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At the beginning of the third week of pregnancy, mouse fetuses with targeted disruption of their paternally-transmitted insulin-like
growth factor 2 gene placental-specific transcripts have growth-restricted placentas but normal body weights due to upregulated
placental nutrient transport. We assessed whether increased placental glucose transport rates were associated with raised maternal
glucose concentrations by performing intraperitoneal glucose tolerance tests (ipGTT) in pregnant mice carrying knockout pups
and comparing them with mice carrying genotype-matched phenotypically wild type pups. Mean ± SD body weights of affected
pups were 95 ± 8% of control values at e16 and 73 ± 7% at e18. There were no differences in areas under the maternal ipGTT
curves at either e16 (mean ± SD being 99.0± 9.1% of control values; P = .9) or e18 (91.4± 13.4%; P = .3), suggesting that effects
on transplacental glucose transport in these mice are not mediated through changes in maternal glucose concentrations.

1. Introduction

The murine insulin-like growth factor 2 gene (Igf2) is
imprinted such that in pregnancy only the paternally inher-
ited copy of the gene is expressed in both the fetus and
placenta where the protein that it codes for, Igf-ii, acts as
a key fetal growth factor [1]. Mouse fetuses with disrupted
Igf2 transcripts expressed exclusively by the labyrinthine
trophoblast of the placenta (P0-Igf2) are growth restricted
in late pregnancy such that at birth they weigh on average
31% less than their wild type litter mates [2]. In contrast
to mice with the full Igf2 gene disrupted where placental
and fetal growth restrictions occur concurrently [3], the

fetal growth restriction in P0-Igf2 null mice is preceded
by placental growth restriction such that on day 14 of
pregnancy, whilst there is no effect on fetal weights, placental
weights of affected fetuses weigh on average 18% less than
those of unaffected fetuses. By day 16, however, whilst
placentas of affected fetuses weigh on average 32% less than
those of unaffected fetuses, the first signs of fetal growth
restriction become evident with affected fetuses weighing
on average 4% less than unaffected litter mates. Just prior
to parturition, weights on day 19 of pregnancy are reduced
by 32% for the placenta and 22% for the fetus [2]. The
above results suggest that around day 14 of pregnancy,
the placenta is somehow able to compensate for its own
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growth restriction by upregulating its nutrient supply to
the fetus such that body weights are maintained [4]. By
day 16, this compensation helps limit the fetal growth
restriction to a large extent despite the placenta being around
a third underweight, whereas later in the pregnancy, the
placenta appears to become overwhelmed and the fetal
weight restriction approaches that of the placenta.

The compensatory increase in nutrient supply relative to
placental weight that occurs around the start of the third
week of the mouse pregnancy in this model includes a
greater than 50% increase in placental glucose transfer rates
on day 16 of pregnancy when they are expressed relative
to placental weights [4, 5]. This increase appears to be at
least partly mediated by increased placental Slca3 (glut3)
expression. The fact that glucose transfer is normalised at
this stage of pregnancy despite having a severely growth
restricted placenta is emphasised by the fact that the placental
glucose transfer rates in affected fetuses are similar to those
of unaffected litter mates when expressed relative to fetal
weights. By day 19, when both the fetus and the placenta
are severely growth restricted there is still increased placental
glucose transport but it is of a smaller magnitude of around
30% above that of control values [5]. Igf2, at least in the
first half of the third week of pregnancy in the mouse,
therefore appears to be able to upregulate maternal nutrient
supply to meet fetal demand [6]. We have recently suggested
that such fetal demand could be affected by fetal genotype
effects on maternal metabolism [7]. We therefore performed
the following study to test the hypotheses that the relative
maintenance of fetal weight and the increased placental
glucose transport at day 16 of pregnancy in this mouse model
is related to increased maternal glucose concentrations and
that fetal growth restriction later in pregnancy is related to a
failure of the placenta to influence maternal metabolism and
a subsequent lowering of maternal glucose concentrations.

2. Materials and Methods

2.1. Animals. All experiments were performed under the
Animals (Scientific Procedures) Act 1986 and were approved
by the University of Cambridge Animal Ethics Committee.
The mice were kept under controlled conditions with a 12 h
light/dark cycle. They had free access to food and water
throughout (except for the starvation period immediately
prior to the glucose tolerance test when water was still freely
available).

2.2. Genotyping and Experimental Groups. The P0-Igf2+/−

mice, where originally a 5 kb BamHI genomic fragment was
replaced by a loxP site in the disrupted P0 allele [2], were bred
on C57Bl/6 backgrounds. The genetic status of the offspring
was tested by PCR reactions using ear biopsy genomic
DNA extracted as per the manufacturer’s instructions (using
Qiagen DNeasy Blood and Tissue kits; Qiagen, Crawley, West
Sussex, U.K.) as previously described [2, 5].

Experimental females were wild-type C57Bl/6 mice
(purchased from Charles River Ltd., Margate, Kent, U.K.)
who were mated with P0-Igf2 heterozygous knockout male

mice (Figure 1). Control females were heterozygous P0-
Igf2−/+ knockouts who were phenotypically wild-type due to
having inherited disrupted and imprinted P0-Igf2 from their
mothers, who subsequently were mated to wild-type C57Bl/6
males (Figure 1). In both groups the pregnant females would
therefore have been carrying litters where approximately
half the fetuses were wild type and half were genotypically
heterozygous knockouts. Due to imprinting, the genotype
but not the gene expression distribution amongst the pups
was therefore the same for the two groups. The difference
between them was whether the disrupted gene was usually
expressed or whether it was usually imprinted such that
disrupting it had no consequence. Pregnancy was assumed
at the expulsion of a vaginal plug, although for the studies on
days 16 and 18 of pregnancy, only those animals who gained
weight and/or had palpable pups suggestive of them being
pregnant were assessed. The day that the plug was found was
considered to be day 0 (e0) of pregnancy.

2.3. Glucose Tolerance Tests. 5–10 mice from each group had
their glucose tolerance test (GTT) assessed on either day 1,
16, or 18 of pregnancy by injecting them intra-peritoneally
with 1 g/kg body weight glucose (administered as a 10%
(w/v) solution) after a 15-hour fast as previously described
[8]. Blood glucose measurements were taken 0, 15, 30, 60,
120, and 180 minutes after the glucose injection.

2.4. Blood Glucose and Serum Insulin Concentrations. Blood
glucose measurements were made using a Hemocue 201+
glucose meter (Hemocue Ltd., Sheffield, U.K.). Fasting
and 180 minutes post load serum insulin concentrations
were measured by ELISA (Rat and Mouse Insulin ELISA,
Millipore, London, U.K.) according to the manufacturer’s
instructions.

2.5. Indirect Indices of Insulin Sensitivity. Fasting insulin
sensitivity was assessed indirectly using fasting insulin and
glucose concentrations and the HOMA calculator ([9]; avail-
able from http://www.dtu.ox.ac.uk/index.php?maindoc=/
homa/index.php)). Whilst the underlying principles of
HOMA modelling are invalid in rodents [10], the values
produced by this model do correlate significantly, albeit
modestly in some studies, with those measures of insulin sen-
sitivity gained from hyperinsulinaemic, euglycaemic clamps
in both mice [11] and rats [12, 13] without the need for prior
surgery or general anaesthesia. The insulin/glucose ratio was
used as an indirect index of insulin sensitivity (at 180 minutes
after the glucose injection), having previously been used as
such in rodents [12, 14].

2.6. Statistical Analysis. Maternal blood glucose concentra-
tions were assessed at both individual time points and as an
integrated area under the full GTT curve calculated using
the trapezoid rule. Based on performing GTTs on at least
14 mice in total per day of pregnancy and GTT results from
control mice from our previous study [8], this study had
80% statistical power to detect a significant difference (α =
0.05) in areas under the glucose curve of 174.6 mmol·min/L
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Figure 1: Schematic of the matings in the P0-Igf2 knockout study. Male mice are represented by squares and female mice by circles. Wild-
type mice are represented by solid black shapes and heterozygote knockout mice by shapes that are half solid black and half grey (maternal
inheritance of the disrupted allele is represented by the grey half being on the right hand side, and paternal inheritance with the grey half
being on the left hand side). Penetrance of the knockout gene is estimated to be 50% in each case, and half of the offspring are assumed to
be males. In each case the control mothers, whilst they were heterozygous P0-Igf2 knockouts, were phenotypically wild type due to having
inherited their disrupted allele from their mothers and imprinting.
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Figure 2: Intra-peritoneal glucose tolerance tests of pregnant mice
carrying litters containing P0-Igf2+/− knockout pups on day 16 of
pregnancy. ∗P < .05.

(equivalent to a rise of approximately 1.0 mmol/L across
the GTT). When comparing data from two groups on a
particular day of pregnancy, the Mann Whitney U test was
used. Where overall comparisons were made using all 3 days
of pregnancy in the same model, two-way ANOVA was used
with the experimental group and day of pregnancy as fixed
variables and area under the GTT curve as the dependent
variable. All statistical analysis was performed using SPSS
for Windows, version 14.0 (SPSS Inc., Chicago, USA). Data
are presented as mean ± standard deviation unless stated
otherwise, showing results from the experimental group
followed by those from the control group. P < .05 was
considered statistically significant throughout.

3. Results

3.1. Day 1 of Pregnancy. On day 1 of pregnancy, there
was no detectable difference in any of the GTT glucose
concentrations or in area under the GTT curves between
experimental and control groups (Table 1). There was no
detectable difference in fasting insulin sensitivity (HOMA
%S; values being median (interquartile range); n = 10
per group): 141.8 (115.9∼146.7) versus 140.7 (61.2∼147.4),

respectively (P = .9). Neither was there a difference in
insulin/glucose ratio 180 minutes after the glucose injection,
median (interquartile range) values being 6.4 (5.8∼113.9)
(n = 10) versus 13.9 (5.9∼70.9) (n = 10) (all × 10−3)
(P = .5).

3.2. Day 16 of Pregnancy. On day 16 of pregnancy P0-Igf2+/−

pups weighed 0.62 ± 0.05 g (n = 36) and wild-type (P0-
Igf2+/+) pups weighed 0.65 ± 0.06 g (n = 81) (P = .001).
There was no detectable difference in area under the maternal
GTT curves: 1428 ± 189 (n = 10) versus 1414 ± 130 (n =
6) mmol·min/L (P = 1.0, Figure 2) or in blood glucose
concentrations between 0∼120 minutes after the glucose
injection (all P > .05; Figure 2). However, experimental mice
did have higher blood glucose concentrations than controls
180 minutes after the glucose injection: 5.7 ± 0.9 (n = 10)
versus 4.8 ± 0.6 (n = 6) mmol/L (P = .04). There were no
detectable differences in fasting insulin sensitivity between
mice carrying P0-Igf2+/− offspring and controls (HOMA %S;
values being median (interquartile range)): 107 (15∼154)
(n = 10) versus 152 (115∼156) (n = 6) (P = .3). Neither was
there a difference in insulin/glucose ratio 180 minutes after
the glucose injection, median (interquartile range) values
being 10.0 (6.1∼24.0) (n = 10) versus 8.0 (6.5∼14.1) (n = 6)
(all × 10−3) (P = .8).

3.3. Day 18 of Pregnancy. On day 18 of pregnancy P0-Igf2+/−

pups weighed 0.97 ± 0.1 g (n = 21) and wild-type (P0-
Igf2+/+) pups weighed 1.33 ± 0.11 g (n = 86) (P < .0001).
There was still no detectable difference in area under the
maternal GTT curves between the P0-Igf2 experimental mice
and controls: 1566 ± 229 (n = 5) versus 1431 ± 209
(n = 9) mmol·min/L (P = .6, Figure 3). Neither were
there significant differences between the groups at any of the
individual time points although there were trends for higher
glucose concentrations in the experimental mice 120 minutes
and 180 minutes after the glucose injection: 6.8± 0.8 (n = 5)
versus 5.8 ± 0.9 (n = 9) (120 minutes; P = .1) and 6.1 ±
1.1 (n = 5) versus 5.1 ± 0.8 (n = 9) (180 minutes; P =
.05). There were no differences in fasting insulin sensitivity
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Figure 3: Intra-peritoneal glucose tolerance tests of pregnant mice
carrying litters containing P0-Igf2+/− knockout pups on day 18 of
pregnancy.

Table 1: Blood glucose concentrations across an intra-peritoneal
glucose tolerance test in control and experimental mice on day 1
of pregnancy. Data are presented as mean (SD), in mmol/L unless
stated otherwise.

Time (min.)
Experimental

group (n = 10)
Control group

(n = 10)
P

0 6.3 (1.0) 6.6 (1.0) .7

15 14.9 (3.7) 14.4 (1.9) .7

30 14.3 (4.0) 12.3 (1.4) .4

60 10.4 (4.3) 8.6 (0.8) .1

120 6.9 (1.1) 6.4 (0.6) .5

180 6.3 (0.8) 6.0 (0.7) .8

Glucose area under the
curve (mmol·min/L)

1662 (395) 1495 (113) .3

between mice carrying functionally knockout pups and
controls (HOMA %S; values being median (interquartile
range)): 11 (4∼147) (n = 5) versus 54 (23∼153) (n = 9) (P =
.1). Neither was there a difference in insulin/glucose ratio 180
minutes after the glucose injection, median (interquartile
range) values being: 10.7 (5.1∼28.1) (n = 5) versus 12.9
(6.6∼39.5) (n = 9) (all × 10−3) (P = .5).

4. Discussion

Results from this study suggest that the increased placental
glucose transport and relative maintenance of fetal weight on
day 16 of pregnancy in mice with targeted disruption of their
paternally-inherited P0-Igf2 transcript [2, 5] are not related
to higher circulating maternal glucose concentrations. There
was good reason to suspect that early in the third week of
pregnancy (e.g., day 16 around the time when a growth spurt
should begin) the P0-Igf2 knockout model fetal nutrient
demand would have been met through fetal genotype effects
on maternal metabolism as blood glucose concentrations
are raised in the affected pups (Constância, unpublished
observations) and the observed increase in placental glucose
transport rates [5] could only occur with a sufficient glucose
supply. The lack of evident alterations in maternal glucose
concentrations in the present study would suggest that the
difference in total blood volumes between the pregnant

mother and her pups is sufficiently large that the extra
glucose crossing the placenta and leaving the maternal blood
is such a small fraction of the total amount of glucose within
the pool that it can be achieved without the need for more
major changes in maternal glucose concentrations.

We recently established, following indirect evidence for
this in human studies (reviewed in [15]), that the fetal geno-
type can have an effect on maternal glucose concentrations
when phenotypically wild-type mice were shown to have
raised glucose concentrations (particularly) on day 16 of
pregnancy when they were carrying pups with a maternally
inherited 13 kb region of DNA that disrupted the whole H19
gene and the nearby Igf2 control element [8]. This model has
increased Igf2 expression and placental and fetal weights [16,
17]. In contrast, it seems that disrupting P0-Igf2 transcript in
mice rather than enhancing it removes any evidence of a fetal
genotype effect on maternal glucose concentrations. Prelim-
inary results from experiments where wild-type pregnant
mice carried pups all of which had a disrupted paternally
transmitted P0-Igf2 transcript (resulting from the mating of
a wild-type female mouse with a male that is homozygous
for the disrupted P0-Igf2 transcript) also failed to show
an alteration in maternal glucose concentrations (Sferruzzi-
Perri and Fowden, personal communication). This suggests
that the lack of an apparent fetal genotype effect on maternal
glucose concentrations in our model is not due to the
weakness of a fetal-genotype-mediated placental signal to
the mother to increase glucose availability which might have
been caused by only half of the pups being affected [7].
Instead, especially if the signal is related to Igf2 expression,
disrupting P0-Igf2 might remove all or a large fraction of the
signal that alters maternal glucose concentrations. Whilst it
did not cause raised maternal glucose concentrations, neither
did it cause a lowering of maternal glucose concentrations in
this model, although that could result from the fact that the
P0 transcript makes up only a fraction of the total placental
Igf2 expression.

By day 18 of pregnancy, when prepartum placental
metabolic activity lessens, P0-Igf2 null pups have reduced
placental and fetal weights [2, 5] and the magnitude of
the upregulated placental glucose transport in this model
falls [5]. We hypothesised that at this stage of pregnancy
the fetal growth restriction is related to the placenta being
less able to influence maternal metabolism and therefore
a lowering of maternal glucose concentrations. Our results
are not consistent with this, however, despite there being
the expected fall in fasting insulin sensitivity as parturition
approached. Perhaps in this case a fetal genotype effect on
maternal glucose concentrations is just not required given
that the affected placentas are already more efficient at nutri-
ent transport [18]. Whilst in the current model, apart from a
slight rise in maternal glucose concentrations 180 minutes
after the glucose injection on day 16 of pregnancy which
would have not been significant if correction was made
for multiple testing, we could find no evidence of raised
maternal glucose concentrations in pregnant mice carrying
affected pups; affected female pups from these pregnancies
are probably themselves at increased risk of having higher
glucose concentrations in their own pregnancies given links
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between fetal growth restriction and the subsequent risk
of gestational diabetes in humans [19] and raised glucose
concentrations in rodent pregnancies [20].

5. Conclusion

In conclusion, the previously observed increased rates of
placental glucose transport in fetuses that are P0-Igf2 null
[5] and relative preservation of fetal body weight at day
16 of pregnancy are not related to increased maternal
glucose concentrations. In fact, rather than stimulate it,
fetal genotype effects on maternal metabolism appear to be
diminished in this model by ablating P0-Igf2 transcription.
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