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Abstract
Genetic mutations cause primary immunodeficiencies (PIDs), which predispose to infections.
Here we describe Activated PI3K-δ Syndrome (APDS), a PID associated with a dominant gain-of-
function mutation E1021K in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase
δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated
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families, but not among 3,346 healthy subjects. APDS was characterized by recurrent respiratory
infections, progressive airway damage, lymphopenia, increased circulating transitional B cells,
increased IgM and reduced IgG2 levels in serum and impaired vaccine responses. The E1021K
mutation enhanced membrane association and kinase activity of p110δ. Patient-derived
lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated
AKT protein and were prone to activation-induced cell death. Selective p110δ inhibitors IC87114
and GS-1101 reduced the activity of the mutant enzyme in vitro, suggesting a therapeutic
approach for patients with APDS.

Respiratory infections are the most common illnesses of people worldwide. Recurrent
respiratory infections may lead to bronchiectasis, a permanent, abnormal dilation of bronchi
(1). Susceptibility to recurrent respiratory infections and bronchiectasis may be conferred by
an underlying primary immunodeficiency (PID) (1, 2). PIDs have variable penetrance and
those that have a milder course may remain undiagnosed. Mutations in more than 200 genes
are known to cause various PIDs (3). Recent improvements in DNA sequencing technology
provide an opportunity to study the patient’s whole genome or its coding part, known as the
exome (4). This technological advancement has significantly improved the genetic
diagnostics of PIDs in patients with recurrent and severe infections and facilitated the
identification of novel causative genes and mutations.

We used exome sequencing to search for causative mutations in 35 PID patients from the
UK who suffered recurrent infections and had a family history of susceptibility to infections
(5). Following identification of genetic variants in these patients, we excluded common
polymorphisms previously detected in the 1,000 Genomes and NHLBI projects (table S1)
(5). When cross-checking the remaining rare variants, we noted that three patients from one
family (P1, P2 and P3 in family A) and one patient from another family (P5 in family B) had
the same heterozygous G to A mutation at position 9,787,030 on chromosome 1, c.3061G>A
in the PIK3CD gene (fig. 1). This mutation was not present in the other exomes and was the
only rare variant shared among all patients in these two unrelated families. It encodes an
amino-acid substitution, a glutamic acid for a lysine, at position 1021 (E1021K) of the
p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). Sanger
sequencing confirmed the presence of the E1021K mutation in these patients and four
additional affected family members. In both families the mutation co-segregated with the
clinical phenotype (fig. 1).

We then designed a genotyping assay for this E1021K mutation and screened 3,346 healthy
subjects, including 2,296 from the UK and 1,050 representing 51 different populations from
around the world (5). No healthy carriers of E1021K were identified in these two large
cohorts, supporting our hypothesis that this is a pathogenic mutation rather than a rare
neutral polymorphism. We then studied DNA samples of an additional heterogeneous cohort
of 134 PID patients from the UK and Ireland (5). In this cohort we identified five further
patients from three unrelated families C, D and E who had the same heterozygous E1021K
mutation (fig. 1A). The apparent high frequency of the mutation among PID patients and the
fact that P8 (family C) had previously been diagnosed with hyper-IgM syndrome prompted
us to study an additional cohort from France comprising 15 hyper-IgM patients from 13
families that had previously undergone exome sequencing. Among these we found three
patients from two unrelated families F and G with the same mutation, indicating that
E1021K may cause a typical hyper-IgM syndrome. One additional patient was identified
among family members, bringing the overall number of patients with the E1021K mutation
to 17.

Sequencing of the healthy parents of P8 in family C showed that both were homozygous for
the normal allele (fig. 1A). Genome-wide identity-by-descent analysis in family C
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confirmed the relationship of both parents to P8, thus classifying this E1021K mutation as
de novo. The mutation was present in DNA isolated from both fibroblast and blood samples
of P8 and therefore is likely to be germline, rather than somatic. Then, in families A – E we
studied genotypes of 149 markers in a 2 Mb interval on chromosome 1 flanking the mutation
(5). We found no shared long-range haplotypes across any pair of families and no flanking
markers that were consistently in linkage disequilibrium with the mutation across all five
families. These data strongly suggest a recurrent mutation, rather than a founder effect.
Nucleotide G in position 9,787,030 is part of a CpG dinucleotide (fig. 1B) that is known to
be ~30 times more prone to transition mutations (e.g. G>A) than an average nucleotide in
the genome (6).

Prior to our genetic analysis, patients from families A – G were not considered to have the
same disease etiology. The discovery of the same causative mutation in these patients
prompted us to compare their clinical and immunological histories (table S2), revealing the
phenotype of this PID, which is characterized by recurrent respiratory infections and
progressive airway damage (table 1, Supplementary Text and figs. S1, S2). Whereas the
immunological phenotype was largely consistent between patients, the clinical presentation
and disease course have been variable (e.g. mild disease in P10; table S2). Such clinical
variability may be explained by differences in lifestyle, exposure to pathogens, treatment
efficacy, and possibly by modifying genetic factors.

To understand how the E1021K mutation caused immunodeficiency we first studied its
impact on p110δ function. The p110δ protein is a catalytic subunit that, together with a
regulatory subunit, forms PI3Kδ, a heterodimeric lipid kinase. PI3Kδ phosphorylates
phosphatidylinositol 4,5-bisphosphate (PIP2), generating phosphatidylinositol 3,4,5-
trisphosphate (PIP3), an important second messenger molecule. We cloned the cDNA of
p110δ and introduced the E1021K change by site-directed mutagenesis. Subsequently, we
expressed both normal and mutant p110δ proteins, together with the regulatory subunit
p85α, in baculovirus-infected insect cells and purified the proteins (fig. S3A). We measured
lipid kinase activity using a modified membrane capture assay (7) and found that the basal
PIP3 production by PI3Kδ containing the mutant p110δE1021K subunit was up to 6-fold
higher than that produced by the wild type PI3Kδ (figs. 2A and S3B). After stimulation with
a platelet-derived growth factor (PDGF) receptor’s bis-phosphorylated peptide (pY), the
activity of both wild type and mutant PI3Kδ increased, but PIP3 production by the mutant
PI3Kδ was still up to 3 times higher (figs. 2A and S3C). We used two structurally related
isoform-selective PI3Kδ inhibitors, IC87114 and GS-1101 (8, 9), and found that both
reduced the activity of the mutant PI3Kδ as efficiently as that of the wild type PI3Kδ (fig.
2B), suggesting that these compounds may be effective in patients with the E1021K
mutation.

To understand the mechanism by which E1021K increases PI3Kδ activity, we first modeled
the structure of the mutant p110δ protein (5). p110δ is organized similarly to other PI3K
catalytic subunits (fig. 2C) (10, 11). The E1021K mutation is located in the C-lobe of the
kinase domain that interacts with cellular membrane, accommodates lipid substrate and
binds the cSH2 domain of the regulatory subunit (fig. 2D). Structural modeling showed that
E1021K of p110δ is positioned similarly to the somatic mutation H1047R of another PI3K
isoform, p110α, which is known to increase PI3K activity in cancer cells by enhancing its
association with membranes (12, 13). Therefore, we used a protein-lipid fluorescence
resonance energy transfer (FRET) assay to study interaction between lipid vesicles and
either wild type p110δ or the mutant p110δE1021K. We found that p110δE1021K has a much
higher basal affinity for lipid vesicles than the wild type p110δ (fig. 2E). After pY
stimulation, the affinity of p110δE1021K was also increased, although the difference with
respect to the pY-activated wild type p110δ was less striking (fig. 2E). These results suggest
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that stronger binding to membranes contributes to the increased activity of the mutant
p110δE1021K protein. Another potential activating mechanism of E1021K may involve
interaction of p110δ with the regulatory subunit p85α (14). Our structural model shows that
E1021K may impair binding of p110δ to the inhibitory cSH2 domain (fig. 2D) leading to
increased PI3Kδ activity. However, it is unlikely to affect binding of another inhibitory
p85α domain, nSH2 (fig. 2D). This is consistent with our observation that pY stimulation
further activates the mutant enzyme, probably by removing the nSH2 inhibition.

PI3Kδ is expressed predominantly in cells of hematopoietic lineage and is the major PI3K
isoform signaling downstream of T and B cell antigen receptors (TCR and BCR), Toll-like
receptors (TLRs), co-stimulatory molecules and cytokine receptors in T, B and myeloid cells
(15). Therefore, we studied the activity of the mutant PI3Kδ ex vivo in patients’ leukocytes.
We measured levels of PIP3 using a high-performance liquid chromatography – mass
spectrometry-based assay (16) in CD4+ and CD8+ T cells isolated from fresh peripheral
blood. In both T lymphocyte lineages we found consistently higher PIP3 levels in patients
than in controls prior to stimulation and 10, 20, 30 and 60 seconds after stimulation (fig.
3A). In patient cells treated with IC87114 the levels of PIP3 were significantly reduced (fig.
3A). Furthermore, in stimulated patients’ T cells we found increased levels of
phosphorylated AKT protein, a major downstream mediator of PIP3 signalling (fig. 3B).
Levels of p110δ expression were normal in the patients’ T cells (fig. 3B). We then cloned in
a retroviral vector the wild-type p110δ, the mutant p110δE1021K and p110δD911A with
mutation D911A that inactivates the kinase domain, and transduced these constructs into T
blasts isolated from the p110δ-knockout mouse (5). After stimulation cells with p110δE1021K

had more phosphorylated AKT than other cells (figs. 3C and S4). Together, these results
strongly suggest that the E1021K mutation increases PI3K signaling in vivo as well as in
vitro.

To study T cell responses we stimulated purified CD4+ and CD8+ cells with anti-CD3 and
anti-CD28 antibodies. Unexpectedly, we observed that both T cell lineages from patients
were prone to cell death (figs. 3D and S5A). This phenomenon was reversed by the addition
of IC87114 but not IL-2 (figs. 3D and S5B), suggesting that it is caused by the increased
PI3Kδ activity. Cytokine production following stimulation of T cells was profoundly
reduced in the patients and was not rescued by exogenous IL-2 (fig. S6), suggesting that T
cell death occurs prior to any significant cytokine response. However, stimulation with
CytoStim, which did not induce T cell death, also led to reduced cytokine production by the
patients-derived T cells (fig. S7). The propensity to activation-induced cell death (AICD) is
consistent with T cell lymphopenia found in our patients. It may relate in part to the
increased proportion of T cells with an activated/memory phenotype (table S2) (17).
Moreover, given that p110δ inhibitor reduces AICD of the patient-derived T cells, the
activated p110δ may increase the AICD per se, possibly by enhancing TCR signalling.

In the patients’ B lymphocytes we also found increased amounts of phosphorylated AKT,
both before and after stimulation, although this analysis was complicated by enhanced
protein degradation in the patient-derived cells (fig. S8). Studies in transgenic mice deficient
for phosphatase and tensin homologue (PTEN), an enzyme that dephosphorylates PIP3, have
shown that PI3Kδ activity, PIP3 and phosphorylated AKT suppress immunoglobulin class
switch recombination (CSR) in B cells. These mice have impaired B cell function, increased
IgM, decreased IgG and IgA levels and impaired antibody responses after immunization
(18-21). Immunological presentation of our patients resembles this phenotype and indicates
a B cell defect. However, normal total IgG and IgA levels that were found in most of our
patients suggest that CSR may be only partially affected. Nevertheless, inefficient antibody
production impairs responses to S. pneumoniae and H. influenzae type B vaccinations in our
patients leading to recurrent infections with these pathogens. An increased population of
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circulating transitional B cells may reflect a block in late stages of B cell maturation or an
enhanced death of mature B cells.

PI3Kδ is also highly expressed in neutrophils. We found that patient-derived neutrophils
retained their ability to undergo a respiratory burst, degranulation, chemotaxis, and
apoptosis (fig. S9). We measured PIP3 accumulation in TNFα-primed neutrophils in
response to fMLP stimulation at 6 seconds (a PI3Kγ-dependent response) and at 60 seconds
(a predominantly PI3Kδ-mediated signal) (22) and found no significant difference between
patients and controls in either response (fig. S9). Thus, the effect of the E1021K mutation on
the PI3Kδ activity may be cell-type or stimulus-specific, or may be compensated for by
effects of other PI3K isoforms or PTEN. Nevertheless, we cannot exclude that a subtle
defect in neutrophil function may contribute to the disease pathogenesis in these patients.

Here we describe a PID caused by a recurrent autosomal dominant germline mutation
E1021K in the PIK3CD gene that encodes p110δ. We found it in 17 patients from seven
unrelated families, suggesting that it is frequent among PID patients and may explain a
substantial fraction of patients with recurrent respiratory infections and bronchiectasis. Our
rapid genotyping assay should facilitate screening for the E1021K mutation in existing PID
and bronchiectasis cohorts, as well as new patients. The E1021K mutation was previously
noted in one Taiwanese patient with recurrent respiratory infections and PID; however, its
causative and pathogenic role has not been demonstrated (23). Here we have shown that
E1021K increases PI3Kδ activity, augmenting the production of PIP3 and activating the
downstream AKT protein in lymphocytes. This leads to defects in T and B cell function and
inefficient immune responses to bacterial pathogens, predisposing to recurrent respiratory
infections and eventually to bronchiectasis. We named this disorder Activated PI3K-Delta
Syndrome (APDS).

Activation of the PI3K pathway is associated with malignant transformations and it has been
shown that overexpression of p110δ can transform cells (24). To date, only one of our APDS
patients, P13, has been diagnosed with lymphoma (table 1). Nonetheless, the oncogenic
potential of PI3K up-regulation can be enhanced by additional mutations (25, 26).
Therefore, APDS patients may be at increased risk of leukemia or lymphoma if they acquire
additional somatic mutations.

The APDS patients described here had been treated with immunoglobulin replacement and
antibiotics. Despite this, there is evidence of significant airway damage in most cases.
Because of progressive severe disease following splenectomy, patient P8 underwent
allogeneic hematopoietic stem cell transplantation (HSCT) at the age of 8 years. One year
after HSCT his clinical condition had improved dramatically, suggesting that HSCT may be
a long-term treatment option for young patients. Nevertheless, our results raise the
possibility that selective p110δ inhibitors, such as GS-1101, may be an alternative effective
therapeutic approach in APDS patients. GS-1101 (CAL-101 or Idelalisib) has been tested in
phase I/II clinical trials for treatment of chronic lymphocytic leukemia
(www.clinicaltrials.gov). The possibility of treating APDS patients with p110δ inhibitors
should therefore be considered.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Families with the E1021K p110δ mutation
(A) ○ and □ - unaffected; ● and ■ - affected;  and  - available data indicate recurrent
infections. Age at the time of death is shown for patients who died ≤30 years of age.
PIK3CD genotype is shown if known: wt, wild type allele encoding glutamic acid (E1021);
mut, mutant allele encoding lysine (K1021). (B) Sequence chromatogram showing
heterozygous mutation c.3061G>A in the PIK3CD gene leading to the E1021K amino-acid
change in p110δ. CpG dinucleotide is underlined.
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Fig. 2. In vitro activity and structure of p110δ
(A) Basal and pY-stimulated PI3K activity at 20 nM concentration. Graphs are mean ± SD
of 3 independent experiments. P-values were calculated by two-tailed t-test. (B) Inhibition
of mutant and wild-type p110δ/p85α as a function of IC87114 or GS-1101 concentration
(data are mean ± SD, N=3). (C) Domain organization of p110δ. (D) Structural model of the
p110δ/p85α heterodimer. p110δ catalytic subunit (pale green), nSH2 and iSH2 domains of
the p85 regulatory subunit (cyan), cSH2 domain (magenta), p110δ activation loop (thick
chocolate tube beneath kα12), residue E1021 of p110δ (green spheres) and the analogous
residue in H1047R mutant of p110α (cyan spheres). The IC87114 inhibitor bound in the
active site is shown in stick representation. (E) Membrane binding of p110δ. FRET between
the PI3K complex and Dansyl-PS-containing membrane vesicles in the absence (solid lines)
or presence (dashed lines) of the pY peptide (data are mean ± SD, N=3).
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Fig. 3. Functional analyses of T cells in patients with APDS
(A) Intracellular PIP3 levels in CD4+ and CD8+ T lymphocytes of patients (red squares,
N=6) and controls (blue circles, N=5) at indicated times after anti-CD3/anti-CD28
stimulation in the presence or absence of IC87114. The data are expressed as the ratio of the
quantity of PIP3 divided by that of the internal standard (ISD) and normalized according to
the cell number. The data show mean +/− SEM. P-values were calculated using two-way
ANOVA with Bonferroni correction. (B) Representative (N=3) Western blot showing levels
of p110δ, AKT and phospho-AKT (pAKT) proteins in CD4+ T cells isolated from fresh
blood samples of a healthy control (C) and a patient (P) without stimulation (−) or after 10
min stimulation (+) with anti-CD3 and anti-CD28 antibodies. (C) Representative (N=2)
Western blot showing levels of p110δ, and pAKT proteins in CD4+ T cell blasts of a p110δ
knockout mouse transduced with retroviral constructs expressing either GFP or wild-type
p110δ (p110δWT) or kinase dead p110δ (p110δD911A) or p110δE1021K without stimulation
(−) or after stimulation (+) with anti-CD3 antibodies and anti-CD28 antibodies. (D)
Quantification of surviving CD4+ and CD8+ T cells as indicated by % of cells excluding
viability dye. Cells of patients (red, N=4) and controls (blue, N=7) were studied without
stimulation and after stimulation with anti-CD3/anti-CD28 antibodies and in the presence of
IC87114. Each subject was studied in triplicate. The data show mean +/− SEM. P-values
were calculated using a two-way ANOVA with Sidak’s multiple comparisons test.
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