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SUMMARY
Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic

dopaminergic (mdDA) neurons involved in Parkinson’s disease. Although iPSC-derived midbrain DA neurons have been generated,

detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity

of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3Gfp/+) neurons derived from mouse iPSCs

and primarymdDA (Pitx3Gfp/+) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derivedDAneurons

largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were

found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced

expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper

the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy.
INTRODUCTION

The field of regenerative medicine experienced a powerful

impetus after the groundbreaking discovery of induced plu-

ripotency (Takahashi andYamanaka, 2006).Numerouspub-

lications have shown that mouse as well as human induced

pluripotent stem cells (iPSCs) have the potency to differ-

entiate into various clinically relevant cell types, such as

cardiomyocytes (Kuzmenkin et al., 2009; Ren et al., 2011),

hepatocytes (Espejel et al., 2010), hematopoietic progeni-

tors (Hanna et al., 2007), oligodendrocytes (Czepiel et al.,

2011), and specific subtypes of neurons (Karumbayaram

et al., 2009; Wernig et al., 2008). Such in vitro-generated

iPSC-derived cell types provide new possibilities for disease

modeling and cell replacement strategies. In particular, the

generation of autologous iPSC-derived midbrain dopami-

nergic (DA)neuronsprovides a very interesting tool to study

and treat Parkinson’s disease (PD) (Roessler et al., 2013).

However, future clinical application of iPSC-derived DA

neurons can only be considered realistic if the desired cell

population is strictly purified and completely defined.

Several groups have reported the generation of DA neu-

rons from mouse and human iPSCs (Hargus et al., 2010;
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Swistowski et al., 2010; Wernig et al., 2008). In these

studies, iPSC-derived neurons displayed expression of

crucial DA markers and exhibited typical neuronal electro-

physiological properties. Furthermore, these iPSC-derived

DA neurons could functionally integrate into a rat PD

model upon transplantation. In principle, these results

indicated that a DA neuronal population could be obtained

from iPSCs and present important midbrain DA neuronal

characteristics. However, genome-wide studies comparing

the genetic and epigenetic features of iPSC-derived DAneu-

rons versus primary DA neurons are currently lacking.

Since reprogramming of somatic cells to iPSCs resets their

identity back to an embryonic stage, iPSC-derived differen-

tiated neurons should be considered freshly formed ‘‘em-

bryonic’’ neurons. Accordingly, a relevant comprehensive

comparison of iPSC-derived DA neurons can only be

donewith freshly formed embryonic and perinatal primary

mesodiencephalic DA (mdDA) neurons.

We generated iPSC lines from Pitx3Gfp/+ knockin mouse

embryonic fibroblasts. PITX3 is a highly specific mdDA

neuron marker that is required for DA neuron differentia-

tion in the substantia nigra (Jacobs et al., 2009, 2011; Smidt

et al., 2004). Specific PITX3-associated GFP expression
s
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allowed us to strictly identify and purify DA neurons from

either iPSCs or the ventral midbrain at specific devel-

opmental stages by fluorescence-activated cell sorting

(FACS). We then subjected these mdDA neurons to

genome-wide gene-expression analysis comparing iPSC-

derived DA neurons and primary isolated mdDA neurons.

Induction of pluripotency in somatic cells is considered

an epigenetic process that entails, among other events, a

large series of changes in DNA methylation patterns

(Bock et al., 2011; Maherali et al., 2007; Nishino et al.,

2011; Ohi et al., 2011). Furthermore, iPSC differentiation

into neural progenitor cells and subsequently into a spe-

cific neuronal subtype depends on properly established

de novo DNA methylation (Lee et al., 2010; Watanabe

et al., 2006). Therefore, it is essential not only to evaluate

gene expression but also to compare the methylome of

iPSC-derived DA neurons with their primary counterparts.

In order to obtain a comprehensive profile of the function-

ally most relevant DNA methylation sites in iPSC-derived

DA neurons versus primary mdDA neurons, we performed

a genome-wide analysis of CpG island (CGI) methylation

using reduced representation bisulfite sequencing (RRBS)

(Meissner et al., 2005; Smallwood et al., 2011) on genomic

DNA samples isolated from purified neuronal populations.
RESULTS

iPSC-Derived Purified Pitx3Gfp/+ Neurons Express

Crucial DA Markers

iPSCs were generated from embryonic fibroblasts of

Pitx3Gfp/+ transgenicmice andcharacterized (Figure S1avail-

able online). DA-specific differentiation was performed

according to previously described protocols (Chambers

et al., 2009; Kawasaki et al., 2000) and resulted in microtu-

bule-associatedprotein2 (MAP2)- and tyrosinehydroxylase

(TH)-positive PITX3-expressing neurons that exhibited the

typical morphology of mature DA neurons (Figures 1A and

1B). A comparative FACS profile showed an absence of GFP-

expressing cells within the undifferentiated iPSC popula-

tion, whereas the DA-differentiated population contained

a distinguishable subgroup of GFP-expressing cells (Fig-

ure 1C). Upon lineage-specific differentiation, iPSC-derived

DA neurons were able to secrete dopamine (Figure 1D), and

patch-clamp recordings revealed bona fide electrophys-

iological properties of the iPSC-derived mdDA neurons

(Figures 1E–1G). PITX3-GFP-sorted cells functionally

integrated into 6OHDA-lesioned rat brains after intrastria-

tal implantation, causing a reduction in amphetamine-

induced rotation behavior (Figure S2). Our data show

successful differentiation of iPSCs toward functional

PITX3-expressing mdDA neurons that could be purified

from an undefined iPSC-derived cell population. Next, we
Stem
set out to compare the global gene-expression profile of

the iPSC-derived DA neurons with that of the primary

mdDA neurons.

Comparative Expression Profiling: Primary mdDA

Neurons versus iPSC-Derived DA Neurons

We performed a genome-wide comparative gene-expres-

sion analysis with iPSC-derived PITX3-GFP-positive cells

and primary isolated mdDA neurons at several develop-

mental stages (embryonic day 12.5 [E12.5] to postnatal

day 0 [P0]; see Figure 2A for experimental scheme). FACS

sorting with an efficiency of 98% allowed purification

of iPSC-derived PITX3-GFP-positive cells and primary

PITX3-GFP-positive mdDA neurons (Figure 2B). Telence-

phalic brain homogenate served as the negative control

for primary cells (Figure 2B), and undifferentiated iPSCs

served as the negative control for iPSC-derived GFP-posi-

tive cells (as shown in Figure 1C).

Correlation of the genome-wide expression profiles

of Pitx3Gfp/+ mdDA neurons at different developmental

stages (Figure 2C) revealed the highest similarities between

embryonic mdDA neurons (r = 0.92–0.98). In comparison,

the gene-expression profile of iPSC-derived DA neurons

was less correlated (highest correlation [r = 0.66] with

E14.5 mdDA neurons); however, the weakest correlation

was found between iPSC-derived DA neurons and P0

mdDA neurons (r = 0.55).

We performed Gene Ontology (GO) term analyses to

annotate genes that were differentially expressed in iPSC-

derived DA neurons in comparison with primary embry-

onic mdDA neurons. We found that the genes that were

most downregulated in iPSC-derivedDAneuronswere asso-

ciatedwithGO terms such as nervous systemdevelopment,

neuron differentiation, and neurogenesis (Figure 2D).

We analyzed the expression of an mdDA-specific subset

of genes inmore detail and found high similarities between

iPSC-derived DA neurons and most primary mdDA neu-

rons (Figure 2E). Hierarchical clustering revealed several

mdDA-specific genes equally up- or downregulated in pri-

mary isolated and iPSC-derivedDAneurons. Sample cluster

analysis revealed the strongest gene-expression correlation

between iPSC-derived mdDA neurons and embryonic

primary neurons, whereas postnatal-stage primary mdDA

neurons clustered separately. Several key DA genes, such

as Otx2, FoxA1, FoxA2, Nr4a2 (Nurr1), Lmx1a, and Lmx1b

were similarly expressed in iPSC-derived mdDA neurons

and in embryonic mdDA neurons. Other DA genes, such

as En1 and En2, showed expression levels in iPSC-derived

mdDA neurons comparable to those in postnatal mdDA

neurons. We extended our gene-expression profiling to

additional mdDA-specific transcription factors (Chakra-

barty et al., 2012), axonal guidance factors, and ion chan-

nels (Figure S3). While we observed moderate correlations
Cell Reports j Vol. 2 j 520–533 j April 8, 2014 j ª2014 The Authors 521
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Figure 1. Characterization of Pitx3Gfp/+ iPSC-Derived mdDA Neurons
(A) Confocal image of colabeled MAP2- and GFP-positive cells.
(B) Confocal image of colabeled TH- and GFP-positive cells. Scale bar, 40 mm.
(C) FACS profile comparing undifferentiated and differentiated Pitx3Gfp/+ iPSCs.
(D) Quantitative dopamine measurement comparing undifferentiated and differentiated Pitx3Gfp/+ iPSCs (n = 3 independent experiments,
error bar represents SD).
(E) Representative phase-contrast image of a recorded neuron. Scale bar, 20 mm.
(F) Current-clamp recording of an in-vitro-generated mdDA neuron.
(G) I-V curve indicative of voltage-independent Ca2+ channels and voltage-dependent Na+ channels.
See also Figures S1 and S2.
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between iPSC-derived mdDA neurons and primary DA

neurons for transcription factors and axonal guidance fac-

tors, we found a high correlation for expression levels of

ion channels, with the strongest overall correlation (r =

0.82) between E12.5 mdDA neurons and iPSC-derived DA

neurons.

In view of the origin of iPSC-derived DA neurons, we

also analyzed the transcript profile for pluripotency genes

and fibroblast-related genes, visualized by dendrograms
522 Stem Cell Reports j Vol. 2 j 520–533 j April 8, 2014 j ª2014 The Author
(Figure 2F). The gene expression of a set of pluripotency

markers was subjected to cluster analysis, which showed

similar transcript levels (e.g., Nanog, Oct4 (Pou5f1),

Zfp42, and Nr0b1 [also known as Dax1]) in primary and

iPSC-derived cell types (Figure 2F). This result not only

substantiates a successful transition away from a pluripo-

tent state but also indicates appropriate silencing of

pluripotency genes upon in vitro differentiation. How-

ever, a similar cluster analysis performed on a subset of
s
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fibroblast-specific markers revealed differential expression

in primary and iPSC-derived neurons, suggesting rem-

nants of a still active fibroblast gene program in iPSC-

derived DA neurons.

In summary, comparative gene-expression profiling of

purified iPSC-derived DA neurons and embryonic mdDA

neurons revealed a clear correlation, but less similarity

was found between iPSC-derived DA neurons and P0 DA

neurons. Downregulated genes in iPSC-derived DA neu-

rons were mainly associated with biological functions

such as nervous system development, neurogenesis, and

neuron differentiation. These findings prompted us to

investigate the nature of this downregulation and to

extend our gene-expression analysis by performing in-

depth epigenetic profiling focused on DNA methylation.

Gene-Specific Methylation Profiles Correlate with

Gene Expression for Specific DA Markers

First, in order to validate our genome-wide expression

profiling data, we performed quantitative PCR (qPCR) ex-

periments for a set of selected key DA genes (Pitx3, Nurr1,

Dlk1, En1, and En2), Sox9, and Desmin. The expression

levels of these particular genes appeared to be in line with

the results obtained by microarray analysis, and indicate

that DA-specific marker expression in iPSC-derived DA

neurons most closely resembles that of terminally differ-

entiated-stage mdDA neurons (Figure 3A). As far as the

expression of Pitx3, Nurr1, En1, and En2 was concerned,

the highest similarity was found between iPSC-derived

DA and E16.5 mdDA neurons (Figure 3B).

Next, we set out to compare the DNA methylation pro-

files associated with the selected key DA gene expression

of iPSC-derived DA and primary mdDA neurons. DNA

methylation is a major player in epigenetic regulation of

gene expression, and strong methylation of promoters is

generally associated with gene silencing. RRBS allowed us

to analyze specific CpG methylation at nucleotide resolu-

tion on a genome-wide scale. RRBS provides coverage

preferentially of CpG-rich regions, such as CGIs. CGIs are

predominantly associated with promoter regions sur-

rounding the transcription start site (TSS). We identified

and analyzed CGIs and their methylation status for the

aforementioned key mdDA factors and found a striking

correlation between CGI methylation levels and gene

expression (Figure 3C). Pitx3, the mdDA marker we used

to purify both cell types, revealed equally low methylation

in the CGI around exon 1. Active expression of Pitx3 in

both cell types might be due to this permissive DNA

methylation state. CGIs in gene bodies of Nurr1, En1, and

En2 appeared to be more strongly methylated in iPSC-

derived DA neurons than in primary mdDA neurons. This

specific DNA methylation state in iPSC-derived DA neu-

rons may underlie the somewhat lower relative levels of
Stem
expression of these key mdDA factors in iPSC-DA neurons

in comparison with the primary mdDA neurons. Interest-

ingly, Nurr1 showed the highest methylation in a CGI

around exon 5, which may point to an alternative pro-

moter for the expression of Nurr1. Similarly, increased

methylation was observed for En1 and En2, in particular

at CGIs around exon 1. Additional keymdDA transcription

factors, such as Otx2, Lmx1a, Lmx1b, FoxA1, FoxA2, and

the dopamine receptor Drd2, were analyzed and their

CGI methylation status was examined (Figure S4). Overall,

increased CGI methylation in iPSC-DA neurons appeared

to be at intermediate levels (around 50%) in comparison

with native mdDA neurons. These differences in DNA

methylation patterns and, accordingly, the reduction in

DA gene-expression levels may have subtle, as yet unchar-

acterized effects on the proper functionality of iPSC-

derived DA neurons. In order to obtain a global view of

DNA methylation, we next set out to compare total CpG

methylation and CGI methylation in primary mdDA neu-

rons and iPSC-derived mdDA neurons.

DNA Methylation Landscape in iPSC-Derived DA

Neurons and Primary mdDA Neurons

To determinewhether DAneurons derived from iPSCs reca-

pitulate the DNA methylation landscape of their in vivo

counterparts isolated from the ventral midbrain, we per-

formed a genome-wide analysis of 5mC (Figure 4). We ob-

tained information on 844,812 CpGs (R5 read depth) for

iPSC-DA neurons and mdDA neurons, with a bisulfite con-

version efficiency of >98% as assessed by non-CpGmethyl-

ation. Of these, 72% corresponded to CGIs in iPSC-DA

neurons and mdDA neurons. Global methylation levels

outside of CGIs were similar in iPSC-DA and mdDA neu-

rons, and comparable to those observed in somatic tissues

in general (Illingworth et al., 2008, 2010; Figures 4A and

4B). Similarly, the CpGmethylation levels of iPSC-DA neu-

rons and mdDA neurons were highly correlated (r = 0.85;

Figures 4C and 4D). On the other hand, in a CGI context,

iPSC-DA neurons were relatively hypermethylated in com-

parison with mdDA neurons (Figure 4B), with the relative

proportion of CpGs presenting intermediate levels of

methylation (i.e., 40%–60%; Figures 4B and 4C). By plot-

ting the percentage of CGI methylation in mdDA neurons

against iPSC-DA neurons, we found a population of more

than 2,000 genes with relative CGI-associated hyperme-

thylation in iPSC-DA neurons (Figure 4D). As described

above, this was also observed in the methylation levels of

individual CGIs, with CGIs unmethylated in mdDA

neurons presenting intermediate levels of methylation in

iPSC-DA neurons (Figure 3C). Since CGI methylation is

essentially bimodal (i.e., either methylated or unmethy-

lated), this reflects a degree of epigenetic heterogeneity

within the population of iPSC-derived DA neurons. To
Cell Reports j Vol. 2 j 520–533 j April 8, 2014 j ª2014 The Authors 523
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Figure 2. Gene-Expression Profiling: Mesodiencephalic PITX3+ Neurons versus iPSC-Derived PITX3+ Neurons
(A) Schematic of the experimental setup.
(B) FACS profile of the telencephalon and midbrain of Pitx3Gfp/+ mice (E14.5) compared with iPSC-derived PITX3+ neurons.
(C) Correlation matrix of global gene expression comparing all Pitx3Gfp/+ purified neurons.

(legend continued on next page)
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assess whether there is an impact on gene expression in this

distinctly hypermethylated population, we analyzed

the function of the associated genes and compared expres-

sion levels in developing mdDA neurons and iPSC-DA

neurons.

Intermediate Hypermethylation in iPSC-DA Neurons

Affects Cell-Type-Specific Gene Expression

Although gene expression in general did not seem to be

reduced in iPSC-derived DA neurons, a significant propor-

tion of hypermethylated CGIs was observed (Figures 4D

and S5). The most hypermethylated subset of genes (Fig-

ure S5C) was subjected to GO analysis (Figure 5A). Interest-

ingly, the most significantly enriched biological functions,

such as neuron differentiation and neuron development,

corresponded with the most enriched GO terms found in

our reduced-gene-expression analysis (see Figure 2D). We

then analyzed the correlation of gene expression for genes

involved in neuron differentiation (169 genes with a cor-

rected p value of 2.93E-47) between all developmental

stages and iPSC-derived DA neurons (Figure 5B). Correla-

tions of neuron differentiation-associated gene expression

in iPSC-derived neurons strongly decreasedwith increasing

maturation of the embryonic mdDA neurons, with a corre-

lation coefficient as low as 0.28 for iPSC-derived DA neu-

rons versus P0 mdDA neurons. Of note, we found a higher

correlation of gene expression between prenatal mdDA

neurons and iPSC-derived neurons than between prenatal

mdDA neurons and P0 mdDA neurons.

After defining the biological functions of the hyperme-

thylated subgroup of genes and establishing the correlation

of expression for genes in the GO group ‘‘neuron differen-

tiation,’’ we revisited the gene-expression data to visualize

the actual transcript levels within a selection of the GO

terms (Figures 5C–5E). We found substantial downregula-

tion for multiple genes in three representative GO groups:

‘‘neuron development,’’ ‘‘axon guidance,’’ and ‘‘inner ear

development’’ (nonneural GO term). Large clusters of

downregulated genes were predominantly observed in P0

mdDA neurons and iPSC-derived DA neurons.

Thus, we identified a subset of genes in iPSC-derived DA

neurons that show intermediate hypermethylation. Many,

but not all, of these genes show reduced expression levels

compared with embryonic mdDA neurons. Crucially,

gene annotation revealed that a large fraction of the hyper-

methylated genes are involved in biological functions rele-

vant to neuron development and differentiation.
(D) GO term analysis of genes that were most reduced in iPSC-derived
(E) Expression levels of selected mdDA-specific genes, comparing de
correlation coefficient relative to iPSC-derived DA neurons.
(F) Hierarchical clustering for a subset of pluripotency and fibroblast
See also Figure S3.
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DISCUSSION

In view of their potential use in cell-based therapy for pa-

tients with PD, midbrain DA neurons were one of the first

cell types to be generated from iPSCs. The resemblance be-

tween iPSC-derived DA neurons and true DA neurons has

been studied based on a number of mainly morphological

and functional properties, as well as mdDA-specific gene

sets (Hedlund et al., 2008; Kriks et al., 2011; Wernig et al.,

2008). However, the risk of tumor growth and the hetero-

geneous molecular backgrounds of embryonic stem cell

(ESC)- and iPSC-derived DA neurons have precluded the

use of these cells for therapy in humans (Mom�cilovi�c

et al., 2014; Salti et al., 2013). Gaining a detailed under-

standing of the genetic and epigenetic signatures of ESC-

and iPSC-derived DA neurons is therefore a critical step

toward establishing cell-based therapy as a viable treatment

for PD. In this study, we present a comparative genome-

wide profile of the genetic and epigenetic features of

iPSC-derived DA neurons and their primary counterparts.

Although iPSC-derived DA neurons showed characteristics

that are widely used to classify functional mdDA neurons

(Ganat et al., 2012; Kriks et al., 2011; Sundberg et al.,

2013), caused a reduction in rotation behavior in a rat

model for PD, and adopted many of the genetic and

epigenetic features of their primary counterparts, we also

observed major deviations that may interfere with proper

functionality after grafting.

Since DA neurons obtained via induced pluripotency un-

dergo defined developmental stages in vitro, we compared

them with primary embryonic and postnatal mdDA neu-

rons. To generate iPSCs and differentiate them into DA

neurons, we applied a combination of currently widely

accepted and standardized protocols (Chambers et al.,

2009; Kawasaki et al., 2000; Takahashi and Yamanaka,

2006). We made use of transgenic Pitx3Gfp/+ mice (Maxwell

et al., 2005) to isolate primary mdDA neurons and repro-

gram embryonic fibroblasts into iPSCs, which were subse-

quently differentiated into DA neurons. The transcription

factor PITX3 has been demonstrated to be one of the

most stringent markers for fully differentiated, functional

mdDA neurons (Smidt et al., 2003, 2004), and expression

of the PITX3-GFP reporter allowed us to strictly identify

and FACS purify iPSC-derived and primarymdDA neurons.

Our global gene-expression analysis showed that iPSC-

derived mdDA neurons were highly similar to embryonic

primary mdDA neurons, particularly when we focused on
mdDA neurons.
velopmental midbrain stages with iPSC-derived PITX3+ neurons. R,

markers.
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Figure 3. Gene-Specific Methylation Profiles Correlate with Gene Expression for Specific DA Markers
(A) qPCR profile comparing the transcript levels of Pitx3, Nurr1, Dlk1, En1/2, Sox9, and desmin in embryonic mdDA neurons and iPSC-
derived DA neurons (both purified on Pitx3Gfp/+ expression). One-way ANOVA: ***p < 0.001; **p < 0.01; *p < 0.05; n = 3 (biological
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CpG methylation; yellow bars, intermediate CpG methylation; green bars, low CpG methylation).
See also Figure S4.

Stem Cell Reports
Comprehensive Profiling of iPSC-Derived DA Neurons
mdDA-specific genes. However, we identified a subset of

genes that were downregulated in iPSC-derivedmdDAneu-

rons in comparison with embryonic primary mdDA neu-
526 Stem Cell Reports j Vol. 2 j 520–533 j April 8, 2014 j ª2014 The Author
rons. GO analysis revealed that these genes were linked

to terms such as nervous system development, neuron dif-

ferentiation, and neurogenesis.
s



Figure 4. Global Comparative Methylation Profile of iPSC-DA Neurons versus mdDA Neurons
(A) Boxplots representing the range of methylation of CGIs and non-CGIs in iPSCs, iPSC-DA neurons, and mdDA neurons. Error bars
represent minimum and maximum values.
(B) Distribution of CpG methylation levels across the genome in CGIs and non-CGI context in iPSCs, iPSC-DA neurons, and mdDA neurons.
(C) Correlation of genome-wide CpG methylation in iPSC-DA neurons versus mdDA neurons.
(D) Correlation of global CGI methylation in iPSC-DA neurons versus mdDA neurons.
See also Figure S5.
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Although transcript analysis indicated that proviral gene

expression introduced during reprogramming was silenced

in iPSC-derived mdDA neurons, we still found residual

expression of fibroblast markers. It was previously shown

that iPSCs are prone to differentiate along their somatic

parental lineages because they maintain a parental epige-

netic memory (Bar-Nur et al., 2011; Kim et al., 2010; Sulli-

van et al., 2010). Although some studies suggested that

such epigenetic memory is restricted to early-passage iPSCs

(Polo et al., 2010), others reported that parental epigenetic

states also persist in late-passage iPSCs (Kim et al., 2011).
Stem
This could explain why we observed fibroblast marker

expression and a permissive DNA methylation state for

some of the fibroblast genes in PITX3-GFP-positive cells

derived from high-passage (p15–p20) iPSCs.

To determine whether the epigenetic states of the

analyzed neuron populations reflected similarities and dif-

ferences in gene-expression profiles, we analyzed global

DNA methylation patterns in primary embryonic mdDA

neurons (E14.5) and iPSC-derived DA neurons. In contrast

to the case with undifferentiated iPSCs, we found strong

general de novo methylation in iPSC-derived DA neurons.
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Earlier studies reported that PSCs mostly contain methyl-

ation-free promoters, as well asmethylation-free intergenic

and orphan CGIs (Illingworth et al., 2010). De novo

methylation was only found upon loss of pluripotency,

suggesting that transcriptional repression in PSCs is estab-

lished predominantly via other mechanisms (Fouse et al.,

2008; Mohn et al., 2008). Indeed, we observed that most

de novo methylation events occurred during differentia-

tion from pluripotent cells to multipotent precursors

isolated from an iPSC-derived NESTIN-GFP reporter line

(data not shown).

General methylation states appeared to be comparable

between iPSC-derived DA neurons and primary embryonic

mdDA neurons (r = 0.85), indicating that our in-vitro-

generated DA neurons widely adopted the epigenetic

signature of their primary counterparts. Nonetheless, we

found several thousand genes hypermethylated in iPSC-

derived DA neurons. This hypermethylation was found

predominantly at an intermediate level ranging from

40% to 60% DNA methylation. At this point, we can

only speculate about whether hypermethylation is due

to retained epigenetic memory or to heterogeneous

differentiation/maturation stages within the PITX3-GFP

FACS-sorted iPSC-derived population. To our knowledge,

a specific neuronal subtype derived from iPSCs has not

been characterized to such an extent, but similar differ-

ences in methylation profiles have been observed in re-

programmed mesenchymal stromal cells compared with

ESCs (Shao et al., 2013). Interestingly, our gene-expression

data show reduced expression of Tet1 and Tet3 in iPSC-

derived DA neurons compared with E14.5 mdDA neurons.

Tet proteins have been shown to be crucial for establish-

ment of pluripotency, development, and neuronal activity

(Koh et al., 2011; Rudenko et al., 2013; Zhang et al., 2013).

Presently, very little is known about the activity of Tet

proteins in specific subtypes of neurons (primary or PSC

derived). It is becoming more and more clear, however,

that their demethylation activity is crucial for functionally

bona fide, healthy neurons (Gavin et al., 2013; Ma et al.,

2009). Our DNA methylation profiling of iPSC-derived

DA neurons versus primary mdDA neurons did not

allow a distinction between 5-methylcytosine (5mC) and

5-hydroxymethylcytosine (5hmC). Neuronal gene activa-

tion was recently shown to be mediated by specific

MeCP2 binding to 5hmC (Li et al., 2013; Mellén et al.,

2012). Therefore, we cannot rule out the possibility that

elevated 5hmC levels in iPSC-derived mdDA neurons
Figure 5. Intermediate Hypermethylation of >2,000 Genes in iPSC
(A) GO term analysis of hypermethylated genes in iPSC-derived DA ne
(B) Correlation matrix for gene expression in the ‘‘neuron differentiat
(C–E) Heatmaps showing comparative gene expression for genes invol
development (E) (GO terms highlighted by red boxes in A). Blue boxe

Stem
might contribute to gene activation rather than to

silencing. However, within the population of hypermethy-

lated genes, we did observe gene clusters with substan-

tially lower transcript levels. Interestingly, we also found

clusters of genes that were upregulated compared with pri-

mary mdDA neurons. Because these genes also have been

identified by RRBS based on their intermediate hyperme-

thylation, these particular subsets might reflect groups

of genes that are activated rather than silenced upon 5-

hydroxymethylation.

In our gene-expression analyses, we found a weaker

correlation between iPSC-derived mdDA neurons and

P0 primary mdDA neurons than between iPSC-derived

mdDA neurons and embryonic primary mdDA neurons,

which prompted us to analyze in depth the underlying

methylation states of only E14.5 mdDA neurons and

iPSC-derived mdDA neurons. Interestingly, however, the

expression levels of En1 and En2 in iPSC-derived mdDA

neurons were comparable to those in P0 primary mdDA

neurons. The meaning of this in terms of functionality

is unclear and may reflect the fact that these iPSC-derived

mdDA neurons are in more of an adult state with respect

to En1 and En2. In addition, it might indicate that

iPSC-derived mdDA neurons are in an A9 state, as it has

been suggested that En1 levels are downregulated by

PITX3 in the rostral mdDA subpopulation (Veenvliet

et al., 2013).

Our findings raise two important questions: is epige-

netic memory an obstacle for exploiting the full potential

of iPSCs (e.g., personalized disease modeling), and do

aberrations in the expression profiles of iPSC-derived

mdDA neurons interfere with long-term functionality?

Although comprehensive studies have been performed

to test the in vivo functionality of human neurons

(Ganat et al., 2012; Kriks et al., 2011), these questions

still need to be addressed, especially when in-vitro-gener-

ated cells are to be considered for application in disease

modeling and cell-based therapy for PD. It remains to

be studied whether modifications in the reprogramming

process, as recently reported for the human system (Gafni

et al., 2013), as well as refined differentiation procedures

might diminish these deviations. An increased funda-

mental understanding of the genetic and epigenetic

signatures of DA neurons in vivo (Hegarty et al., 2013;

Smidt and Burbach, 2007; van Heesbeen et al., 2013)

could offer new leads to generate safe and transplantable

DA neurons in vitro.
-Derived DA Neurons Affects Cell-Type-Specific Gene Expression
urons.
ion’’ GO subset (highlighted by the lowest red box in A).
ved in neuron differentiation (C), axon guidance (D), and inner ear
s indicate the groups used for RRBS analysis.
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EXPERIMENTAL PROCEDURES

Mice
Pitx3(Gfp/+) embryos at several developmental stages were

obtained by intercrossing C57BL6/J with Pitx3(Gfp/Gfp) mice.

Pitx3(Gfp/+) embryos are heterozygous for wild-type PITX3 and

have normal mdDA system development (Maxwell et al., 2005).

Overlap of endogenous PITX3 with GFP has been shown to be

�100% (Maxwell et al., 2005). All procedures were approved by

and performed according to the guidelines of the Dutch ethics

committees for animal experiments (UMCU and UvA).

iPSC Generation and Propagation
Mouse embryonic fibroblasts were isolated from E14.5 embryos of

Pitx3Gfp/+ and Nestin-Gfp mice, both of which were previously

described and characterized (Yamaguchi et al., 2000; Zhao et al.,

2004). Fibroblasts were cultured until passage 5–8 and then retro-

virally transfected with the four Yamanaka reprogramming

factors. Separate vectors containing either Oct4, Klf4, Sox2, or

cMyc were used for pluripotency induction. Retroviruses were

obtained from Phoenix Eco packaging cells transfected with the

reprogramming factors (for vector information: Addgene, http://

www.addgene.org). The detailed induction protocol was previ-

ously described (Czepiel et al., 2011). iPSC clones were char-

acterized by immunocytochemistry, RT-PCR, western blot, and

bisulfite sequencing for the promoter regions of Nanog and Oct4

(Figure S1).

Differentiation of Pitx3Gfp/+ iPSCs toward DANeurons
We combined a stromal feeder-based protocol (Kawasaki et al.,

2000) with dual bone morphogenetic protein (BMP) and trans-

forming growth factor b (TGF-b) inhibition (Chambers et al.,

2009). iPSC colonies previously cultured on gelatin were manually

picked and seeded on MS5 stromal cells in serum replacement

medium containing Dulbecco’s modified Eagle’s medium F12

(DMEM-F12), 15% knockout serum, glutamate, and b-mercaptoe-

thanol. The cells were allowed to settle for 24 hr, and then

Noggin (300 ng/ml) and the TGF-b inhibitor SB431541 (10 mM)

were added for 4–5 days. Neural precursors (NESTIN-GFP) were

collected after 14 days of differentiation. The medium was gradu-

ally changed to N2 containing Sonic hedgehog (SHH; 200 ng/ml).

After neural induction, neuronal patterning and DA differentia-

tion were induced using a combination of brain-derived neuro-

trophic factor (BDNF), ascorbic acid, SHH, and fibroblast growth

factor 8 (FGF8) in N2 medium. Maturation was initiated by with-

drawing SHH and FGF8 in the presence of BDNF, glial cell-derived

neurotrophic factor (GDNF), ascorbic acid, and cyclic adenosine

monophosphate (Perrier et al., 2004). At about 4 weeks of differ-

entiation, Pitx3Gfp/+ neurons reached a mature state as determined

by morphology, marker expression, electrophysiology, and dopa-

mine production. Continuous culturing in these conditions

did not induce any further maturation/differentiation, i.e., there

were no changes in cell morphology, level and profile of marker

expression, electric membrane properties, or dopamine produc-

tion; however, continuous culturing resulted in an increase in

cell death. For gene expression and DNA methylation analyses,

we used Pitx3Gfp/+ mdDA neurons derived from iPSCs after 4 weeks
530 Stem Cell Reports j Vol. 2 j 520–533 j April 8, 2014 j ª2014 The Author
of differentiation. Cells were sorted and immediately subjected to

RNA or DNA isolation.

Microarray Analysis
Total RNA was isolated from embryonic ventral midbrain tissue

at various developmental stages (four biological replicates each)

and iPSC-derived neurons (three biological replicates) using

Trizol (Invitrogen), and purified using RNeasy columns (QIAGEN).

Microarray analysis was performed in biological triplicates. For

each experimental sample, a dye swap was performed to correct

for dye effects. Agilent whole mouse genome microarray

(G4122F; Agilent) sets were used for all hybridization. The array

set is comprised of 60-mer oligonucleotide probes representing

over 41,000 mouse genes and transcripts. Hybridized slides

were scanned on an Agilent scanner (G2565AA) at 100% laser

power, 30% PMT. After data were extracted using ImaGene 8.0

(BioDiscovery), print-tip Loess normalization was performed on

mean spot intensities. Datawere analyzed using ANOVA (R version

2.2.1/MAANOVA version 0.98-7; http://www.r-project.org/), and

p values were determined by a permutation F2 test in which resid-

uals were shuffled 5,000 times globally.

RRBS
RRBS was performed as described previously (Smallwood et al.,

2011). Genomic DNA from E14.5 mdDA neurons, NESTIN-GFP-

positive precursors, and iPSC-derived DA neurons was purified

using the QIAamp Micro Kit (QIAGEN) followed by MspI diges-

tion (Fermentas), end-repair/A-tailing, and ligation (T4 Ligase, Fer-

mentas) of 5mC-adapters (Illumina) performed in Tango1X buffer

without intermediate purification of the enzymatic reactions

(heat inactivation was used after each enzymatic step and compo-

nents were adjusted for the next step). Bisulfite conversion was

performed (Imprint DNA modification; Sigma) and converted

DNA was amplified (six cycles) using uracil stalling free polymer-

ase (Pfu Turbo Cx; Stratagene) followed by size selection (150–

450 bp, Qiaquick; QIAGEN) and a second round of amplification

(10–12 cycles, Platinium, Pfx polymerase; Invitrogen). Libraries

were purified (SPRI beads; Agencourt) and sequenced on an

Illumina Genome Analyzer IIx (40 bp, single read). Quality con-

trol of raw sequence data was performed using FastQC (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc), and trim-

ming was done using TrimGalore (http://www.bioinformatics.

babraham.ac.uk/projects/trim_galore/). Sequence alignment and

methylation calls were performed using Bareback (http://www.

bioinformatics.babraham.ac.uk/projects/bareback/) and Bismark

(Krueger and Andrews, 2011)

ACCESSION NUMBERS

Data for the expression arrays (KC002) reported here have

been deposited in the GEO database under accession number

GSE47178. The RRBS data have been deposited in the GEO data-

base under accession number GSE55475.
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