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IL-21 belongs to a family of cytokines that bind 
the common cytokine receptor  chain in con-
junction with additional receptor subunits; 
IL-21 exclusively binds IL-21R (Spolski and 
Leonard, 2008). CD4+ T cells and NKT cells 
produce IL-21 (Parrish-Novak et al., 2000; 
Coquet et al., 2007). Within the CD4+ T cell 
subset, IL-21 is expressed at the highest levels 
by T follicular helper (Tfh) cells and Th17 cells 
(Chtanova et al., 2004; Nurieva et al., 2007; 
Bauquet et al., 2009). Its receptor is expressed 
on T cells, B cells, NK cells, macrophages, and 
DCs (Spolski and Leonard, 2008). IL-21 pro-
motes antibody production, plasma cell differ-
entiation, and switching to IgG1 in the context 
of thymus-dependent (TD) responses (Kasaian 
et al., 2002; Ozaki et al., 2002, 2004; Pène  
et al., 2004; Ettinger et al., 2005; Kuchen et al., 

2007; Avery et al., 2008; Spolski and Leonard, 
2008; Vogelzang et al., 2008). A requirement 
of IL-21 for Tfh cell differentiation has also 
been reported (Nurieva et al., 2008, 2009; 
Vogelzang et al., 2008); in naive T cells, IL-21 
leads to up-regulation of Bcl-6, the transcrip-
tional regulator of Tfh cells (Johnston et al., 
2009; Nurieva et al., 2009; Yu et al., 2009). 
The defect in Tfh cell formation in the absence 
of IL-21 signaling has been proposed to explain 
the reduced numbers of germinal center (GC) 
B cells in the absence of IL-21 (Nurieva et al., 
2008; Vogelzang et al., 2008).

After binding protein antigen and receiving 
cognate help from T cells, B cells can differenti-
ate along the extrafollicular pathway, generat-
ing short-lived plasma cells that produce low 
affinity antibodies, or can enter the follicles and 
give rise to GCs (MacLennan et al., 2003). 
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During T cell–dependent responses, B cells can either differentiate extrafollicularly into 
short-lived plasma cells or enter follicles to form germinal centers (GCs). Interactions with 
T follicular helper (Tfh) cells are required for GC formation and for selection of somati-
cally mutated GC B cells. Interleukin (IL)-21 has been reported to play a role in Tfh cell 
formation and in B cell growth, survival, and isotype switching. To date, it is unclear 
whether the effect of IL-21 on GC formation is predominantly a consequence of this 
cytokine acting directly on the Tfh cells or if IL-21 directly influences GC B cells. We 
show that IL-21 acts in a B cell–intrinsic fashion to control GC B cell formation. Mixed 
bone marrow chimeras identified a significant B cell–autonomous effect of IL-21 receptor 
(R) signaling throughout all stages of the GC response. IL-21 deficiency profoundly im-
paired affinity maturation and reduced the proportion of IgG1+ GC B cells but did not 
affect formation of early memory B cells. IL-21R was required on GC B cells for maximal 
expression of Bcl-6. In contrast to the requirement for IL-21 in the follicular response to 
sheep red blood cells, a purely extrafollicular antibody response to Salmonella dominated 
by IgG2a was intact in the absence of IL-21.

© 2010 Linterman et al.  This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the first six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons 
.org/licenses/by-nc-sa/3.0/).
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recognized by PNA (Priatel et al., 2000). Quantitative RT-
PCR on sorted GC B cells from SRBC-immunized Il21+/+ 
and Il21/ mice did not reveal statistically significant in-
creases in the amount of ST3Gal and ST6Gal mRNA expres-
sion between both groups of mice (Fig. S1 B), suggesting that 
changes in these two enzymes are not responsible for reduced 
PNA binding in the absence of IL-21.

Tfh cells form but decline faster in the absence of IL-21
We investigated the kinetics of Tfh cell formation after 
SRBC immunization in IL-21–deficient mice by enumerat-
ing CXCR5highPD-1high CD4+ Tfh cells by flow cytometry 
on days 0, 6, 8, and 14 after SRBC immunization. In the ab-
sence of immunization, there were fewer background Tfh 
cells in Il21/ compared with Il21+/+ mice (Fig. 2 A). We 
observed normal generation of Tfh cells in Il21/ mice, 
with equivalent proportions on day 6 after immunization 
compared with Il21+/+ mice (Fig. 2 A). Although formation 
was normal, there was a more rapid decline in Tfh cell num-
bers in Il21/ mice (Fig. 2 A). There was a slight decrease 
in the total number of CD4+ cells in the absence of IL-21 
(Fig. S1 C), although this was not statistically significant.

T cells could be easily identified in the GCs of IL-21–
deficient mice 8 d after immunization (Fig. 2 B). In the absence 
of IL-21, there were more T cells per 1 mm2 of GC area than 
in IL-21–sufficient mice (166 vs. 104 CD3+ cells/mm2, 
respectively; P = 0.03), and on average there were slightly 
more T cells per GC in Il21/ compared with Il21+/+ mice 
(22 ± 15 vs. 16 ± 14, respectively; P = 0.2). Despite this in-
crease in the number of follicular T cells per GC, the total 
number of T cells found in follicles per square millimeter of 
spleen area was reduced in IL-21–deficient mice (97 ± 44 vs. 
126 ± 34 per section; P = 0.05), consistent with the results 
obtained by flow cytometric staining on day 8. This is ex-
plained by the smaller size of GCs in IL-21–deficient mice. 
Collectively, these data indicate that IL-21 is not required for 
Tfh cell formation but contributes to Tfh cell maintenance.

We also investigated the possibility that GC B cell and/or 
Tfh cell proliferation might be reduced in the absence of IL-
21. Enumeration of Ki-67+ cells among CD4+CXCR5+PD-
1+ Tfh cells did not reveal any differences in mice deficient 
for IL-21 (Fig. S2 A). Likewise, there was no difference in 
the proportion of Ki-67+ cells among B220+GL-7+Fas+ GC 
cells in the absence of IL-21 (Fig. S2 B).

IL-21R signals in B cells are required for GC formation  
and maintenance
To investigate whether IL-21R signaling in the B cells them-
selves is required for GC formation, we generated Il21r+/+/
Il21r/ mixed bone marrow chimeras. Sublethally irradiated 
Rag1/ mice were reconstituted with a 1:1 mix of either 
CD45.1 Il21r+/+/CD45.2 Il21r+/+ or CD45.1 Il21r+/+/
CD45.2 Il21r/ bone marrow. 8 wk later, chimeric mice 
were immunized with SRBCs and the percentage of B220+ 
cells, GL-7+Fas+B220+ GC B cells, CD4+ T cells, and CX-
CR5highPD-1high CD4+ Tfh cells derived from the CD45.2 

Within the GCs, B cells undergo somatic hypermutation, and 
those acquiring higher affinity for the immunizing antigen re-
ceive selection signals from Tfh cells. Selected cells emerge 
from the GCs as memory B cells or long-lived antibody- 
secreting plasma cells. Tfh and GC B cells have a mutual in-
fluence on each other: Tfh cells need B cell–derived signals 
for their optimal development (Nurieva et al., 2008) and Tfh 
cells are also essential for GC formation (Johnston et al., 2009; 
Nurieva et al., 2009; Yu et al., 2009). Nevertheless, normal 
GC induction with a paradoxical accumulation of IgG mem-
ory B cells was initially reported in Il21r/ mice (Ettinger 
et al., 2008). We also recently reported that IL-21 deficiency 
did not reduce spontaneous GCs, Tfh cells, or autoimmunity 
in a lupus-prone mouse (Linterman et al., 2009b).

Given this evidence of the effects of IL-21 on B and T 
cells, we asked whether the reported effects of IL-21 on GCs 
may not only be secondary to the effects of IL-21 on Tfh 
cell formation but may also result from a direct influence on 
GC B cells. In this report, we show that IL-21 exerts direct 
effects on GC B cells, suggesting that the reduction of GC B 
cells is not only a consequence of reduced Tfh cells. Fur-
thermore, we show that IL-21 is required for optimal affin-
ity maturation and maximal expression of the GC B cell 
transcriptional regulator, Bcl-6.

RESULTS AND DISCUSSION
IL-21–deficient mice form reduced GCs that bind  
peanut agglutinin (PNA) weakly
To assess the role of IL-21 signaling in both GC and Tfh cell 
formation, we compared the responses of Il21+/+ and Il21/ 
mice after TD immunization with sheep RBCs (SRBCs). 
Analysis of basal serum Igs revealed the reported reduction in 
serum IgG1 and elevated IgE titers in the absence of IL-21 
(Fig. 1, A and B; Ozaki et al., 2002). The percentage of GC 
B cells identified by expression of GL-7 and Fas (CD95) was 
measured by flow cytometric analysis of splenocytes before 
or on days 6, 8, and 14 after immunization. Without immu-
nization, IL-21–deficient mice have a reduction in the per-
centage of “background” GCs (P = 0.01). At day 6, there 
was a 40% reduction in the number of GC B cells in Il21/ 
compared with Il21+/+ mice, reaching a 60% reduction by 
day 14 (P = 0.01; Fig. 1 C). These data demonstrate that IL-
21 is not essential for initiating GC reactions but is required 
to reach GC peak numbers and maintain GC reactions.

To investigate whether GCs were forming in secondary 
follicles, spleen sections were stained for follicular mantle B 
cells (IgD, brown) and GC B cells (PNA, blue; Fig. 1 D). We 
observed PNA+ GCs in both Il21+/+ and Il21/ mice, al-
though the intensity of PNA staining appeared to be reduced 
in IL-21–deficient mice and the GCs had a slightly altered 
morphology (Fig. 1 D and Fig. S1 A). The mean fluorescence 
intensity of PNA binding was approximately twofold lower 
on GC cells derived from Il21/ mice compared with Il21+/+ 
controls (P = 0.03; Fig. 1 E). PNA is a lectin that binds nonsi-
alylated core 1 O-glycans. The sialyltransferase ST3Gal I adds 
sialic acid to the core 1 O-glycans, producing a structure not 
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report. The function of common  chain cytokines is modi-
fied by the context in which they are delivered (Rochman 
et al., 2009), and there is evidence suggesting that the magni-
tude of Tfh cell populations is influenced by the types of 
antigen, adjuvant, and avidity of TCR (Ansel et al., 1999; 
Malherbe et al., 2008; Fazilleau et al., 2009). It is therefore 
likely that weaker immunization strategies, e.g., smaller doses 
of SRBCs or cells with decreased immunogenicity (i.e., less 
fresh), may increase the dependence on IL-21 and may in-
duce a faster decline in GC and Tfh cells. It is also possible 
that the differences reported in this paper are caused by the 
genetic background of the mice used. Former studies used 
Il21/ mice either on a mixed 129xB6 F1 background or on 
a 129xB6 background backcrossed seven generations to B6. 
The mice used in this study were also generated on the 
129xB6 background and backcrossed 10–12 generations to 
B6, and as such, would be expected to have a maximum of 
0.1% 129 genome. IL-2 plays an essential role in T cell ex-
pansion and is tightly linked to the IL-21 locus. Our analysis 
of polymorphic markers between 129 and C57BL/6 revealed 
that the IL-2 locus is also derived from the 129 background 
in our N10 backcrossed mice (unpublished data), excluding 
this as a modifier of the Tfh cell phenotype in this study. 
Given the described ability of IL-6 to induce Bcl-6 (Nurieva 
et al., 2009), the modest effect of IL-21R signaling on Tfh 
cell formation is also probably explained by functional redun-
dancy between IL-21 and IL-6. As has been described for 

(Il21r/ or control Il21r+/+) donor marrow in each mouse 
was determined (Fig. 3, A and B; and Fig. S3).

In unimmunized mice, in which 50% of total B220+ cells 
were of CD45.2 Il21r/ origin (P = 0.003), there was a 
median 60% reduction (P < 0.01) in background GC cells 
derived from CD45.2 Il21r/ marrow. In control chimeras, 
the percentage of CD45.2 GC cells derived from Il21r+/+ 
bone marrow (45%) was comparable to the proportion of 
CD45.2 cells among total B220+ cells (Fig. 3 B, top left; and 
Fig. S3). On day 6 after immunization, the proportion of 
CD45.2 GC cells was also significantly lower (41% decrease; 
P < 0.001) than the rate of reconstitution of CD45.2 B220+ 
B cells in recipients of CD45.1 Il21r+/+/CD45.2 Il21r/ 
bone marrow (Fig. 3 B, middle left). A statistically significant 
36% (P < 0.01) reduction in CD45.2 GC B cells derived 
from Il21r/ marrow was also seen 14 d after immunization 
(P = 0.03; Fig. 3 B, bottom left; and Fig. S3). We also ob-
served statistically significant reductions in the percentage of 
Tfh cells derived from CD45.2 Il21r/ bone marrow com-
pared with control CD45.1 Il21r+/+/CD45.2 Il21r+/+ chi-
meras at the time points examined (Fig. 3, A and B, right; 
and Fig. S3). These reductions were smaller than the effects 
observed in GC B cells. Collectively, these results suggest 
that IL-21 acts directly on B cells to form and maintain GCs 
and exerts modest but also cell-intrinsic effects on Tfh cells.

Previous reports have shown a more profound effect of 
IL-21 on GC and Tfh cell formation than those shown in this 

Figure 1.  IL-21–deficient mice form detectable GCs after immunization, but the kinetics of the GC is altered. (A and B) ELISA analysis of total 
serum IgG1 (A) and IgE (B) in unimmunized mice of the indicated genotypes. (C) Flow cytometric contour plots and graphical analysis of GL-7+Fas+ GC 
cells gated on live B220+ lymphocytes from Il21+/+ and Il21/ mice at the indicated time points after SRBC immunization. Each symbol represents one 
mouse. (D) Photomicrographs of spleen sections stained for IgD (brown) and PNA (blue) from Il21+/+ and Il21/ mice 8 d after immunization. Data are 
representative of two independent experiments (n ≥ 4 per group). Bars, 200 µm. (E) Flow cytometric histograms and graphical analysis of PNA binding on 
GL-7+Fas+B220+ GC B cells from Il21+/+ and Il21/ mice 7 d after SRBC immunization. Statistically significant differences are indicated (*, P ≤ 0.05; **, P ≤ 
0.01). Data are representative of two independent experiments, each symbol represents one mouse, and tops of bars are drawn through the median val-
ues. MFI, mean fluorescence intensity; ns, not significant.

http://www.jem.org/cgi/content/full/jem.20091738/DC1
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IL-21 is required for optimal affinity maturation but not  
for early memory (EM) B cell formation
To investigate how IL-21 affects the process of affinity matu-
ration and formation of EM B cells, CD45.1 SWHEL transgenic 
B cells bearing a rearranged hen egg lysozyme (HEL)–specific 
VDJH element targeted into the H chain locus combined with 
an HEL-specific  L chain transgene (Phan et al., 2003) were 
adoptively transferred into IL-21–deficient or –sufficient 
CD45.2 recipients. The recipients were then immunized with 
SRBCs conjugated with HEL protein bearing three substitu-
tions (HEL3X), which binds the Ig receptors on SWHEL B cells 
with substantially lower affinity compared with native HEL, 
enabling affinity maturation to proceed normally (Phan et al., 
2003; Paus et al., 2006). Flow cytometric staining with nano-
molar concentrations of HEL3X can directly enumerate high 
affinity IgG+ variants (Phan et al., 2003; Paus et al., 2006); 
quantification of the proportion of HEL3Xhi-binding B cells by 
flow cytometry closely reflects the acquisition of mutations 
that confer higher affinity for the immunizing HEL3X (Phan 
et al., 2003; Paus et al., 2006; Randall et al., 2009). In HEL3X 
SRBC–immunized IL-21–deficient recipients, there was a 
72% reduction in HEL3Xhi-binding GC B cells (P = 0.035) 10 d 

Th17 cell formation, it is possible that a role for IL-21 would 
become more apparent in IL-6–deficient mice (Korn et al., 
2007; Nurieva et al., 2007; Zhou et al., 2007; Coquet et al., 
2008; Sonderegger et al., 2008). Furthermore, other cyto-
kines may also contribute to Tfh cell formation. In humans, 
IL-12 can induce human T cells to differentiate into IL-
21–producing Tfh-like cells in vitro (Schmitt et al., 2009).

Given the reports of reduced IgG1 responses in immu-
nized IL-21–deficient mice (Ozaki et al., 2002), we investi-
gated whether the decline in GC B cells was mainly caused 
by loss of IgG1+ GC B cells. After SRBC immunization, 
20% of GC B cells within the CD45.2 Il21r+/+ compart-
ment are IgG1+. This proportion was only slightly reduced 
among the Il21r/ GC cells (17%; unpublished data). How-
ever, analysis of the proportion of GC B cells and IgG1+ GC 
B cells of CD45.2 origin in each chimera revealed a parallel 
decline in IL-21R–deficient GC B cells and IgG1+ GC B 
cells 6 d after SRBC immunization (Fig. 3, C and D). IgG1+ 
IL-21R–deficient GC B cells were virtually absent in unim-
munized mice. This suggests that IL-21 deficiency pro-
foundly, but not exclusively, affects Ig switching to IgG1 
and/or maintenance of IgG1+ GC B cells.

Figure 2.  IL-21–deficient mice form Tfh cells after immunization, but their maintenance is impaired. (A) Flow cytometric contour plots and 
graphical analysis of CXCR5+PD-1+ Tfh cells gated on CD4+ B220 live lymphocytes from Il21+/+ and Il21/ mice at the indicated time points after SRBC 
immunization (percentages are shown). (B) Photomicrographs of spleen sections taken from Il21+/+ (top) and Il21/ (bottom) mice 8 d after immuniza-
tion with SRBCs. In all panels, IgD is stained in brown; blue color stains indicate PNA binding (left), CD3 (middle), and PD-1 (right). Bars, 200 µm. Statisti-
cally significant differences are indicated (*, P ≤ 0.05). Data are representative of two independent experiments, each symbol represents one mouse, and 
tops of bars are drawn through the median values. ns, not significant.
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We also observed a higher ratio of Tfh cells to HEL-
binding donor derived GC B cells (Fig. 4 C). This is in line 
with our earlier observation of smaller GCs and an increased 

after immunization compared with IL-21–sufficient recipients 
(Fig. 4, A and B). This shows that IL-21 is required for optimal 
affinity maturation.

Figure 3.  IL-21R expression is required on both GC B cells and Tfh cells for their maintenance but is dispensable for their formation. 
(A and B) Gating strategy (A) and bar graphs (B) of mixed bone marrow chimeras containing a 1:1 ratio of control Il21r+/+CD45.1/Il21r+/+CD45.2 or 
Il21r+/+CD45.1/Il21r/CD45.2 bone marrow. Spleens from unimmunized mice (A; and B, top) or from mice immunized with SRBCs 6 or 14 d previously  
(B, middle and bottom) were analyzed by flow cytometry for the percentage of B220+ B cells that are CD45.2+ (B220+), the percentage of GL-7+Fas+ GC 
cells among B220+ cells that are CD45.2+ (GC cells), the percentage of CD4+ Th cells that are CD45.2+ (CD4+), and the percentage of CXCR5highPD-1high Tfh 
cells among CD4+ cells that are CD45.2+ (Tfh cells). Each bar represents a single recipient mouse; individual mice have been numbered and placed in the same 
order in each of the plots. Statistically significant decreases are indicated (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). Data are representative of two indepen-
dent experiments. (C and D) Gating strategy (C) and dot plots (D) of the proportion of B220+, GC (B220+Fas+GL-7+), and IgG1+ GC (B220+Fas+GL-7+IgG1+) 
cells derived from the CD45.2 compartment of mixed chimeras reconstituted with a 1:1 ratio of either CD45.1 Il21r+/+/CD45.2 Il21r+/+ (left) or CD45.1 
Il21r+/+/CD45.2 Il21r/ (right) bone marrow before (C; and D, top) or 6 d after SRBC immunization (D, bottom). In D, each number represents a single 
recipient mouse from two separate groups of the chimeric mice indicated above the left and right panels.
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IL-21 acts directly in B cells to regulate Bcl-6 expression  
in GC cells
Bcl-6 is essential for the generation of the GC response (Dent 
et al., 1997). We have recently shown that Bcl-6 acts in a 
gene dose–dependent manner: halving the gene dose of Bcl-
6 reduced GCs after SRBC immunization by nearly 50% 
(Linterman et al., 2009b). In addition, previous work has 
demonstrated that unmutated memory B cells can form in 
the absence of Bcl-6 (Toyama et al., 2002) and that IL-21 in-
duces Bcl-6 expression in CD4+ T cells (Nurieva et al., 2009). 
Thus, we speculated that the mechanism by which IL-21 
contributes to GC formation and affinity maturation might 
be through induction or maintenance of Bcl-6 in GC B cells.

To test this hypothesis, we quantified Bcl-6 protein levels 
by flow cytometry in mixed CD45.1 Il21r+/+/CD45.2 
Il21r/ chimeric mice 6 d after SRBC immunization. As 
expected, Bcl-6 was up-regulated in GC B cells compared 
with non-GC B cells (Fig. 5, A and B). Strikingly, in every 
mouse analyzed, GC B cells lacking IL-21R expression 
showed a significant reduction (P = 0.002) in Bcl-6 levels 
compared with Il21r+/+ GC B cells in the same mouse 

number of Tfh cells per GC. It has been speculated that re-
duced competition for Tfh cells may lower the stringency of 
the selection process (Allen et al., 2007).

Memory B cells can form independently of the GC  
response (Blink et al., 2005; Inamine et al., 2005; Chan  
et al., 2009). After adoptive transfer of SWHEL B cells and 
HEL3X SRBC immunization, donor-derived EM B cells 
can be identified on the basis of their B220high BCRhigh 
phenotype; these cells express low levels of GL-7 and Fas, 
and high levels of CD38 (Chan et al., 2009). Most of these 
EM B cells have been reported to be unswitched and of 
low affinity, and have undergone limited division, suggest-
ing that they have left the response before GC formation 
(Chan et al., 2009). We investigated the dependence of 
these memory cells on IL-21. Although GC B cells 
(BCRint) were reduced both in total numbers and as a pro-
portion of HEL-binding donor cells in the spleens of  
IL-21–deficient recipients, the proportion of EM B cells 
(BCRhi) out of all HEL-binding donor cells remained 
comparable (P = 0.786; Fig. 4, D–G), as did total EM B 
cell numbers (not depicted).

Figure 4.  IL-21 contributes to affinity maturation but is dispensable for EM B cell formation. (A) Representative flow cytometric contour 
plots of donor CD45.1 SWHEL cells from the spleens of Il21+/+ or Il21/ recipient mice 10 d after adoptive transfer and immunization with HEL3X 
SRBCs. Contour plots show IgG1+ cells binding with high (top oval gates) and low (bottom oval gates) affinity to HEL3X (percentages are shown).  
(B) Bar graphs show HEL3X hi IgG1+ CD45.1 cells (top oval gates in A) as a proportion of all HEL3X-binding IgG1+ cells (square gates in A). This figure is 
representative of two independent experiments (n ≥ 3 mice per group. (C) Ratio of total Tfh (CXCR5highPD-1high CD4+) cells to total HEL-binding donor 
(CD45.1) GC B cells (Fas+GL-7+). Two independent experiments are represented in this plot. (D) Representative flow cytometric contour plots 10 d 
after adoptive transfer of SWHEL B cells into Il21+/+ or Il21/ mice and immunization with HEL3X SRBCs gated on donor CD45.1 and HEL-binding cells 
(percentages are shown). The gates show GC cells (HELint binding) and EM B cells (HELhi binding). (E) Phenotype of GC B cells and EM cells gated as in 
D. (F and G) Total number of donor HELint-binding GC B cells per spleen (F) and the proportion of donor HELhi-binding EM B cells (G) in mice of the 
indicated genotypes gated as in D. Each symbol represents one mouse and tops of bars are drawn through the median values. Statistically significant 
differences are indicated (**, P ≤ 0.01).
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serovar Dublin strain SL5631, which also elicits a CD28- 
dependent antibody response derived exclusively from extra-
follicular foci and dominated by IgG2ab production (Linterman 
et al., 2009a). Consistent with previous reports, GC responses 
were absent 12 d after Salmonella infection (Fig. S4). There 
was no difference in the amount of Salmonella-specific IgM, 
IgG2ab, IgG2b, or IgG3 between Il21+/+ and Il21/ mice 
(Fig. 6 A). Bacterial clearance was also intact in the absence 
of IL-21 (Fig. 6, B and C). These data demonstrate that nor-
mal extrafollicular antibody responses can be achieved in the 
absence of IL-21.

Evaluation of antibody responses to other Th1 pathogens 
such as Toxoplasma gondii have shown reduced antibody titers 
at day 100 after infection in Il21r/ mice (Ozaki et al., 2002). 
These antibodies most likely derive from GCs, given that ex-
trafollicular plasma cells are short lived and the half-life of 
IgGs is <3 wk. Also, in contrast to the response to Salmonella, 
both extrafollicular foci and GCs with proliferating centro-
blasts can be observed during T. gondii infection (Rifaat et al., 
1981). After immunization with ovalbumin or KLH, antigen-
specific IgG1 levels in Il21r/ mice were lower than wild 
type, and antigen-specific IgE was produced at much higher 
titers (Ozaki et al., 2002). In addition, there was a specific re-
duction in IgG1+ plasma cells (Ettinger et al., 2008). Collec-
tively, this evidence suggests that IL-21 is dispensable for 
non-IgG1 extrafollicular antibody but it is still possible that 
IL-21 is required for IgG1+ extrafollicular responses.

This report provides further evidence of the complex bi-
ological functions of IL-21 in immune responses, demon-
strating direct effects on GC B cells that regulate GC initiation, 

(Fig. 5, B and C). This suggests that IL-21 contributes to GC 
B cell formation by signaling directly in B cells to induce 
maximal expression of Bcl-6. There are multiple ways by 
which Bcl-6 defects may impair affinity maturation: by de-
creasing the efficiency of somatic hypermutation through di-
rect or indirect effects on AID expression; by promoting 
early differentiation and exit of GC B cells from the GCs, 
preventing them from undergoing successive rounds of mu-
tation; or by reducing the ability of GC B cells to interact and 
elicit survival signals from follicular DCs or Tfh cells.

IL-21 is not required for pathogen clearance  
or extrafollicular humoral immunity after Salmonella infection
Previous reports have revealed that IL-21 can support plasma 
cell differentiation from naive B cells in vitro (Ettinger et al., 
2007). In vivo, large numbers of BLIMP-1+ plasma cells are 
found in IL-21 transgenic mice (Ozaki et al., 2004), but this 
study could not differentiate whether the plasma cells were of 
follicular (GC) or extrafollicular origin. IL-21–producing T 
cells have been reported to colocalize with extrafollicular 
plasma cell foci in the autoimmune lpr mouse strain (Odegard 
et al., 2008). To investigate whether IL-21 is required for an 
extrafollicular response against an infectious pathogen, we 
chose Salmonella infection as a model. The initial humoral re-
sponse to Salmonella species infection requires CD4+ T cell 
help, and the early phase of the antibody response is derived 
purely from extrafollicular plasma cells; GCs do not form un-
til at least 5 wk after infection (Hess et al., 1996; Yrlid and 
Wick, 2000; Cunningham et al., 2007). Il21+/+ and Il21/ 
mice were infected with live attenuated Salmonella enterica 

Figure 5.  Lack of IL-21R signaling reduces the expression of Bcl-6 in GC B cells. (A) Flow cytometric contour plots indicating the gating strat-
egy for non-GC and GC B220+ cells (left) and BCL-6 expression on GL-7+ (middle) and Fas+ (right) B cells. (B and C) Histogram overlays (B) and bar 
graphs (C) showing the fluorescence intensity of BCL-6 staining in GC and non-GC B cells as gated in A derived from the CD45.1 Il21r+/+ or CD45.2 
Il21/ compartment of CD45.1 Il21r+/+/CD45.2 Il21r/ mixed bone marrow chimeras 6 d after SRBC immunization. The horizontal dashed line high-
lights the median levels of Bcl-6 found in non-GC B cells. Each set of two bars represents the data from the CD45.1 and CD45.2 compartments of a 
single mouse. MFI, mean fluorescence intensity.

http://www.jem.org/cgi/content/full/jem.20091738/DC1
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To generate TD GC responses, 8–12-wk-old mice were immunized intra-
peritoneally with 2 × 109 SRBCs (IMVS Veterinary Services).

Adoptive transfer of SWHEL splenocytes. 105 CD45.1 SWHEL B cells 
and 2 × 108 SRBCs (IMVS Veterinary Services) conjugated to low affinity 
HEL3X antigen were adoptively transferred into Il21+/+ or Il21/ 
(CD45.2) mice via intravenous injection, as described previously (Paus  
et al., 2006).

Bacteria and inoculation. S. enterica serovar Dublin strain SL5631 (Segall 
and Lindberg, 1991) was grown in Luria-Bertani medium overnight. Mice 
were inoculated with 5 × 105 CFUs from a log-phase culture administered 
intraperitoneally in PBS. Liver bacterial load was measured at day 12 after 
infection by homogenizing organs, plating serial dilutions in PBS onto 
Luria-Bertani agar, and incubating at 37°C overnight.

Antibodies. Antibodies and streptavidin conjugates for flow cytometry 
were from BD except where otherwise indicated: anti–mouse B220-PerCP, 
CD4-PerCP, inducible T cell co-stimulator–FITC (eBioscience), GL-7–
FITC, Fas-PE, CXCR5-biotin, PD-1–PE (eBioscience), PNA-biotin (Vec-
tor Laboratories) CD8-allophycocyanin (APC), streptavidin–PerCP-Cy5.5, 
streptavidin–PE-Cy7, CD38-PE, CD45.2–PerCP-Cy5.5, IgG1-PE, Ki-
67–A647, HyHEL9–Alexa Fluor 647, B220–APC-Cy7, CD45.1–Pacific 
blue, Ki-67–Alexa Fluor 647, and Bcl-6 (Santa Cruz Biotechnology, Inc.) 
conjugated to Alexa Fluor 647 using an antibody conjugation kit (Invitro-
gen). For immunohistochemistry, the primary antibodies and reagents used 
were sheep anti–mouse IgD (The Binding Site), biotinylated anti–mouse 
CD3 (BD), and PNA-biotin (Vector Laboratories); the secondary antibodies 
used were rat anti–goat IgG and streptavidin–alkaline phosphatase (Vector 
laboratories); and the tertiary antibody used was rabbit anti–rat horseradish 
peroxidase (HRP; Dako).

long-term maintenance, production of GC IgG1+ B cells, 
and affinity maturation. Our data underscore the accumulat-
ing evidence of shared signaling pathways in T and B cells to 
regulate follicular responses: in both GC and Tfh cells, IL-21 
regulates expression of the transcriptional regulator that di-
rects their lineage commitment, Bcl-6. The data presented in 
this paper have implications for immunotherapy: dampening 
IL-21 signaling may be useful to diminish production of high 
affinity autoantibodies, and IL-21 may be useful in vaccine 
development for its ability to promote long-lived and high 
affinity–matured antibody responses.

MATERIALS AND METHODS
Mice and immunizations. C57BL/6 (B6) and Il21/ mice were housed 
in specific pathogen-free conditions at the Australian National University 
(ANU) Bioscience Facility. Il21r/ mice were housed under specific pathogen-
free conditions at the Peter MacCallum Cancer Center. Il21/ mice 
were generated at Lexicon Genetics (now Lexicon Pharmaceuticals) and 
provided by ZymoGenetics, Inc. These mice were backcrossed 12 genera-
tions onto the C57BL/6 background. Primers used to amplify polymor-
phisms that distinguish between the 129 and C57BL/6 genetic backgrounds 
of the interval comprising the Il2 gene in Il21/ mice were provided by C. 
King (Garvan Institute of Medical Research, Sydney, Australia). Il21r/ 
mice were provided by W. Leonard (National Institutes of Health, Bethesda, 
MD) and were backcrossed 12 generations onto the C57BL/6 background. 
SWHEL mice carry a Vk10  L chain transgene and a knocked-in VH10 H 
chain in place of the JH segments of the endogenous IgH gene that encodes 
a high affinity antibody for HEL (Phan et al., 2003). All animal procedures 
were approved by the ANU Animal Ethics and Experimentation Committee. 

Figure 6.  Lack of IL-21 does not alter Salmonella pathogen clearance or production of anti-Salmonella humoral immunity. (A) ELISA analysis 
of the titers of Salmonella-specific IgM, IgG1, IgG2ab, IgG2b, and IgG3 in sera from Il21+/+(white bars) and Il21/ (black bars) mice 12 d after Salmonella 
infection. (B and C) Dot plots of spleen weights (B) and the number of bacteria per liver (C) in Il21+/+ and Il21/ mice 12 d after infection with Salmo-
nella. Data are representative of two independent experiments. Each symbol represents one mouse and tops of bars are drawn through the median val-
ues. nd, not detected.
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forward, 5-TCAACCTCAAGAAGTGGAGTTTC-3; ST6Gal I reverse, 
5-TGATCACACACTGGTTGCAC-3; -actin forward, 5-CAGCC
ATGTACGTTGCTATC-3; -actin reverse, 5-AAGGAAGGCTGGA
AGAGTG-3) were used to amplify the cDNA, in the presence of SYBR 
green, on a real-time PCR system (model 7900; Applied Biosystems). The 
gene-specific fold change, normalized to -actin, was calculated using the 
2∆∆ct method.

Statistical analysis. All data were analyzed using the nonparametric Mann-
Whitney U test, excluding bone marrow chimera experiments in Fig. 3 and 
Fig. 5, which were analyzed using a paired Student’s t test. All statistical 
analyses were performed with Prism software (version 5; GraphPad Soft-
ware, Inc.).

Online supplemental material. Fig. S1 shows photomicrographs of 
spleen sections from Il21/ or Il21+/+ mice after SRBC immunization 
stained with IgD and PNA, and compares expression levels of ST3Gal I 
and ST6Gal I from GC cells in immunized Il21/ or Il21+/+ mice and the 
total number of CD4+ cells in the same mice. Fig. S2 depicts the proportion 
of Tfh and GC cells that express Ki67 from Il21+/+ and Il21/ mice after 
immunization. Fig. S3 presents an alternative way of analyzing the bone 
marrow chimera data from Fig. 3. Fig. S4 shows the proportion of B cells 
that have a GC phenotype 12 d after infecting Il21+/+ and Il21/ mice with 
Salmonella. Online supplemental material is available at http://www.jem 
.org/cgi/content/full/jem.20091738/DC1.
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