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SUMMARY

Follicular helper T (Tfh) cells provide selection signals
to germinal center B cells, which is essential for long-
lived antibody responses. High CXCR5 and low CCR7
expression facilitates their homing to B cell follicles
and distinguishes them from T helper 1 (Th1), Th2,
and Th17 cells. Here, we showed that Bcl-6 directs
Tfh cell differentiation: Bcl-6-deficient T cells failed to
develop into Tfh cells and could not sustain germinal
center responses, whereas forced expression of
Bcl-6 in CD4+ T cells promoted expression of the hall-
mark Tfh cell molecules CXCR5, CXCR4, and PD-1.
Bcl-6 bound to the promoters of the Th1 and Th17
cell transcriptional regulators T-bet and RORgt and
repressed IFN-g and IL-17 production. Bcl-6 also
repressed expression of many microRNAs (miRNAs)
predicted to control the Tfh cell signature, including
miR-17-92, which repressed CXCR5 expression.
Thus, Bcl-6 positively directs Tfh cell differentiation,
through combined repression of miRNAs and tran-
scription factors.

INTRODUCTION

Naive T cells differentiate into distinct effector subsets, such as T

helper 1 (Th1), Th2, and Th17 cells, producing specialized cyto-

kines to provide protection from various types of pathogenic

challenge (Ho and Glimcher, 2002; Murphy and Reiner, 2002;

Reiner, 2007; Weaver et al., 2007) and expressing diverse che-

mokine receptors for homing to different tissue microenviron-

ments (Bromley et al., 2008; Sallusto et al., 2000). T cells also

provide help for B cell responses, and germinal centers (GCs)

in lymphoid tissues serve as special sites where T cells select

mutated high-affinity B cells and promote their differentiation

to memory B cells and long-lived plasma cells during T cell-

dependent antibody responses (Allen et al., 2007). Although

the phenomenon of T cell help for B cells was described over

30 years ago, the nature of T helper cells for GC B cells has been

controversial. The identification of the molecules responsible for

follicular T cell-B cell interactions and colocalization, such as the
I

costimulatory molecule CD40L (Casamayor-Palleja et al., 1995),

ICOS (Hutloff et al., 1999), and the chemokine receptor CXCR5

(Ansel et al., 1999), has enabled the identification of a specialized

CD4+ helpercell subset thatenters the folliclesduringT cell-depen-

dent immune responses: follicular B helper T (Tfh) cells (Breitfeld

et al., 2000; Kim et al., 2001; Schaerli et al., 2000). In both mice

and humans, these cells are phenotypically distinct from other

CD4+ helper cell subsets (Chtanova et al., 2004; Kim et al., 2004;

King et al., 2008; Vinuesa et al., 2005a; Vinuesa et al., 2005b). In

particular, they express high amounts of CXCR5, which facilitates

Tfh cell localization to follicles in which the ligand CXCL13 is ex-

pressed. The development of Tfh cells represents an important

yet poorly understood step in T cell differentiation.

T cells differentiate to CD4+ effector subsets through the

actions of different transcription factors, such as T-bet for Th1

cell (Szabo et al., 2000), GATA-3 for Th2 cell (Zheng and Flavell,

1997), RORgt for Th17 cell (Ivanov et al., 2006), and FoxP3 for

regulatory T (Treg) cell (Hori et al., 2003). The transcription factor

responsible for Tfh differentiation, and the associated gene

expression, remains undefined. Selective expression of the tran-

scription factor Bcl-6 by human follicular T cells (Cattoretti et al.,

1995; Chtanova et al., 2004) prompted us to hypothesize that

Bcl-6 may regulate Tfh lineage commitment.

The Bcl-6 proto-oncogene encodes a POZ-zinc finger tran-

scription factor that acts as a sequence-specific repressor of

transcription through recruitment of a silencing mediator for reti-

noid and thyroid hormone receptors (SMRT) and histone deace-

tylase-containing complex (Dhordain et al., 1997). To date, Bcl-6

function has been mostly associated with B cell fate. Within the B

lineage, Bcl-6 expression is largely confined to GC B cells (All-

man et al., 1996; Cattoretti et al., 1995), and Bcl6�/� mice lack

GCs and as a consequence display defective T cell-dependent

antibody responses and demonstrate no antibody affinity matu-

ration (Dent et al., 1997; Ye et al., 1997; Fukuda et al., 1997).

Bcl-6 acts cell-autonomously in B cells to inhibit the terminal

differentiation of GC B cells to plasma cells or memory cells,

through the repression of Prdm1, the gene encoding Blimp-1

(Reljic et al., 2000; Shaffer et al., 2000). Bcl-6 also operates

during T cell differentiation. For instance, Bcl-6 represses the

Th2 cell transcription factor GATA-3 to inhibit Th2 cell differenti-

ation (Kusam et al., 2003), controls long-term CD4+ T cell

memory (Ichii et al., 2007), and also regulates central memory

CD8+ T cell development (Ichii et al., 2002).
mmunity 31, 457–468, September 18, 2009 ª2009 Elsevier Inc. 457

mailto:charles.mackay@med.monash.edu.au
mailto:carola.vinuesa@anu.edu.au


Immunity

Bcl-6 Directs Tfh Cell Differentiation
These findings suggest that the high expression of Bcl-6 found

in Tfh cells might be important for Tfh cell lineage specification.

However, one conundrum is the well-established repressor

activity of Bcl-6. The transcriptional regulators of all the other

T cell subsets positively promote transcription of their target

genes, and in doing so specify cell fate. Here, we established

the central role of Bcl-6 in Tfh cell lineage commitment and

showed that Bcl-6 acted autonomously to promote Tfh cell

differentiation and repress Th1 and Th17 cytokine production.

Bcl-6 achieved this through direct repression of the transcription

factors RORgt and T-bet together with repression of numerous

microRNAs (miRNAs) including miR-17-92 that control the Tfh

gene expression signature.

RESULTS

Bcl-6 Is Required for Tfh Cell Formation In Vivo
Bcl-6-deficient mice are unable to form GCs (Dent et al., 1997;

Ye et al., 1997). In addition to its expression in GC B cells,

Bcl-6 is also expressed in Tfh cells, which led us to ask whether

Bcl-6 acts autonomously in T cells to induce Tfh cells. We gener-

ated mixed chimeras with fetal liver cells from Bcl6+/+ CD45.1

and Bcl6�/� CD45.2 E16 embryos. A control group was gener-

ated with a mix of Bcl6+/+ CD45.1 and Bcl6+/+ CD45.2 fetal liver

cells. Eight weeks after reconstitution, the recipient mice were

immunized with sheep red blood cells (SRBCs). Control mice

mounted robust GC responses after immunization (Figure 1A

and Figure S1 available online) with comparable proportions of

CD45.1- and CD45.2-derived GC B cells and Tfh cells. Analysis

of GC formation in Bcl6+/+ CD45.1 and Bcl6�/� CD45.2 mixed

chimeras confirmed that Bcl6�/� B cells were unable to differen-

tiate into GC cells (Figure 1A). Strikingly, Bcl6�/� T cells were

also completely unable to differentiate into Tfh cells (Figure 1B),

whereas Bcl6+/+ T cells formed normal Tfh cell numbers in the

same chimeric mice. To confirm the absence of Bcl6�/� T cells

within GCs, we stained spleen sections from SRBC-immunized

chimeric mice. Bcl6+/+ CD45.2 CD4+ T cells could be identified

within GCs (yellow cells in Figure 1C, right panel), but there

was a complete absence of Bcl6�/� CD45.2 CD4+ T cells at

these sites (Figure 1C, left panel). To assess a possible gene

dose effect of Bcl-6 in Tfh cell differentiation, we performed a

mixed bone marrow chimera experiment using a 1:1 mix of either

Bcl6+/+ CD45.1 and Bcl6+/� CD45.2 or control Bcl6+/+ CD45.1

and Bcl6+/+ CD45.2 bone marrow. Halving the gene dose of

Bcl6 resulted in 20%–30% reduction in the generation of Tfh

cells (p < 0.05, Figure 1D). Together, these data indicate that

Bcl-6 is essential for the generation of Tfh cells and that it func-

tions in a gene dose-dependent manner.

Bcl-6-Deficient T Cells Fail to Support GC Reactions
We next examined whether deficiency of Bcl-6, specifically in

T cells, results in a deficiency in GC formation. For these exper-

iments, CD28-deficient fetal liver cells were chosen as a source

for T cells unable to differentiate into Tfh cells (Linterman et al.,

2009) and a source of B cells competent to differentiate into

GC B cells. Sublethally irradiated Rag1�/� mice were reconsti-

tuted with a 1:1 mix of Bcl6�/� Cd28+/+ CD45.2+ and

Bcl6+/+ Cd28�/� CD45.1 fetal liver cells (Figure 2, group A). In

these chimeric mice, Tfh cells are not expected to form from
458 Immunity 31, 457–468, September 18, 2009 ª2009 Elsevier Inc.
Cd28�/� T cells or Bcl6�/� T cells; thus, if Bcl-6 in T cells is

essential to sustain GC reactions, GCs derived from Cd28�/�

B cells will not be supported. As a control, Rag1�/� mice were

reconstituted with a 1:1 mix of Bcl6+/+ Cd28+/+ CD45.2 and

Bcl6+/+ Cd28�/� CD45.1 fetal liver cells (group B). In this group

of mice, Tfh cells derived from the Bcl6+/+ fetal liver cells are ex-

pected to support GCs derived from both Cd28�/� and Cd28+/+

B cells. A parallel set of control chimeras consisted of a mix of

Bcl6�/� Cd28+/+ CD45.2 and Bcl6+/+.Cd28+/+ CD45.1 (group C)

and a mix of Bcl6+/+ Cd28+/+ CD45.2 and Bcl6+/+.Cd28+/+ CD45.1

A

B

C

D

Figure 1. Bcl-6 Is Required for Tfh Cell Formation In Vivo

(A and B) Percentages of (A) GC cells and (B) Tfh cells 1 week after SRBC

immunization of Bcl6+/+ CD45.1: Bcl6+/+ CD45.2 (group A) or Bcl6+/+ CD45.1:

Bcl6�/� CD45.2 fetal liver chimeric mice (group B).

(C) Photomicrographs of spleen sections from the same mice as in (A) and (B).

The GC areas within IgD+ (blue) mantle zones have been delineated.

Bcl6+/+ CD45.2 T cells within GCs (right) appear yellow. Bcl6�/� Cd45.2

T cells (yellow) are absent from GCs (left), which only contain Bcl6+/+ CD45.1

CD4+ T cells (green). T, T cell zone; M, mantle zone.

(D) Ratio of Tfh cells 1 week after SRBC immunization of Bcl6+/+ CD45.1:

Bcl6+/+ CD45.2 (left) or Bcl6+/+ CD45.1: Bcl6+/� CD45.2 (right) mixed bone

marrow chimera mice. The ratio was calculated by dividing the percentage

of Tfh cells among CD45.2 T cells (Bcl6+/+ or Bcl6+/�) by the percentage of

Tfh cells among CD45.1 T cells (Bcl6+/+) in each individual mouse.

Each symbol represents one mouse. The lines are drawn through the median

values in each group. p value was calculated by Student’s t test.
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(group D). The latter two groups of chimeric mice are constructed

in the same way as those in Figure 1 and allowed us to rule out

potential effects of halving the number of Tfh precursors, given

that 50% of T cells in groups A and B were derived from

Cd28�/� fetal liver. Eight weeks after reconstitution, mice were

immunized with SRBCs and the percentage of Tfh cells and

GC B cells derived from each type of donor fetal liver were

determined by flow cytometry 8 days after immunization. In

chimeras reconstituted with Bcl6+/+ Cd28�/� CD45.1 and

Bcl6�/� Cd28+/+ CD45.2 cells (group A), no CXCR5hi PD-1hi Tfh

cells could be identified in either the CD45.1 or CD45.2 compart-

ment, consistent with the requirement for CD28 and Bcl-6 in

T cells to induce Tfh cell formation. Strikingly, GC B cells derived

from Bcl6+/+ Cd28�/� CD45.1 fetal liver were virtually absent in

these mice (Figures 2B and 2C, group A). By contrast, GC B cells

derived from Bcl6+/+ Cd28�/� CD45.1 fetal liver formed normally

in mice reconstituted with a mix of Bcl6+/+ Cd28�/� CD45.1 and

Bcl6+/+ Cd28+/+ CD45.2 fetal liver cells (Figures 2B and 2C,

A

B

C Figure 2. Bcl-6-Deficient T Cells Cannot

Support GC Reaction

(A and B) Percentages of (A) Tfh cells and (B) GC

cells among CD45.1 or (A) CD45.2 CD4+ cells or

(B) B220+ cells 8 days after SRBC immunization

of fetal liver chimeric mice reconstituted with the

following 1:1 mixes: Bcl6�/� Cd28+/+ CD45.2:

Bcl6+/+Cd28�/�CD45.1 (group A), Bcl6+/+ Cd28+/+

CD45.2: Bcl6+/+ Cd28�/� CD45.1 (group B),

Bcl6�/� Cd28+/+ CD45.2: Bcl6+/+ Cd28+/+ CD45.1

(group C), or Bcl6+/+ Cd28+/+ CD45.2:

Bcl6+/+ Cd28+/+ CD45.1 (group D).

(C) Photomicrographs of spleen sections from the

same mice as in (A) and (B). GC are PNA binding

areas (red) within IgD+ (green) mantle zones. Each

symbol represents one mouse. The lines are drawn

through the median values in each group. The

p value was calculated by Student’s t test.

group B), indicating that Bcl-6 expres-

sion in T cells is essential to support

GCs. Immunofluorescent staining of

frozen spleen sections from immunized

chimeric mice confirmed abundant PNA+

GCs in recipients of Bcl6+/+ Cd28�/�

CD45.1 and Bcl6+/+ Cd28+/+ CD45.2 fetal

liver cells (group B), but a virtual absence

of GC B cells in recipients of Bcl6+/+

Cd28�/� CD45.1 and Bcl6�/� Cd28+/+

CD45.2 fetal liver cells (group A, Fig-

ure 2C). Thus, Bcl-6-deficient T cells are

functionally incapable of providing help

to GC B cells.

Bcl-6 Is Not Required for Th1, Th17,
and Treg Cell Differentiation and
Cytokine Production
We next assessed whether the impaired

CD4+ T cell differentiation that occurred

in the absence of Bcl-6 was specific for

the Tfh cell subset or whether Bcl-6 defi-

ciency affected other CD4+ T cell effector subsets. Effector and

memory (CD25�CD44hiCD62Llo) CD4+ T cells were quantified in

the SRBC-immunized Bcl6+/+.CD45.1 and Bcl6�/�.CD45.2 fetal

liver chimeric mice described in Figure 1, and Bcl6�/� CD4+

T cells were found to differentiate normally into CD44hi effector

populations (Figure S2A). The ratio of effector cells between

CD45.2 and CD45.1 populations (within an individual mouse)

was 30% lower in mice reconstituted with Bcl6�/�.Cd45.2 fetal

liver (Figures S2B and S2C), partially because of a deficiency

in Tfh cells and the reported deficiency in long-term memory

cells (Ichii et al., 2007). Bcl-6 has been shown to repress rather

than support Th2 cell differentiation (Dent et al., 1997; Ye et al.,

1997). To investigate the effects of Bcl-6 deficiency on Th1 and

Th17 cells, we measured their signature cytokines, IFN-g and

IL-17, in CD4+ T cells from the chimeric mice 1 week after

immunization with SRBCs. We normalized the percentages

of IFN-g- and IL-17-producing cells among CD45.2+ cells to

those of CD45.1+ cells to investigate whether Bcl-6 acts
Immunity 31, 457–468, September 18, 2009 ª2009 Elsevier Inc. 459
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cell-autonomously to influence Th1 and Th17 cell differentia-

tion. A near 3-fold increase in the ratio of IFN-g-producing cells

between CD45.2 and CD45.1 cells could be observed in mice

reconstituted with Bcl6�/� CD45.2 fetal liver (Figure S3A, group

B) compared with control chimeric mice (group A). A similar

increase was observed in IL-17-producing cells (Figure S3B).

IFN-g and IL-17 production was also investigated among

sorted effector CD25� CD44hi CD62lo effector cells from the

same chimeric mice restimulated ex vivo (sorting strategy

shown in Figure S4A). A higher proportion of Bcl6�/� T cells

produced IFN-g compared with Bcl6+/+ cells in the same

mice (Figures S3C and S3D). The increase in the produc-

tion of IL-17-producing cells was smaller (Figure S3D). As

a complementary strategy, naive CD25�CD44loCD62Lhi CD4+

T cells were sorted and polarized ex vivo under Th1 or Th17

cell conditions for 3 days. Again, the proportion of Bcl6�/�

CD4+ T cells producing IFN-g was higher than that of Bcl6+/+

B

A

D E

C

Figure 3. Bcl-6 Expression Suppresses Th1

and Th17 Cell Cytokine Production

(A) The upper panel shows cytokine production by

tonsil human CD4+ T cells (gates drawn around

CXCR5hi, CXCR5int and CXCR5lo populations).

The lower panel presents histograms showing

each cytokine expression in the three populations.

Values are the percentages of cytokine-producing

cells. Data are representative of more than three

individual samples.

(B) Cytokine production by mouse splenic CD4+

T cells 1 week after SRBC immunization. Data

are representative of more than three experiments.

(C) Bcl6 mRNA expression assessed by quantita-

tive RT-PCR in mouse CD4+ cell subsets (T naive,

non-Tfh effectors, and Tfh cells), and sorted GFPhi

cells from CD4+ T cells were transduced with either

empty vector or Bcl-6 under Th0 or Th17 cell differ-

entiation conditions. Data shown represent mean

values ± SD, with n = 3.

(D and E) IFN-g (D) and IL-17 (E) production by

naive CD4+ T cells transduced with either a Bcl-

6-expressing retrovirus or a vector control and

differentiated under Th1 (D) or Th17 (E) cell differ-

entiation conditions for the times indicated. Trans-

duced cells were divided into three groups—no

(�), intermediate (int), and high (hi)—according to

expression of GFP (Bcl-6). Day 5 is representative

flow cytometry plots for each of the three groups

are shown. Data shown represent mean values ±

SD, with n = 3.

cells (Figure S3E) with a very modest

increase in IL-17 (Figure S3F). In addi-

tion, there were no obvious differences

between the percentages of Foxp3+ Treg

cells derived from Bcl6�/� or Bcl6+/+

cells in chimeric mice, suggesting that

Bcl-6 deficiency does not affect the

generation of Treg cells (Figure S5).

These results, together with work pub-

lished by others on Bcl-6 in the context

of Th2 cell responses, suggest that Bcl-

6 specifically promotes Tfh cell differen-

tiation and is not required for Th1, Th2, Th17, and Treg cell

formation.

Forced Bcl-6 Expression Represses IFN-g and IL-17
Production
In vivo and ex vivo data suggest that Bcl-6 expression induces

a parallel specific suppression of Th1 and Th17 effectors.

Because Tfh cells are the highest Bcl-6 expressers, we exam-

ined Th1, Th2, and Th17 cell cytokine production by Tfh cells.

We chose to do this in human tonsils because of their enrichment

in Th1, Th2, Th17, and Tfh cells. Tfh cells, expressing the highest

amounts of CXCR5, produced minimal amounts of IFN-g or IL-17

and low amounts of IL-4 compared to cells expressing interme-

diate or low amounts of CXCR5. By contrast, Tfh cells produced

high amounts of IL-21 and IL-2 comparable to CXCR5int cells

(Figure 3A). These findings coincide with the cytokine production

profiles in spleens from SRBCs immunized mice: compared to
460 Immunity 31, 457–468, September 18, 2009 ª2009 Elsevier Inc.
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CXCR5lo or int cells, CXCR5hi Tfh cells produced the lowest

amounts of IFN-g and IL-17 but were still able to produce

substantial amounts of IL-2 (Figure 3B).

We examined the effect of Bcl-6 overexpression on cells

polarized to differentiate under Th1 or Th17 cell conditions.

Sorted naive CD4+ T cells were transduced by a Bcl-6-express-

ing retrovirus or a control vector. To assess Bcl-6 overexpres-

sion, we quantified Bcl-6 mRNA in transduced cells cultured in

Th0 or Th17 cell conditions and found it to be 44.4 and 12.9-

fold higher in cells overexpressing high levels of Bcl-6 compared

to cells transduced with the empty vector, respectively (Fig-

ure 3C). This expression was comparable to that observed in

Tfh cells (Figure 3C), which expressed 10- to 20-fold higher

amounts of Bcl6 mRNA than naive or non-Tfh effector

(CD44hi CXCR5lo or int PD-1lo or int, Figure S4C) cells.

Transduced cells were cultured under either Th1 or Th17 cell-

inducing conditions. IFN-g- and IL-17-secreting cells were

measured after 2, 3, 4, and 5 days. Transduced cells were

divided into Bcl-6hi, Bcl-6int, and Bcl-6� groups according to

their expression of GFP from the bicistronic vector. Overexpres-

sion of Bcl-6 suppressed Th1 and Th17 cell differentiation in

a dose-dependent manner: on day 5, high amounts of Bcl-6

expression, compared to empty vector, led to a 25% decrease

in IFN-g-producing cells (Figure 3D) and a 50% decrease in

IL-17-producing cells (Figure 3E). Similar suppression of Th1

and Th17 cytokines could be seen even when the cells had

been polarized for 2 days toward those lineages ex vivo, before

being transduced with Bcl-6 (Figure S6). We also observed that

despite strong Bcl-6-mediated suppression of IL-17, IL-2, a cyto-

kine produced by all helper T cells, was produced at much higher

amounts by the same Bcl-6hi cells (Figure S7), indicating that

Bcl-6 specifically repress IFN-g and IL-17 production rather

than causing a general suppression of cytokine production. In

summary, Bcl-6 expression can antagonize IFN-g and IL-17

production even in committed Th1 and Th17 cells, respectively,

and raises the possibility that in vivo, Bcl-6 may direct Tfh cell

differentiation from other helper T cell populations.

Bcl-6 Targets the Transcription Factors for Th1
and Th17 Cell Differentiation
In B cells, Bcl-6 determines GC B cell lineage commitment by re-

pressing its target genes, including the transcriptional regulator

of plasma cells, Blimp-1 (Reljic et al., 2000; Shaffer et al.,

2000). In CD4+ cells, Bcl-6 has been shown to repress GATA-3

expression (Kusam et al., 2003). Given our findings that Bcl-6

overexpression represses Th1 and Th17 cytokine production,

we hypothesized that Bcl-6 might also repress the transcription

factors directing Th1 and Th17 cell cytokine production. Bioin-

formatic analysis revealed the presence of high-affinity Bcl-6

binding sites within both mouse and human promoter regions

of critical transcription factors required for Th1 (T-bet) and

Th17 (RORgt) cell differentiation (Figure 4A and Table S1). To

validate the predicted binding of Bcl-6 to these promoter

regions, we performed Bcl-6 chromatin immunoprecipitation

(ChIP) assays on human Tfh cells and B cells sorted from tonsils

(Figure S5B) by using a high-quality ChIP grade Bcl-6 antibody

(Parekh et al., 2007). Importantly, no promoter enrichment by

Bcl-6 binding was detected in the B cell population (Figure 4B).

Marked Bcl-6 enrichment with ChIP ratios of 80 and 180 on the
Im
T-bet and RORgt promoters, respectively, was seen in Tfh cells,

but no specific enrichment was visible in tonsillar B cells, which

are enriched for Bcl-6+ cells. ChIP enrichment ratios greater than

2 are considered to be substantial binding above background

(Pokholok et al., 2006); hence, the enrichment values observed

across the Tbx21 (encoding T-bet) and Rorc (encoding RORgt)

promoters are highly relevant.

The results above suggest that Tbx21 and Rorc mRNA might

be reduced in Tfh cells (CXCR5hi), which express the highest

amounts of Bcl-6, compared with non-Tfh effectors (CXCR5int).

This was confirmed by quantitative RT-PCR on human tonsillar

T cell subsets (Figure 4C).

Next, we quantified the effects of Bcl-6 overexpression on

T-bet and GATA-3 protein expression. Naive mouse CD4+

T cells, differentiated ex vivo under Th1 cell polarizing conditions

and transduced by a Bcl-6-expressing retrovirus, displayed

�50% reduction in T-bet expression and �20% of the trans-

duced cells became T-bet negative (Figure 4D). Similarly, with

Th2 cell polarization, GATA-3 expression was reduced by

�60% in the Bcl-6 overexpressing cells and �30% of the cells

became GATA-3 negative (Figure S9).

Finally, we investigated T-bet and GATA-3 protein expression

on naive, Tfh, and non-Tfh effector cells that were Bcl-6 sufficient

or Bcl-6 deficient, by using CD45 congenic fetal liver chimeric

mice as shown in Figure 1. T-bet and GATA-3 were upregulated

in non-Tfh effector (CD44hiCXCR5int or loPD-1int or lo) CD4+ cells in

both Bcl-6-sufficient and Bcl-6-deficient mice, compared with

T naive (CD44lo) cells (Figure 4E and Figure S9B). T-bet expres-

sion in Tfh cells was nearly as low as that in naive T cells, whereas

GATA-3 was still expressed in Tfh cells. Interestingly, in the

absence of Bcl-6, T-bet expression was higher in non-Tfh

effector cells (Figure 4E), consistent with the increased IFN-g

expression shown in Figure S3.

Increased Expression of Bcl-6 Promotes the Tfh Cell
Gene Expression Signature
Having shown that Bcl-6 is essential for Tfh cell formation and

turning down Th1, Th2, and Th17 cell cytokine profiles, we

next examined whether Bcl-6 expression could also actively

induce the characteristic gene expression signature of Tfh cells

(Chtanova et al., 2004; Kim et al., 2004; Vinuesa et al., 2005a).

Upregulation of CXCR5 and downregulation of CCR7 on Tfh cells

determine their follicular positioning and thus are important for

their function (Hardtke et al., 2005; Haynes et al., 2007).

CXCR4, the receptor for follicular stromal cell-derived chemo-

kine CXCL12, is also upregulated on Tfh cells and may assist

in their localization, proximal to the follicular dendritic cell

network (Estes et al., 2004). The T cell costimulatory receptors

ICOS and PD-1 are expressed at the highest levels on Tfh cells

(Haynes et al., 2007; Hutloff et al., 1999).

We first confirmed selective high CXCR4, CCR7, PD-1, and

ICOS expression in human and mouse Tfh cells compared with

other effector CD4+ T populations. In resected human tonsils,

most CD4+ T cells are antigen experienced and therefore do

not express CD45RA (Figure 5A). Among these activated cells,

Tfh cells identified by the highest expression of CXCR5 also dis-

played the highest expression of PD-1, ICOS, and CXCR4 and

the lowest expression of CCR7 (Figure 5A). In mice, robust Tfh

cell responses were generated upon transfer of OVA-specific
munity 31, 457–468, September 18, 2009 ª2009 Elsevier Inc. 461
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A

D

C

E

B Figure 4. Bcl-6 Suppresses Transcription

Factors for Th1, Th2, and Th17 Cell Differen-

tiation

(A) Bcl-6 binding sites as predicted by MatInspec-

tor (Genomatix Software) within �600 bp to

�100 bp, relative to the transcription start sites

(TSS), of promoter regions in humans and mice.

Detailed information listed in Table S1.

(B) Binding of Bcl-6 to putative high-affinity binding

sites in the promoters regions. Bcl-6 ChIP assays

were performed on human tonsil Tfh cells and

B cells. The results are presented as either

‘‘ChIP enrichment ratio’’ or ‘‘percentage of total

(genomic) input’’ and represent the mean of dupli-

cate assays from two independent experiments,

with error bars being SD.

(C) The mRNA expression of indicated genes as-

sessed by quantitative real-time RT-PCR in sorted

human tonsil CD4+ T cell subsets as shown in

Figure 3A (CXCR5lo, CXCR5int, and CXCR5hi).

Data shown represent mean values ± SD, with

n = 3.

(D) Intracellular T-bet expression in sorted mouse

naive CD4+ T cells transduced with either a Bcl-

6-expressing retrovirus or a vector control and

cultured in Th1 cell differentiation conditions for

2 days (left panels). Bar graphs show geometric

mean fluorescent intensity (Geom MFI) and posi-

tive percentages in transduced (GFP+) and non-

transduced (GFP�) cells (right panels). Data shown

represent mean values ± SD, with n = 3. p values

were calculated by Student’s t test.

(E) Representative flow cytometric profiles sho-

wing CD4 versus CD44 expression and CXCR5

versus PD-1 from Bcl6+/+ CD45.1: Bcl6�/� CD45.2

mixed chimeric mice (described in Figure 1), used

to gate T naive (Tn), Tfh, and non-Tfh effectors (left

panel). The histograms (middle panel) show T-bet

expression in Bcl6+/+ (top panel) and Bcl6�/�

(bottom panel) CD4+ T cells from the chimeric

mice; numbers indicate mean fluorescence inten-

sity in each population. The graph (right panel)

shows T-bet MFI in Bcl6+/+ TN, Tfh, and non-Tfh

effectors from four individual mice.
Thy1.1 OT-II cells into Thy1.2 recipient mice and immunization

with OVA in alum (Figure 5B). One week after immunization,

more than 75% of the transferred Thy1.1+ cells had become

effectors, expressing high CD44 (Figure 5B). As observed in

human Tfh cells, mouse Tfh cells—expressing the highest

amounts of CXCR5—also expressed the highest amounts of

PD-1 and CXCR4 and the lowest CCR7 (Figure 5B). ICOS

expression was high in all transferred OT-II cells, regardless of

CXCR5 expression (Figure 5B); this concurs with the report

that ICOS can be expressed at high amounts by other effector

T cell subsets (Lohning et al., 2003).

To test whether high Bcl-6 expression could induce the PD-1hi

CXCR5hi CXCR4hi and CCR7lo Tfh cell signature, we transduced

sorted mouse naive CD4+ T cells with a retrovirus expressing

Bcl-6 or empty vector and cultured them with anti-CD3 and

anti-CD28 under Th0 (no cytokines or antibodies), Thn (anti-

IFN-g and anti-IL-4), Th1, Th2, and Th17 cell conditions for
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2 days. Given our previous observation that Bcl-6 functions in

a gene dose-dependent manner for both Tfh cell development

(Figure 1D) and suppression of other helper T cell lineages

(Figures 3D and 3E; Figures S6 and S7), transduced cells were

again divided according to GFP-Bcl-6 expression into high and

intermediate expressers. Even though PD-1 is normally upregu-

lated after T cell stimulation, Bcl-6 overexpression further

increased the expression of PD-1 in all culture conditions (Fig-

ure 5C and Figure S10). Similarly, Bcl-6 enhanced the expression

of CXCR5 and CXCR4 by 2- to 3-fold across all conditions.

Downregulation of CCR7 by Bcl-6 was also seen under Th17

cell differentiation conditions (Figure 5C and Figure S10). Thus,

Bcl-6 can induce upregulation of PD-1 and the chemokine

receptors required for follicular homing, in both unpolarized

T cells, and in T cells differentiating under Th1, Th2, and Th17

cell conditions. These findings, together with the repression of

Th1 and Th17 cell cytokines in polarized Th1 and Th17 cells
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shown above, suggest Bcl-6 expression may enable all types of

T helper cells—including Th1 and Th17 effectors—to enter the

follicles, change their cytokine production pattern, and become

bona fide Tfh cells.

Bcl-6 Widely Represses miRNA Expression
To understand the mechanism by which Bcl-6, a transcription

repressor, determines the Tfh cell signature, we performed mi-

croarray analyses to compare the gene expression profiles

between naive CD4+ T cells retrovirally transduced with Bcl-6

or an empty vector. In addition to increased CXCR5, CXCR4,

and PD-1 mRNA and decreased CCR7 mRNA, intriguingly,

a large number of primary miRNA transcripts were downregu-

lated in cells overexpressing Bcl-6 (data not shown). miRNAs

are �23 nucleotide endogenous single-stranded noncoding

RNAs that pair to mRNA mainly through the 30 untranslated

region (30 UTR) to direct the posttranscriptional repression of

these mRNAs by translational inhibition and/or mRNA decay

(Baek et al., 2008). These results suggested that Bcl-6 might

promote the Tfh gene expression signature by repressing the

miRNAs that normally suppress these genes.

We used microarrays to profile mature miRNA expression in

mouse CD4+ T cells transduced with retroviruses expressing

Bcl-6 or an empty vector. Bcl-6 overexpression caused more

than 50% downregulation of 34 miRNas out of the 65 that

were abundantly expressed (i.e. with raw values >100, Table

A

B

C

Figure 5. Bcl-6 Promotes the Tfh Cell Gene

Expression Signature

(A) CXCR5 versus CD45RA expression by purified

human tonsillar CD4+ T cells (left). Expression

(Geom MFI) of PD-1, ICOS, CCR7, and CXCR4

analyzed in CXCR5hi, CXCR5int, and CXCR5lo pop-

ulations (right). Data are representative from more

than three individual samples.

(B) Thy1.1 versus CD44 expression on splenic

CD4+ T cells from C57BL/6 mouse transferred

with Thy1.1+ OT-II cells and immunized with

OVA-alum (Hutloff et al., 1999). Expression

(Geom MFI) of PD-1, ICOS, CCR7, and CXCR4

analyzed in CXCR5hi, CXCR5int, and CXCR5lo pop-

ulations is shown. Data are representative of more

than three experiments.

(C) PD-1, CXCR5, CXCR4, and CCR7 expression

on sorted mouse naive CD4+ T cells transduced

by either a Bcl-6-expressing retrovirus or a vector

control and cultured under Th0 or Th17 cell differ-

entiation conditions for 2 days.

Numbers beside the histograms in (A) and (B)

represent Geom MFI values of PD-1 or percent-

ages of chemokine receptors (CXCR5, CXCR4,

and CCR7) on cells expressing no, intermediate,

or high GFP (Bcl-6), respectively. Data are repre-

sentative of two experiments.

S2). There was not a single miRNA upre-

gulated by more than 2-fold (Table S3).

Of the 34, 31 were transcribed from clus-

ters encoding other miRNA(s) that were

also downregulated (Figure 6 and Table

S2). In control, nontransduced cells

(sorted GFP- cells from the same cultures), there was only one

miRNA with raw values > 100 regulated by more than 2-fold

(Figure S11). This global repression of miRNAs by Bcl-6 provides

a putative mechanism by which Bcl-6 may induce the Tfh gene

expression signature. This idea was further supported by a bioin-

formatic prediction of the multiple target sites within the 30 UTRs

of CXCR5, CXCR4, and PD-1 for those miRNAs markedly down-

regulated by Bcl-6 (Figure S12). Although 25% of these miRNAs

are encoded from transcripts contained within protein-encoding

transcripts, the majority are located in intergenic regions or within

primary transcripts that are nonprotein coding (Table S4), arguing

against the possibility that the observed downregulation is not

specific for miRNAs but a consequence of Bcl-6 repressing other

target genes. We have previously reported that two miRNAs,

miR-101 and miR-103, repressed the Tfh cell feature molecule

ICOS (Yu et al., 2007). Both miR-101 and miR-103 were down-

regulated in cells overexpressing Bcl-6 (Table S3, miR-101 was

expressed at low levels and therefore not included).

The expression of miR-101 and miR-103 was confirmed to be

downregulated by more than 50% in cells transduced with Bcl-

6-expressing retroviral vector and also downregulated in Tfh

cells by quantitative RT-PCR (Figure S13). Together, these

data suggest Bcl-6 may promote Tfh cell differentiation through

the repression of multiple miRNAs that normally prevent effector

T cells from expressing maximal amounts of CXCR5, CXCR4,

PD-1, and other Tfh cell signature molecules.
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The miRNA Cluster 17-92 Represses CXCR5 Expression
In addition to the upregulation of CXCR5 by Bcl-6 overexpres-

sion (Figure 5C and Figure S10), a fundamental role for Bcl-6 in

inducing upregulation of CXCR5 was seen in vivo. Indeed,

CXCR5int and CXCR5hi CD4+ T cells were virtually absent in

the Bcl6�/� CD4+ T cell population from mixed Bcl6�/� Bcl6+/+

fetal liver chimeras (Figures 7A and 7B). Bcl-6 deficiency also

reduced the levels of CXCR5 on B cells (Figures 7A and 7B,

bottom panels), suggesting an important role for Bcl-6 in regu-

lating CXCR5 on all lymphocytes.

Because of the important role of CXCR5 in the differentiation

and function of Tfh cells, we examined the role of miRNAs in

the regulation of CXCR5 expression. Many Bcl-6-downregulated

miRNAs are predicted to target CXCR5 (Figure 7C). To confirm

these findings, we performed quantitative real-time RT-PCR for

several miRNAs in mouse CD4+ cells overexpressing Bcl-6 or

empty vector. A 71%, 70%, and 78% downregulation for

miR-17, miR-18, and miR-20a, respectively, was observed in

cells overexpressing Bcl-6 compared with cells expressing

empty vector (Figure 7D). miR-17 and miR-20a were also down-

regulated in Tfh cells compared to naive T cells (Figure 7E).

Given the 3-fold increase in CXCR5+ cells observed in Bcl-6-

overexpressing CD4+ cells (Figure 5C), we tested whether the

downregulation of miRNAs, regulated by Bcl-6 and predicted

to target CXCR5, could contribute to this change in CXCR5

expression. Three miRNAs in the miR17-92 cluster are predicted

to target CXCR5: miR-17, miR-18a, and miR-20a (Figure 7C). All

of these individual miRNAs were found to be downregulated

upon Bcl-6 overexpression (Figure 6). We used a retroviral vector

expressing the primary miRNA encoding the miR17-92 cluster to

transduce mouse B cells. B cells were chosen because (1) they

have high basal CXCR5 expression, which allows detection of

downregulation (the low and transient levels of detectable

CXCR5 expression on mouse T cells in culture and the proapop-

totic nature of Tfh cells make these cells unsuitable for assays to

asses downregulation and for retroviral transduction) and (2) we

have shown that Bcl-6 also regulates CXCR5 expression in B

cells (Figures 7A and 7B). Overexpression of miR-17-92 caused

more than a 50% decrease in endogenous CXCR5 protein

Figure 6. Bcl-6 Suppresses Expression of

Multiple miRNAs

Comparison of miRNA probe-expression values in

Bcl-6 transduced cells versus vector-transduced

cells analyzed with Agilent miRNA microarrays.

The probe values are the average of duplicate

assays.

expression compared with cells trans-

duced with empty vector or untransduced

(GFP� cells) in the same cultures

(Figure 7F). As a control, no change in

CXCR4 expression was observed in cells

transduced with this miRNA cluster

(Figure S14), consistent with the pre-

dicted absence of target sites for these

miRNAs within the Cxr4 30 UTR mRNA.

Thus, the miR-17-92 cluster, which is

repressed by Bcl-6, inhibits CXCR5

expression, suggesting that ‘‘repression of the repressors’’

may be a mechanism by which Bcl-6 positively induces Tfh

cell differentiation.

DISCUSSION

The identification and characterization of Tfh cells as a T effector

subset distinct from Th1, Th2, and Th17 cells represents an

important new advance for understanding T cell-dependent anti-

body responses (King et al., 2008; Vinuesa et al., 2005b).

Previous studies by us and others showed that Bcl-6 was selec-

tively expressed by Tfh cells. Here, we established that Bcl-6 is

essential for Tfh cell formation. Indeed, Bcl-6 specifies Tfh cell

lineage commitment and achieves this by turning on a wide-

spread gene repressor program by (1) directly binding to key

transcriptional regulators of other T helper cell lineages, namely

T-bet (Th1) and RORgt (Th17), and (2) repressing transcription of

a large number of miRNAs, an effect that probably contributes to

the upregulation of proteins associated with the Tfh cell pheno-

type. This combined strategy represents a powerful mechanism

by which a single transcriptional repressor can ‘‘positively’’

specify a cellular phenotype and serve as a regulator for the

development of an important lineage of effector T cells.

It is unclear whether Bcl-6 determines CD4+ Tfh cell lineage

commitment at the time of T cell priming, or reprograms pre-ex-

isting Th cell subsets at later stages during an immune response

to become Tfh cells. Our finding that Bcl-6 overexpression can

induce a Tfh cell phenotype not only under nonpolarizing condi-

tions but also under Th1, Th2, and Th17 cell polarizing conditions

suggests that Tfh cell lineage commitment may occur from

developing T helper CD4+ cells. We also showed that Bcl-6 sup-

pressed IFN-g and IL-17 secretion in cells prepolarized under

Th1 and Th17 cell conditions. Moreover, Bcl-6 binds to the

promoter regions of the Tbx21 and Rorc genes in Tfh cells, sug-

gesting that Bcl-6 is able to reprogram Th1 and Th17 cells.

Indeed, few IFN-g-producing cells (compared with abundant

IL-4+ cells) were identified inside GCs in a recent study (Rein-

hardt et al., 2009); most were found outside peanut agglutinin-

binding areas. Also, there is evidence that accumulation of
464 Immunity 31, 457–468, September 18, 2009 ª2009 Elsevier Inc.
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IL-17-producing cells in GCs is associated with autoimmunity in

BXD2 mice (Hsu et al., 2008). This may explain how long-lived

antibody-producing cells are generated against typical Th1,

Th2, and Th17 cell-type pathogens while minimizing the potential

damaging effects of excessive IFN-g and IL-17 production in

GCs. This is conceivable, in light of recent work suggesting

there may be much more plasticity during T cell differentiation

than was previously appreciated (Zhou et al., 2009; Tsuji et al.,

2009).

Restricted expression of inflammatory cytokines by Tfh cells in

GCs serves to regulate appropriate isotype switching. B cell

switching toaberrant isotypes in the contextofGCreactions poses

a greater threat than during extrafollicular responses because the

latter produce comparably low-affinity antibodies (MacLennan

et al., 2003), and also the offspring of GC B cells may live for

decades in an individual. Thus, Tfh cells turn down IFN-g but do

produce IL-21, which serves as a potent B cell stimulator, and

favors switching to IgG1while repressing IgE (Ozaki et al., 2002).

A B

C

E

D

F

Figure 7. The miRNA Cluster 17-92

Represses CXCR5 Expression

(A) CXCR5 expression on splenic CD4+ (Hutloff

et al., 1999) and B220+ cells (bottom) from

Bcl6+/+ CD45.1 : Bcl6+/+ CD45.2 or Bcl6+/+

CD45.1 : Bcl6�/� CD45.2 fetal liver chimeras 1

week after SRBC immunization (left).

(B) Graphs showing the percentage of CXCR5int or hi

CD4+ cells (Hutloff et al., 1999) or the Geo MFI of

CXCR5 on B220+ cells (bottom) among CD45.1 or

CD45.2 cells from the same mice. Each symbol

represents one mouse and the lines are drawn

through the median values in each group. The

p values were calculated by Student’s t test.

(C) Predicted binding sites within the 30 untrans-

lated region (30 UTR) of mouse CXCR5 by miRNAs

downregulated over 50% by Bcl-6 overexpression

(Table S2). Underlined miRNAs are expressed

within the miR-17-92 cluster.

(D and E) Mature miR-17, mir-18a, and miR-20

expression quantified by real-time RT-PCR relative

to U6 small nuclear RNA (U6) in mouse CD4+ cells

transduced with empty vector or Bcl-6 (top panel)

and in mouse splenic T naive versus Tfh CD4+

cells (bottom panel). Data shown represent mean

values ± SD, with n = 3.

(F) Histograms showing CXCR5 fluorescence on

mouse B220+ cells transduced with retrovirus ex-

pressing empty vector (filled histogram) or miR-

17-92 (empty histogram). The bar graphs inside

the histograms show CXCR5 geometric mean fluo-

rescence intensity in the same cells. Data shown

represent mean values ± SD, with n = 3.

Recent data has shown that IL-21 is regu-

lated by c-Maf, a transcription factor also

expressed by Th2, Th17, and Tfh cells

(Bauquet et al., 2009; Pot et al., 2009). It

is still not clear whether IL-21 is also regu-

lated by Bcl-6.

Bcl-6 also profoundly modifies chemo-

kine receptor expression. Upon priming,

CXCR5 is induced, and further upregula-

tion of CXCR5 in addition to downregulation of CCR7 are

required for the migration of CD4+ T cells into follicles to become

Tfh cells (Hardtke et al., 2005; Haynes et al., 2007). Bcl-6

enhanced the expression of CXCR5 and decreased CCR7

expression in activated T cells, whereas Bcl6�/� T cells were

unable to upregulate CXCR5 in vivo. Interestingly, Bcl6�/�B cells

also displayed lower expression of CXCR5, suggesting that

Bcl-6 regulates CXCR5 in both B cells and T cells through a

common mechanism, consistent with our results showing the

Bcl-6-regulated miR-17-92 family reduces CXCR5 expression

in mouse B cells. CXCR4 expression was also enhanced by

Bcl-6. Deficiency of CXCR5 on T cells severely impairs but

doesn’t totally abolish their participation in the GC reaction

(Arnold et al., 2007), suggesting synergetic control of multiple

chemokine receptors by Bcl-6 regulates the migration of Tfh

cells to the follicles.

Interestingly, enhanced Bcl-6 expression did not increase

ICOS or CD40L expression (data not shown). This was not
Immunity 31, 457–468, September 18, 2009 ª2009 Elsevier Inc. 465
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entirely unexpected because high expression of ICOS and

CD40L can also be found on extrafollicular helper T cells (Ode-

gard et al., 2008) and other T helper cell lineages (Lohning

et al., 2003). In vivo, we did not observe any apparent decrease

in ICOS expression in Bcl6�/� CD4+ T cells (data not shown),

suggesting that ICOS expression may be mainly controlled by

other transcriptional regulators, cytokines, or signals from the

microenvironment.

A key aspect of Bcl-6-mediated gene regulation that has

emerged in this study is its ability to downregulate more than

half of abundantly expressed miRNAs by 50% or more in acti-

vated T cells. Most miRNAs downregulated by Bcl-6 (31 of 34)

belonged to clusters whose members are transcribed from

a single transcript and therefore are coregulated. Several

miRNAs within the same cluster frequently recognize similar

seed sequences with 30 UTRs and thus target the same

mRNAs, which explains why a mere 50% downregulation in

the amounts of individual mature miRNAs can result in substan-

tial increases in the expression of target genes. Remarkably,

not a single miRNA was upregulated (>2-fold) by Bcl-6.

miRNAs are emerging as key regulators of cell fate by fine-

tuning gene expression (Baek et al., 2008; Lodish et al.,

2008). Tfh cells are unique among T helper cell subsets in

that, despite having a very distinct cell function compared to

other effector T cells, they have a phenotype that is only distin-

guished from non-Tfh effectors by a quantitative increase in the

expression of CXCR5, CXCR4, PD-1, ICOS, IL-21 and other

molecules (King et al., 2008; Vinuesa et al., 2005b). Seventeen

out of thirty-four miRNAs repressed by Bcl-6 were potential

regulators of these molecules. This is particularly important in

light of recent findings demonstrating that miRNAs regulate

proteins that typically function over a narrow range of concen-

trations during normal immune responses and adds to the

evidence that miRNA-mediated increases or decreases in the

expression of these proteins may lead to marked changes in

cell function.

We found that overexpression of the miR-17-92 cluster

comprising seven miRNAs that are all downregulated in Bcl-6-

overexpressing cells leads to a reduction of CXCR5 in mouse

primary cells. Given that at least three miRNAs in this cluster

are predicted to target CXCR5, the net reduction effect of

CXCR5 protein is likely to be a consequence of the cumulative

effects of these different miRNAs. It is interesting to note that

mice transgenic for miR-17-92 display abnormal compartmen-

talization and segregation of B cells and T cells in secondary

lymphoid organs and paucity of B cells within follicular structures

(Xiao et al., 2008). Our results suggest this is due, at least in part,

to lower CXCR5 expression in both B cells and T cells.

Identifying Bcl-6 as the transcription factor that specifies Tfh

cell lineage commitment firmly establishes Tfh cells as a bona

fide T effector subset. Bcl-6 emerges as an important arbiter of

T cell lineage fate, acting through repression of Th1, Th2, and

Th17 cell transcription factors, as well numerous miRNAs that

are predicted to affect expression of Tfh cell signature mole-

cules. Bcl-6 therefore connects the differentiation of an impor-

tant effector T cell subset with the regulation of chemokine

receptors and other molecules. This enables the proper place-

ment of these T cells in the GC microenvironment to facilitate

T cell-dependent antibody responses.
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EXPERIMENTAL PROCEDURES

Mice and Immunizations

Bcl6�/� (Dent et al., 1997), Thy1.1 OT-II, CD45.1 mice were maintained on

a C57BL/6 background and housed in SPF conditions at the Australian

National University (ANU) and Garvan Institute animal facilities. All animal

experiments were carried under protocols approved by the institutes’ Animal

Ethics Committees. For fetal liver and bone marrow reconstitution, 2 to 5 3

106 cells from E15-E17 fetal liver or adult bone marrow were injected intrave-

nously (i.v.) into 8- to 12-week-old CD45.1 or Rag1�/� mice that had been

sublethally irradiated. Mice were analyzed 8 weeks after reconstitution. For

generating T cell-dependent antibody responses, mice were immunized i.p.

with 2 3 109 SRBC (Veterinary Services, IMVS). For induction of T cell-depen-

dent responses after adoptive transfer of OT-II cells, mice were i.v. injected

with splenocytes containing 3 to 5 3 104 OVA323–339-specific CD4+ T cells

and immunized intraperitoneally (i.p.) with 100 mg of OVA in alum. All these

procedures were approved by the Ethics Committee of The Australian National

University.

Human Lymphocyte Preparations

Tonsillar cells were isolated by mechanical disruption and Ficoll-Plaque

density gradient centrifugation. Human studies were approved by the insti-

tutes’ human research ethics committees.

CD4+ T Cell Isolation, Culture, Stimulation, and Differentiation

Mouse CD4+ T cells were purified with CD4 positive selection (Miltenyi Biotec)

and sorted into naive (CD44lo CD62Lhi CD25�) and activated (CD44hi CD62Llo

CD25�) populations on FACSAria (>97% purity). For ChIP, human naive

(CD45RO�CXCR5lo), Tfh (CD45RO+CXCR5hi PD-1hi), and non-Tfh effector

(CD45RO+ CXCR5int or o PD-1int or lo) CD4+ T cells, and an enriched B (CD4�

CXCR5hi) cell population were sorted from isolated tonsil cells (90%–95%

purity). For other purposes, human CD4+ T cells were purified with the Dynal

CD4 Positive Cell Isolation Kit (Invitrogen) (>98% purity). For ex vivo differen-

tiation, mouse naive T cells were cultured in completed RPMI1640 media (Yu

et al., 2008) and stimulated with plate-bound anti-CD3 (5 mg/ml) plus anti-

CD28 (2 mg/ml) under Th0: no cytokines and antibodies; Thn: 10 mg/ml anti-

IFN-g and 10 mg/ml anti-IL-4; Th1: 10 ng/ml IL-12, and 10 mg/ml anti-IL-4;

Th2: 10 ng/ml IL-4, 10 mg/ml anti-IFN-g, and 10 mg/ml anti-IL-12/IL-23 p40;

and Th17: 2 ng/ml TGF-b, 20 ng/ml IL-6, 10 mg/ml anti-IFN-g, and 10 mg/ml

anti-IL-4. For intracellular cytokine staining, CD4+ T cells were restimulated

for 4–6 hr with 50 ng/ml PMA (Sigma), 1 mg/ml ionomycin (Sigma), 3 mg/ml bre-

feldin A (eBioscience), and 2 mM monensin (eBioscience).

Flow Cytometry

Antibodies were listed in the Supplemental Data. The staining procedure has

been described (Yu et al., 2008), except that anti-mouse CCR7 staining was

performed at 37�C. Intracellular cytokines and transcription factors were

stained with the BD Cytofix/Cytoperm kit (BD PharMingen) and Mouse Regu-

latory T Cell Staining Kit (eBioscience), respectively. Flow cytometric analysis

was performed on LSR II or FACSCanto II and analyzed with FlowJo software

(Tree Star).

Immunofluorescence

Frozen spleen sections were fixed in cold acetone, stained, mounted in

VECTASHIELD (Vector Laboratories), and viewed with a Zeiss Axiovert

200M microscope. The images were acquired with AxioVision (release 4.7.1)

software (Carl Zeiss).

Quantitative Real-Time RT-PCR

MiRNA expression was assessed by real-time RT-PCR with the TaqMan

miRNA assay protocol (Applied Biosystems). Gene and miRNA expression

were detected with the ABI 7900 Prism and fold changes in expression were

determined by the 2�DDCt method, with the results normalized to RNU 6 (U6)

for miRNA and b-actin for gene expression.

Retrovirus Production and Transduction

Retrovirus preparation has been described before (Yu et al., 2007). Bcl-6 cDNA

was PCR amplified and cloned into the vector (Bcl-6-IRES-GFP). For retroviral
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transduction, sorted mouse naive CD4+ T or B cells were stimulated with plate-

bound anti-CD3 (5 mg/ml) plus anti-CD28 (2 mg/ml) and 10 ng/ml of IL-2 (for

T cells) or soluble LPS (10 mg/ml) (for B cells) for 2 days. Cells were spun

with retroviral supernatants and 4 mg/ml of polybrene (Sigma) at 800 g-force

for 1 hr at 30�C and then cultured in fresh medium before analysis at the times

indicated.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays were performed in accordance

with the instructions (Upstate Biotechnology) as detailed in the Supplemental

Data. Ct values from the PCR amplification plots were converted to arbitrary

copy number with the formula 105/2(Ct �17). We then normalized sample data

to the corresponding total input before fold change above the average no anti-

body control was calculated to yield the ChIP enrichment ratio as previously

described (Pokholok et al., 2006). In addition, we calculated the data to yield

the percentage of total input. All ChIP experiments were performed at least

in duplicate.

miRNA Microarrays

Mouse naive CD4+ T cells were transduced with a Bcl-6-expressing retrovirus

or the control vector and cultured in Th0 condition for 2 days. Cells expressing

medium to high levels of GFP were sorted, and total RNAs were isolated with

the mirVana miRNA Isolation Kit (Applied Biosystems). MiRNA expression was

profiled with Agilent 8x15K mouse miRNA microarray miRNA-v1_95_May07

(miRBase Release 9.2) by Ramaciotti Centre for Gene Function Analysis (Syd-

ney). Each sample was run in duplicate. For analysis, probes were quality-

controlled by deleting any probe that had no positive signals; the average of

each probe was calculated for replicates and probes with negative signals

were set to 0.

Bioinformatic Promoter and miRNA Binding Analysis

Bcl-6 binding site frequency and density in promoter regions were performed

with Gene2Promoter (release 4.2) and GEMS Launcher (release 4.3) within the

Genomatix Suite. We used MatInspector (release 7.4.3) to identify Bcl-6 sites

with optimized core similarity and matrix similarity score settings. MiRNA

target sequences in 30 UTR were predicted by miRanda (September 2008

Release, http://www.microrna.org/microrna/home.do) and Targetscan (Re-

lease 4.2, http://www.targetscan.org/vert_42/) with default settings.
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The miRNA array data for this paper have been deposited in GEO under acces-
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figures, and 4 tables and can be found with this article online at http://www.
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