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Abstract
Genomic imprinting is an important and enigmatic form of gene regulation in mammals in which one copy of a gene is

silenced in a manner determined by its parental history. Imprinted genes range from those with constitutive monoallelic

silencing to those, typically more remote from imprinting control regions, that display developmentally regulated, tissue-

specific or partial monoallelic expression. This diversity may make these genes, and the processes they control, more

or less sensitive to factors that modify or disrupt epigenetic marks. Imprinted genes have important functions in

development and physiology, including major endocrine/neuroendocrine axes. Owing to is central role in coordinating

growth, metabolism and reproduction, as well as evidence from genetic and knockout studies, the hypothalamus may be

a focus for imprinted gene action. Are there unifying principles that explain why a gene should be imprinted? Conflict

between parental genomes over limitingmaternal resources, but also co-adaptation betweenmothers and offspring, have

been invoked to explain the evolution of imprinting. Recent reports suggest there may be many more genes imprinted in

the hypothalamus than hitherto expected, and it will be important for these new candidates to be validated and to

determine whether they conform to current notions of how imprinting is regulated. In fully evaluating the role of imprinted

genes in the hypothalamus, much work needs to be done to identify the specific neuronal populations in which particular

genes are expressed, establish whether there are pathways in common and whether imprinted genes are involved in

long-term programming of hypothalamic functions.
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Introduction

Imprinted genes in mammals pose an exception to
Mendelian inheritance, because one of their two copies
(alleles) has been silenced in a manner predetermined
by the sex of the parent transmitting the allele. There
are imprinted genes for which the allele from the
mother is silent and imprinted genes for which the
father’s allele is silent. Imprinting is a classic
epigenetic phenomenon: the distinct activity states of
the two alleles represent a memory of an earlier
decision and can coexist throughout the lifetime of
the individual, but are reversible, as imprinting is reset
during passage through the germline (Ferguson-Smith
& Surani 2001, Arnaud 2010). Until recently, w100
imprinted genes had been identified in mouse and
somewhat fewer in human (www.geneimprint.com),
with imprinting of many conserved between the two
species (Morison et al. 2005). A recent report, however,
suggests that the figure may be substantially higher
(Gregg et al. 2010a). Imprinted genes are recognised
as playing important roles in foetal and placental
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development, growth of the foetus, peri- and postnatal
physiology and in certain behaviours (Charalambous
et al. 2007). Whether all these processes have been
primarily targeted for control by imprinting or are
epiphenomena the outcome is the same: having only
one functional copy of a gene means that there is no
backup to safeguard against mutations. Accordingly,
inactivating mutations in imprinted genes or other
defects that eliminate the active copy are responsible
for a number of genetic syndromes (Butler 2009).
Disease can also arise from ‘loss of imprinting’, when
the normally repressed copy of an imprinted gene
becomes reactivated leading to overexpression. Given
these potential hazards, there must be an evolutionary
benefit to imprinting, especially since many imprinted
genes are shared between human and mouse, and
imprinting of the insulin-like growth factor 2 (Igf2)
and H19 genes can be traced back to marsupials (Smits
et al. 2008).

Silencing one allele of an imprinted gene is achieved
by mechanisms that involve DNA methylation,
repressive histone modifications and the actions of
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non-coding RNAs, and a great deal of progress has been
made in understanding the processes that lead to the
establishment and maintenance of imprinting (Weaver
et al. 2009). Fundamental to imprinting is the establish-
ment of differences in DNA methylation between male
and female gametes at imprinting control regions
(ICRs), and these primary imprint marks persist
throughout the lifetime of an individual and are only
erased and reset in the germline. Most imprinted genes
occur in clusters that span several hundred kilobases
and monoallelic expression of all genes in a cluster is
determined in cis by a single ICR. Whilst the primary
epigenetic marks at ICRs are maintained during
the lifetime, not all imprinted genes are expressed
monoallelically throughout life. The human IGF2 gene
is expressed predominantly from the paternal allele in
the foetus and placenta, but from both alleles equally in
the liver after birth (Vu & Hoffman 1994). GNAS, which
encodes the stimulatory G protein a subunit Gsa,
exhibits paternal allele silencing in a limited set of
tissues, including the pituitary, thyroid and hypo-
thalamus (Hayward et al. 2001, Mantovani et al. 2002,
Liu et al. 2003, Germain-Lee et al. 2005, Chen et al.
2010). This may suggest that imprinted expression for a
widely expressed gene with pleiotropic effects (as a
common mediator of G protein-coupled receptor
signalling) has been selected only for a subset of the
functions it serves. Stage- or tissue-specific imprinting
might be the consequence of the fact that most
imprinted genes in clusters are not directly repressed
by the monoallelic DNA methylation present at ICRs,
but rely on mechanisms such as silencing by non-coding
RNAs that originate from ICRs (Weaver et al. 2009).
Such indirect mechanisms may also allow a degree of
plasticity in imprinting, but the possibility that there
is interindividual variation in imprinting deserves
further investigation (Turan et al. 2010). It is important
to stress that whether or not monoallelic expression
is maintained, the primary imprint marks at ICRs
remain in place.
The hypothalamus as a hotspot of imprinted
gene expression

The findings that mouse knockouts for several imprinted
genes have disturbed metabolic control highlights the
hypothalamus as a potential major site for the action of
imprinted genes (Charalambous et al. 2007, Frontera
et al. 2008). The hypothalamus is a key regulator
of many endocrine functions and is involved in the
regulation of energy balance through its influence on
food intake, metabolic rate and body temperature by
the action of a dozen small nuclei. It has well-defined
circuits between the nuclei that allow integration and
fine-tuning of the systems responsible for homeostasis
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and adaptation to environmental change. Develop-
mental studies using aggregation chimaeras in mice, in
which parthenogenetic (PG) or androgenetic cells
(AG) were combined with normally fertilised embryos,
provided evidence for a role of imprinted genes in
brain development, including the hypothalamus. PG
embryos are produced by activation of unfertilised
oocytes and contain no paternal genetic contribution;
AG embryos by pronuclear transplantation in one-cell
embryos and contain two paternal genomes. AG and PG
cells are generally at a disadvantage during embryonic
development, but in the brain AG cells become
restricted to the hypothalamus, whereas PG cells are
excluded and are found predominantly in the cortex
(Allen et al. 1995, Keverne et al. 1996). This work
graphically illustrated that paternally and maternally
expressed imprinted genes might have distinct impacts
on brain development and function, suggesting, for
example, that paternally expressed gene function may
predominate in regions associated with primary
motivated behaviours (Keverne et al. 1996). A number
of imprinted genes are now known to be expressed in
hypothalamic nuclei and could be involved in establish-
ing hypothalamic neuroarchitecture and neural
circuits. In an extensive survey of imprinted gene
expression in mouse brain, it was found that certain
regions, in particular the hypothalamus, express a
higher proportion of the known imprinted genes
(Gregg et al. 2010a). Neural systems associated with
feeding and metabolism, and motivational behaviours
emerged as ‘hotspots’ for imprinted genes.
Imprinted gene disorders with a
neuroendocrine involvement

The involvement of imprinted genes in neuroendo-
crine and endocrine function was first suggested by the
discovery of the imprinted basis of disorders such as the
Prader–Willi syndrome (PWS) and Albright hereditary
osteodystrophy (AHO). PWS is a complex neuroendo-
crine and behavioural disorder that presents in infants
with hypotonia and feeding difficulties, followed by
hyperphagia and undiscerning eating, development of
morbid obesity, hypogonadism and cognitive delays
(Cassidy & Driscoll 2009). Patients present with low
levels of testosterone, gonadotropins, GH and IGF1
(Miller et al. 2008); they are also deficient in the
anorectic peptide YY and have elevated levels of gut
peptides obestatin and ghrelin, but normal thyroid and
adrenal function, suggesting primary hypothalamic
rather than endocrine dysfunction. There are reports
of hypothalamic abnormalities in patients, including
reduced numbers of oxytocin-producing neurons
(Swaab 1997). The PWS region on chromosome
15q11–q13 is one of the most complex imprinted
www.endocrinology-journals.org
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domains and comprises numerous paternally expressed
imprinted genes, suggesting that full-blown PWS is
best considered a contiguous gene syndrome. The
region also encodes multiple small nucleolar RNAs
(snoRNA), particularly of the C/D box class, which
are involved in RNA processing, and recent genetic
analysis in patients (Sahoo et al. 2008, de Smith et al.
2009) and knockout studies in mice (Ding et al. 2008,
2010) implicate disruption of specific snoRNAs as a
major factor in PWS.

AHO, an autosomal dominant disorder caused
by inactivating mutations in GNAS, represents the
classical endocrine imprinted disorder. Characteristics
include short stature, brachymetacarpia, subcutaneous
ossification and developmental delay, but a remark-
able feature is that presentation depends on parental
origin (Davies & Hughes 1993, Wilson et al. 1994).
When transmitted from mothers, AHO is accom-
panied by the hormone resistance syndrome pseudo-
hypoparathyroidism type 1a (PHP1a), characterised
by development of end-organ resistance to a subset of
hormones – parathyroid hormone, GHRH, TSH and
gonadotropins – which depend on Gsa-coupled
receptors (Weinstein 1998). AHO may be explained
by generalised haploinsufficiency of GNAS; PHP1a
represents the additional consequences of tissue-
specific imprinting of GNAS – the relative silencing
of the paternal allele – such that in some tissues Gsa
function is effectively absent or severely reduced when
the maternal allele carries a mutation. The imprinted
aetiology of PHP1a is underlined by the related
disorder PHP1b, in which much of the spectrum of
hormone resistance typical of PHP1a occurs in the
absence of the physical features of AHO (Kelsey
2010). PHP1b is caused by epigenetic defects of GNAS
imprinting rather than inactivating mutations (Liu
et al. 2000, Bastepe et al. 2001). PHP1a patients also
develop obesity (Long et al. 2007) but, since GNAS
expression is not imprinted in adult adipose tissue
(Mantovani et al. 2004, Chen et al. 2010), Gsa function
in adipocytes is not a major contributor to this
metabolic phenotype, despite the key role of Gsa in
regulating lipid mobilisation. Instead, evidence from
tissue-specific ablation of Gnas in mouse implicates
imprinted expression in the hypothalamus as the
cause (Chen et al. 2009).
Studies of imprinted gene function in the
hypothalamus

For a number of imprinted genes, knockouts have
revealed defects in hypothalamic development and
function (Table 1). Amongst imprinted genes in the
PWS domain in 15q11–q13, evidence from mouse
studies indicates that several are expressed in the
www.endocrinology-journals.org
hypothalamus and their deficiency may contribute to
some aspects of the complex PWS phenotype. Magel2
encodes a putative transcriptional regulator expressed
predominately in the brain and especially during
late developmental stages in the hypothalamus
(Kozlov et al. 2007). Magel2-deficient mice exhibit
neonatal growth retardation, altered metabolism and
increased adiposity, despite a reduction in food intake
(Bischof et al. 2007, Kozlov et al. 2007). They have
reduced numbers of orexin neurons and orexin levels
in the lateral hypothalamus, suggesting a role for
Magel2 in neuronal development. There is accumu-
lation of oxytocin intermediates in hypothalamus of
neonates and injection of oxytocin rescues the
feeding impairments and lethality (Schaller et al.
2010). Ndn encodes necdin, a potent post-mitotic
growth suppressor and anti-apoptotic factor predomi-
nately expressed in differentiated neurons (Muscatelli
et al. 2000). Necdin is highly expressed during
development of the nervous system and interacts
with neurotrophic receptors. Several knockout models
of Ndn have been reported with different phenotypic
outcomes ranging from early postnatal lethality owing
to respiratory distress to normal viability (Gérard et al.
1999, Muscatelli et al. 2000, Kuwako et al. 2005). Ndn
knockout mice variously demonstrate hypothalamic
changes, including reduced numbers of oxytocin- and
LHRH neurons (Muscatelli et al. 2000), more
generalised defects in neuronal differentiation
(Kuwako et al. 2005, Kuwajima et al. 2006) and
abnormally high levels of serotonin in the medulla
(Zanella et al. 2008). Necdin is also implicated in
axonal outgrowth, routing and fasciculation, thereby
possibly participating in establishment of neuroendo-
crine circuits (Lee et al. 2005).

Besides genes associated with PWS, several other
imprinted genes are implicated in regulating hypo-
thalamic functions. The paternally expressed gene for
neuronatin (Nnat) is expressed abundantly in various
hypothalamic nuclei. Expression is downregulated
after fasting and in genetic models of obesity (ob/ob
mice), and is responsive to leptin administration,
suggesting an involvement in regulating energy
homeostasis. No knockout of Nnat has been reported,
but in humans single nucleotide polymorphisms in
NNAT are associated with severe childhood and adult
obesity (Vrang et al. 2010). Of additional imprinted
genes with hypothalamic functions, Gnas and Peg3 are
dealt with in detail below. Together, these obser-
vations suggest that a number of imprinted genes
expressed in the hypothalamus from early develop-
mental stages participate in establishing neuronal
circuits responsible for fine-tuning and coordinating
the system to anticipate appropriate responses to the
environment.
Journal of Molecular Endocrinology (2011) 47, R67–R74



Table 1 Imprinted gene knockouts in the mouse demonstrating hypothalamic effects

Imprinted
gene Expressed allele

Function of the
gene product Knockout phenotype References

Magel2 Paternal Putative transcription
factor

Neonatal growth retardation, excessive
post-weaning weight gain, increased
adiposity and altered metabolism

Bischof et al. (2007)

Reduced amplitude of activity and increased
daytime activity, reduced food intake,
orexin levels and number of orexin-positive
neurons

Kozlov et al. (2007)

Ndn Paternal Post-mitotic growth
suppressor

Early postnatal lethality Gérard et al. (1999)
Neonatal lethality, reduction in oxytocin- and

LHRH-producing neurons in hypothalamus
Muscatelli et al. (2000)

Impaired neuronal development and
differentiation

Kuwako et al. (2005) and
Kuwajima et al. (2006)

Gnas Maternal allele-specific
expression limited to
specific tissues (PVN)

Stimulatory G protein
a subunit

Constitutive knockouts (maternal transmission)
Higher birth weight, TSH and PTH resistance Germain-Lee et al. (2005)
Reduced metabolic rate, energy expenditure

and locomotor activity, severe obesity,
insulin resistance and impaired
glucose tolerance

Chen et al. (2005)

Brain-specific knockout (maternal transmission)
Obesity, reduced metabolic rate, impaired

melanocortin response and insulin resistance
Chen et al. (2009)

Gnasxl Paternal Extra-large isoform
of stimulatory G
protein a subunit

Decreased adiposity and body weight,
elevated metabolic rate, improved glucose
tolerance and insulin sensitivity

Xie et al. (2006)

Peg3 Paternal Zinc finger
transcription factor

Foetal growth retardation, maternal behaviour
impairment, altered neuropeptide balance
and reduction in oxytocin-positive neurons

Li et al. (1999)

Growth retardation, lower core body
temperature, reduced metabolic rate,
increased adiposity, elevated leptin, leptin
resistance, altered hypothalamic
neuropeptide expression and later
onset of puberty

Curley et al. (2005)
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Reasons for imprinting in the hypothalamus

Why should the hypothalamus be a hotspot for
imprinted genes? A number of explanations for the
evolution of imprinting in mammals have been
advanced (as far as we know, amongst vertebrates
genomic imprinting is restricted to placental mammals),
the most pertinent to hypothalamic function appear
to be ‘conflict’ and ‘co-adaptation’. The ‘conflict
hypothesis’ posits that the inequality in parental
investment in placental mammals and opportunity for
paternal genes to manipulate the amount of resources
offspring obtain from mothers, together with the
likelihood that these paternal genes are not related to
paternal genes in future offspring from the same female,
gives rise to different selective pressures on paternal and
maternal genes in offspring. Paternal genes can be
considered resource demanding, whilst maternal genes
in offspring have an interest in conserving maternal
resources for the future reproductive health of the
Journal of Molecular Endocrinology (2011) 47, R67–R74
mother (Moore & Haig 1991). Most imprinted genes
that influence foetal and early postnatal growth and
development satisfy the predictions of conflict theory,
but the theory has had less success in predicting the
actions of imprinted genes in adults, and there seems
to be no neat division between the effects of maternally
and paternally expressed genes in processes such as
metabolism (Haig 2004, Frontera et al. 2008).

The Gnas locus exemplifies the possibility of conflict
because of the opposing effects of maternally and
paternally expressed gene products. The canonical
Gnas transcript encoding Gsa is expressed with a highly
cell-type pattern of silencing of the paternal allele. But
there is an isoform of Gsa, called XLas, that is produced
exclusively by the paternal allele. The XLas-encoding
transcript Gnasxl is determined by an alternative,
upstream promoter, such that XLas contains essentially
all the functional domains of Gsa, which are encoded
by shared exons, but XLas has a specific, large
amino-terminal domain (Kehlenbach et al. 1994).
www.endocrinology-journals.org
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XLas stimulates adenylyl cyclase in response to receptor
activation in a similar manner to Gsa (Bastepe et al.
2002), although it may interact more avidly with the
plasma membrane and be sensitive to lower ligand
concentrations (Kaya et al. 2009). In some circumstances
in vivo XLas can replace Gsa (Liu et al. 2011). In contrast
to similar biochemical properties, at a physiological
level Gsa and XLas appear to act in opposing pathways.
This was intimated by the first gene knockout of Gnas,
which targeted exon 2 common to both Gsa- and XLas-
producing transcripts. The exon 2 disruption causes
severe phenotypes in heterozygotes but, remarkably,
these differ according to whether the mutation is
transmitted maternally or paternally (Yu et al. 1998).
Mice lacking maternal Gsa expression are hypometa-
bolic and become obese, with decreased activity and
energy expenditure, on account of reduced activity of
the sympathetic nervous system; mice with the paternal
mutation are lean and hypermetabolic owing to
increased sympathetic activity (Yu et al. 2000). Further
analysis of mice with disruption specifically of Gsa
(deletion of the Gsa-specific exon 1) or of XLas
attributes the maternal hypometabolic phenotype to
lack of Gsa and the paternal hypermetabolic phenotype
to lack of XLas (Chen et al. 2005, Xie et al. 2006). Recent
work on a conditional knockout of Gsa establishes that
the metabolic phenotypes are determined in the central
nervous system (Chen et al. 2009): ablating Gsa in
neurons reproduces the hypometabolic phenotype, but
only in heterozygotes lacking Gsa from the maternal
allele. The central melanocortin system is a major
regulator of metabolic rate and the melanocortin-4
receptor is Gsa coupled. Brain-specific maternal Gsa-
deficient mice have a blunted metabolic response to
melanocortins even before the onset of obesity. In situ
hybridisation revealed imprinted expression of Gsa in
the hypothalamus, specifically in the paraventricular
nucleus (PVN), whereas in other brain regions
expression from both alleles is similar. Specific deletion
of Gsa in the PVN will be required to show definitively
that imprinted expression in this region is involved in
regulating metabolic rate. In contrast to Gsa, XLas has a
far more restricted domain of expression, including the
hypothalamus, and is strictly imprinted. The extent to
which the lean, hypermetabolic phenotype of XLas-
deficient mice has a basis in hypothalamic expression of
XLas is unclear, as the existing knockout is a constitutive
deletion. However, XLas is expressed predominantly
within orexigenic neurons (E Ivanova, G Kelsey and
M Frontera, unpublished observations), giving rise to
the possibility that XLas may function as the major Gsa
isoform in hypothalamic regions suppressing metabolic
rate and is involved preferentially in transducing signals
from receptors for energy preserving pathways. It will be
important to investigate how the respective phenotypes
are modified when Gsa and XLas deficiencies are
www.endocrinology-journals.org
combined to establish whether these oppositely
imprinted gene products indeed have antagonistic
functions compatible with the conflict theory.

An alternative hypothesis considers that imprinted
expression can arise because of ‘co-adaptation’ of
maternal and offspring traits in the interests of achieving
optimal birth weight and fitness of offspring, to ensure
not only that offspring extract optimal resources from
females but that females are capable of optimal
provisioning their young (Wolf & Hager 2006). The
paternally expressed gene Peg3, which encodes a
Krüppel-type zinc finger transcription factor involved
in apoptotic pathways (Relaix et al. 1998, Kohda et al.
2001), is an exemplar of this concept. Peg3 is expressed
from early embryogenesis (Kuroiwa et al. 1996); in the
brain, it is prominent in the arcuate, ventromedial,
dorsomedial, paraventricular and some other hypo-
thalamic nuclei. Deficiency of Peg3 results in foetal
growth retardation (Li et al. 1999). In adult Peg3
knockout mice the balance of feeding peptides is
changed in the hypothalamus and sympathetic activity
is decreased, as reflected in lower core body temperature
and metabolic rate and increased adipose tissue mass
(Curley et al. 2005). In addition, Peg3 knockout mice have
reduced numbers of oxytocin-positive neurons, and
females exhibit impaired milk ejection and deficits in
maternal care (Li et al. 1999). It is possible that Peg3 is
essential for development of neuronal circuitry and
establishment of normal hypothalamic function, not
only for the metabolic needs of the individual, but also to
prime the mother for successful pregnancy and to
optimise postpartum mother:offspring interactions. In
the view of co-adaptation, the expression domains of
Peg3 in the embryo and the mother work in concert: Peg3
helps shape development of the hypothalamus in utero at
a time when, and in part because, it is also operating in
the placenta to promote nutrient acquisition from the
mother. The outcome is that offspring that have grown
well and extracted optimal resources will be destined to
be good mothers as well (Keverne 2009). With the focus
on offspring:mother interactions, sexually dimorphic
expression of Peg3 in the adult hypothalamus might be
expected, but no information is available. At this point, it
is difficult to conclude whether co-adaptation or conflict
is the major driver for imprinted genes in the
hypothalamus, and it may be that different selective
pressures have driven the evolution of imprinting at
different loci (Wolf & Hager 2006).
How many genes are imprinted in the
hypothalamus?

In the past 20 years, over 100 imprinted genes have
been discovered in the mouse (www.geneimprint.com)
and it is possible that most imprinted genes with major
Journal of Molecular Endocrinology (2011) 47, R67–R74
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phenotypic effects (e.g. embryo growth and viability)
have been accounted for (Cattanach & Beechey 2004).
However, it is likely that others exist, especially genes
with temporally or cell-type restricted imprinting
(Schulz et al. 2009), but these require more effort to
locate. One promising approach is transcriptome
sequencing, using next generation sequencing
(mRNA-Seq), of tissues from hybrid mice (Babak et al.
2008, Gregg et al. 2010a,b). The principle is that mRNA-
Seq at sufficient sequencing depth quantifies allelic
expression on the basis of differences in read numbers
of sequences containing parental allele variants, given
appropriate statistical tests. Using reciprocal crosses
(i.e. if one cross is between strain A female and strain B
male, the reciprocal is strain B female with strain A
male), skewed allele representation attributed to a
parent-of-origin effect can be distinguished from
expression bias owing to genetic difference between
alleles. Moreover, the resolution of sequencing allows
differential imprinting of alternative transcripts of the
same gene to be discriminated. In studies reported by
Gregg et al. (2010a), 256 new candidate imprinted
genes (and additional non-coding transcripts) were
identified in the adult mouse hypothalamus (preoptic
area). Interestingly, there was a pronounced bias
towards paternally expressed genes and rather little
overlap with the smaller number of imprinted candi-
dates identified in another brain area, the prefrontal
cortex, recalling the preferential survival of AG cells in
the hypothalamus in chimaera studies (Allen et al. 1995,
Keverne et al. 1996). Extensive validation studies will
need to be done to conclude how many candidates
correspond to new imprinted genes, and the number
displaying apparently partial allelic silencing may
suggest a proportion of false positives, but the approach
correctly scored the majority of known imprinted genes
expressed in the brain, including cases of highly
isoform-specific monoallelic expression, such as the
Inpp5f gene. In addition to ‘conventional imprinting’, a
substantial number of autosomal genes were identified
that exhibited sex-specific biases in parental allele
expression (Gregg et al. 2010b). In the adult hypo-
thalamus, many more ‘sex-specific imprinted genes’
were predicted in females than males, possibly reflect-
ing the sexually dimorphic nature of the hypothalamus
and its involvement in the control of maternal and
mating behaviours, and the influence of known
imprinted genes on maternal behaviour (e.g. Peg3).
Concerning the functions of the new candidates, gene
ontology analysis identified cell adhesion as the most
highly enriched process in the adult hypothalamus
(which might be skewed by several protocadherin genes
showing parent-of-origin effects) and metabolic pro-
cesses for candidates in embryonic brain. Enrichment
in cell adhesion molecules could support a role of
imprinted genes in controlling neural architecture.
Journal of Molecular Endocrinology (2011) 47, R67–R74
Conclusions and perspectives

It is clear from theoretical concepts and experimental
observations of a handful of genes that the hypo-
thalamus is an important site of action of imprinted
genes, and disruption in normal hypothalamic
expression may contribute to imprinted gene syn-
dromes. It is too soon to evaluate the significance of
the discovery of several hundred new imprinted gene
candidates in the hypothalamus, including those with
sex-limited imprinting, and comprehensive validation
studies are required as well as investigating the basis of
their monoallelic expression. We also need much more
refined analysis, for instance, on the identity of
neuronal subtypes expressing the various imprinted
genes to be able to assess the extent to which imprinted
genes function in common pathways. Systematic
studies, such as transcriptome sequencing of defined
neuronal subpopulations from hybrid mice, would be
beneficial. Up to now, no imprinted gene has been
ablated specifically in the hypothalamus, and this type
of approach will be important to separate functions in
the hypothalamus from possible confounds from other
or earlier developmental effects of genes with pleio-
tropic functions. The extent to which imprinted genes
are involved in developmental modelling of the
hypothalamus needs further study, as well as the degree
to which the epigenetic control of imprinted genes is
responsive to extrinsic signals in a manner that may
have lasting impacts on hypothalamus function.
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