growth and survival; thus, it will be of interest to study inhibi-

tors of DAGTs.

Using amurine xenograft model, we obtained extremely prom-

ising results showing that in vivo tumorigenesis was impaired

when FABP3/7 expression was inhibited. This decreased tumor

growth rate was associated with a reduction in overall LD levels

in tumors. Thus, FA uptake in hypoxic tumor areas seems to

represent a promising target for anticancer therapy. Our work

provides justification for the screening and development of spe-

cific inhibitors of FABP3 and FABP7, which ideally would be able

to block the function of both proteins. It will be of interest to inves-

tigate the role of FA oxidation or glycogen metabolism inhibitors

in the clinic in combination with antiangiogenic therapy that

would produce a hypoxic environment. Such an environment

would make these pathways more critical, resulting in synthetic

lethality. Drugs designed to inhibit glycogen and/or lipid uptake

or storage under intermittent O2 deprivation, in combination

with other established agents, may be beneficial for cancer

therapy.
EXPERIMENTAL PROCEDURES

Tissue Culture and Hypoxic Conditions

Cells were cultured at 37�C in Dulbecco’s modified Eagle’s medium (DMEM;

GIBCO), 10% fetal calf serum (FCS), 50 U/ml of penicillin, and 50 g/ml of strep-

tomycin. Cell exposure to hypoxia (0.1% O2) was undertaken in an INVIVO2

400 hypoxic workstation (Ruskinn Technology, manufactured for PRO-LAB)

using a continuous flow of a humidified mixture of 0.1% O2, 5% CO2, and

94.9% N2.

Staining of LD with LD540

LD540 was developed for microscopic imaging of LD (Spandl et al., 2009).

Cells were fixed with 4% paraformaldehyde (PFA) for 15 min, incubated with

a solution of 0.05 mg/ml LD540 (stock solution in ethanol at 0.5 mg/ml) in

PBS in the dark at room temperature (RT) for 10 min, and washed three times

with PBS. For microscopic analysis, cells were mounted in Vectashield Hard-

Set Mounting Medium with DAPI (Vector Laboratories). Images were acquired

with a confocal microscope (LSM 510 Confocal Laser Scanning Microscope

(Zeiss) or Zeiss Axioskop 2 plus microscope. For flow cytometry, cells were

resuspended in PBS and analyzed (CyAn ADP Analyzer; Beckman Coulter).
n, ROS Removal, and Survival in Conditions of Hypoxia and Hypoxia-

ted in normoxia for 0–24 hr. NAC, N-acetyl-cysteine (2 mM; Sigma).

or without reoxygenation for 4 days.

xia, with 10%FCS or 1%LPDSmedium. Cells were also left untreated, treated

vernight before culture in hypoxia.

xia for 0–48 hr ± the antioxidant (AO) MnTMPyP (12.5 mM; Calbiochem).

Cell Reports 9, 349–365, October 9, 2014 ª2014 The Authors 361



(legend on next page)

362 Cell Reports 9, 349–365, October 9, 2014 ª2014 The Authors



The mean fluorescence intensity values of the total cell population for each

sample were converted to ‘‘LD levels’’ in the graphs.

Clonogenic Assay

Cells were reverse transfected with the indicated siRNAs. At 24 hr after

transfection, the medium was changed. Cells were incubated in normoxia or

hypoxia for 72 hr and then in normoxia for 10 days. Colonies were counted

after staining with 1% crystal violet.

Generation of Spheroids

We used a method to rapidly generate single-tumor spheroids (Ivascu and

Kubbies, 2006, 2007). Cells were diluted in ice-cold medium to 2.5 3 104

cells/ml. For MCF-7 cells, Matrigel (BD Biosciences) was thawed on ice

and added at a final concentration of 2.5% to the cell suspension. Then,

5,000 cells (200 ml) of the cell suspension were added to each well of a

round-bottom, ultra-low attachment, 96-well plate (Corning). To initiate

spheroid formation, the plates were subjected to centrifugation at 1,000 g

for 10 min. The plates were then incubated at 37�C and 5% CO2 in a humid-

ified incubator. Images were acquired with a Zeiss Axiovert 135 microscope

and volumes were determined with the use of ImageJ software (http://rsb.

info.nih.gov/ij/).

Cell Viability Assay

To test for cytotoxic effects, we used the trypan blue exclusion test. Cells were

incubated in hypoxia for 48 hr and reoxygenated for a further 48 hr. After cell

collection, 0.5 ml of cell suspension was added to 50 ml of 0.4% trypan blue.

Viable and dead cells were counted using a Cellometer counting chamber

(Nexcelom Bioscience). The percentage of viability was determined by the

following equation: % of cell viability = (number of viable cells/total cell num-

ber) 3 100.

Lipid Synthesis

Cells were grown in normoxia or 0.1% O2 for 24 hr. Then, 2.5 mCi/ml [2-14C]-

pyruvate (166 mM final concentration; Perkin Elmer) was added and the cells

were incubated for a further 4 hr in the respective O2 conditions. Cell were

washed in 3 3 PBS and lysed in 0.5% Triton X-100. Lipids were extracted

by successive addition of 2 ml methanol, 2 ml chloroform, and 1 ml dH2O.

Phase separation was achieved by centrifugation at 1,000 rpm for 15 min.

The organic (lower) phase was recovered and dried. Lipids were dissolved in

Ultima Gold LSC Cocktail (Perkin Elmer) and counted on a Beckman LS

6500 scintillation counter.

GC Analysis

Cells were incubated for 48 hr under normoxic and 0.1% O2 conditions. Total

lipids were then extracted using the Folch solvent extraction method and TGs

were isolated via solid-phase extraction. FA methyl esters (FAMEs) of the iso-

lated TG FAs were prepared prior to GC analysis as previously described

(Collins et al., 2011). FAs were quantitated by adding 50 mg internal standard

(C15:0 TAG) to each sample prior to extraction and calculating the percentage

of recovery proportional to an external standard (50 mg C23:0 FAME) added to

each sample prior to GC analysis.

Lipid Mass Spectrometry

Cellular lipids were extracted using the Folch method. After addition of the

appropriate standards, the lipids were separated by normal-phase HPLC

and the lipids were identified and semiquantitated by mass spectrometry

(MS) using a Thermo Orbitrap mass spectrometer as previously described

(Rainero et al., 2012).
Figure 7. Inhibition of FABP3 or FABP7 Endogenous Expression Inhibi

(A) shRNA U87 cells were injected subcutaneously into BALB/c SCIDmice and tu

tumors are represented.

(B) FABP3 and FABP7 mRNA levels in the three mice groups.

(C) From top to bottom: tumor histology (H&E) with necrotic areas indicated by N,

(green) and nuclei stained with DAPI (blue), and tumor cell proliferation and cell d

Error bars represent SD. See also Figure S7.
DNL Measurement

DNL was calculated based on a method previously described by Lee et al.

(1994). Deuterated water (2H2O) was added to a concentration of 5% to cells

for 48 hr. Cells were then harvested and FAMEs were prepared prior to GC

and GC-MS analysis. The molar enrichment of each TG FA was measured

and the percentage of synthesis was calculated based on the observed/theo-

retical molar enrichment. The amount of DNL-derived FA was then calculated

from the total TG FA measured by GC analysis and was expressed as a per-

centage of the total TG FA.

FA b-Oxidation Measurement

b-oxidation was measured as previously described by Pinnick et al. (2010) us-

ing 0.5 mMoleate and 0.5 mCi [14C]oleate (Perkin Elmer) solution bound to BSA

in low-glucose DMEM (5 mM). The rate of oxidation was calculated as pmol

CO2/h/4 3 106 cells.

Uptake of Palmitate

BODIPY FL C16 (Molecular Probes) was diluted at 5 mM in DMSO as a stock

solution. After treatment, the culture medium was removed and the cells

were washed with PBS and incubated with BODIPY FL C16 in PBS for

15 min at RT. Cells were washed three times with cold PBS and incubated

with 4% PFA for 30 min at RT. To determine FA uptake, cells were analyzed

by flow cytometry using the FL1-FITC channel (CyAn ADP Analyzer; Beck-

man Coulter).

Mouse Tumor Study

All protocols were carried out in accordance with Home Office regulations (Li

et al., 2011). Female BALB/c SCID mice (Harlan Sprague Dawley, 6–8 weeks

old) were injected subcutaneously in the lower flank with 100 ml of Matrigel

(BD Bioscience) and 107 cells suspended in 100 ml of serum-free medium. Tu-

mor growth wasmonitored andmeasured two to three times per week with the

use of calipers. Tumor volume was calculated from the formula V = length 3

width 3 height 3 p/6. When the tumors reached 600 mm3, the mice were

sacrificed by cervical dislocation. At 90min prior to sacrifice, the mice were in-

jected intraperitoneally with 100 mg/kg of pimonidazole (Chemicon Interna-

tional). Immunohistochemistry was carried out as previously described (Li

et al., 2011). The following primary antibodies were used: Hypoxyprobe-1

(Chemicon International), Ki67 (Dako), and cleaved caspase-3 (R&D Systems).

Slides were incubated with anti-rabbit/anti-mouse secondary antibody (Dako),

and DAB (Dako) was applied to the sections for 5–8min. The slides were coun-

terstained by immersion in a hematoxylin solution (Sigma-Aldrich) and

mounted with Aquamount (VWR). Histology slides were scanned with the Ha-

mamatsu NanoZoomer scanner and analyzed quantitatively by image analysis

with ImageJ software using color deconvolution (http://rsb.info.nih.gov/ij/).

Statistical Analysis

For pooled data, results were expressed as the mean and SD of the mean of at

least three independent experiments. Statistics were carried out using Stu-

dent’s t test and linear regression of log-transformed growth data (significant

difference: *p < 0.05, **p < 0.01, ***p < 0.001).
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mor growth was monitored every 2–3 days. The average size and SEM of seven

tumor hypoxia measured by staining for pimonidazole, LDs stained with LD540

eath measured by staining for Ki67 and cleaved caspase-3, respectively.
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