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The molecular processes that govern the first cell lineage deci-
sions after fertilization also dictate the developmental potency 
of stem cells derived from the early mouse embryo. Our under-
standing of these mechanisms is therefore instrumental for stem 
cell biology and regenerative medicine. A number of transcrip-
tion factors are known that determine a cell’s fate towards either 
the embryonic or extraembryonic trophoblast lineages. Recent 
insights have shown that the definitive fixation of cell lineage fate 
is achieved by an epigenetic restriction through DNA methyla-
tion of the transcription factor Elf5. Lineage crossover can be 
induced, however, by manipulation of lineage determinants and 
gatekeepers, or their epigenetic regulation. Here we summarize 
the accumulating number of experimental conditions where such 
‘transdifferentiation’ is observed that shed light onto the genetic 
and epigenetic pathways involved in lineage separation and the 
developmental potential of stem cells.

Introducing the First Differentiation Events in the Early 
Mouse Embryo

By the expanded blastocyst stage of mouse development, three 
distinct cell populations, or lineages, have been established that 
will go on to form all of the embryonic and extraembryonic tissues 
of the conceptus. The first definitive differentiation event produces 
the trophectoderm (TE), which consists of a monolayer of epithe-
lial cells surrounding the inner cell mass (ICM) and the fluid-filled 
blastocoel. Slightly later, the ICM differentiates into the epiblast 
and an overlying layer of primitive endoderm (PE) cells. The 
significance of the establishment of these three cell populations is 
that, perhaps with the exception of the PE, they remain committed 

in their differentiation potential towards their lineage throughout 
all subsequent cell divisions.1,2 Thus, while they retain a pluri- or 
multipotent differentiation capacity into various cell types of a 
given lineage, they do not normally cross these lineage boundaries 
during later development.

First evidence for the separation of developmental fates in 
the earliest two cell populations, the ICM and TE, was provided 
by the observation that ICM fragments are unable to induce a 
decidualization reaction in recipient uteri. In contrast, trophoblast 
fragments implant as effectively as intact blastocysts.3 This result 
is explained by the fact that ICMs have lost the ability to form 
trophoblast cells4 and instead contribute solely to embryonic struc-
tures and extraembryonic membranes in aggregation chimeras.5 
The trophoblast of implanted conceptuses is, by contrast, entirely 
produced by the TE.6

A series of experiments have addressed the question as to when 
precisely cells become stably committed to one of the two earliest 
cell lineages. Establishment of ‘inside’ and ‘outside’ cells and cell 
polarization in the 8- to 16-cell transition introduces some bias 
toward fate allocation.7 However, while the outer cells of morula-
stage embryos tend to form most or all of the TE, they also give 
rise to a significant proportion of the inner cell mass and hence 
have not yet acquired fixed fates.8 A small proportion of early 
blastocyst stage embryos also showed some lineage crossing in a 
similar experiment.9 In keeping with this observation, isolated 
early blastocyst ICMs can give rise to trophoblast giant cells in 
culture10 and are still able to contribute to the trophoblast in vivo 
when aggregated with morula stage embryos. However, by the late 
blastocyst, the contribution of isolated ICMs to trophoblast in vivo 
is extremely rare.11 Thus, a definitive and irreversible commitment 
to the embryonic and trophoblast lineages seems to be established 
only by the late blastocyst stage.

After implantation of the blastocyst into the uterus, the TE 
gives rise to all trophoblast cell types of the conceptus: these 
include parietal trophoblast giant cells that line the implantation 
site, extraembryonic and chorionic ectoderm, the ectoplacental 
cone and later the various trophoblast cell types of the mature 
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chorioallantoic placenta. The PE goes on to form the parietal 
and visceral endoderm layers of the yolk sac that, together with 
the trophoblast derivatives, contributes to providing adequate 
nutrition of the embryo. The embryo proper is derived from the 
epiblast. Upon gastrulation, the epiblast also gives rise to the extra-
embryonic mesoderm that forms the allantois and the mesodermal 
components of the yolk sac, as well as the fetal vasculature of the 
placenta (Fig. 1).

Stem Cell Types of the Early Embryo

The existence of pluripotent stem cell populations was first 
demonstrated by the derivation of embryonal carcinoma (EC) 
cells from teratocarcinomas.12 These malignant germ cell tumors 
harbour a small EC cell population and contain multiple differ-
entiated cell types. The pluripotent nature of EC cells was 
demonstrated as single cell transplants are sufficient to generate 
tumors consisting of multiple and varied differentiated somatic cell 
types in recipient mice.13 Additionally, EC cells can form embryoid 
bodies14,15 and contribute to a range of developmentally-unrelated 
tissues following blastocyst injection.16 EC cells were therefore 
thought to reflect the pluripotency of ICM cells. However, EC cell 
usage was limited to a few specific cell lines as the majority showed 
more limited developmental potential and contributed poorly to 
chimeric mice.

These studies on EC cells paved the path for the derivation 
of embryonic stem (ES) cells from blastocysts.17-19 When grown 
under appropriate conditions, ES cells are able to self-renew indefi-
nitely. ES cells are able to contribute to all tissues in chimeric mice 
following blastocyst injection and even to generate entirely ES cell-
derived mice in tetraploid complementation assays and therefore 
reflect the pluripotent nature of the ICM.20,21

Stem cells of the trophoblast lineage can also be derived from 
blastocysts, as well as from early post-implantation conceptuses, 
using mouse embryonic fibroblast (MEF)-conditioned media 
containing the growth factor FGF4.22 These trophoblast stem (TS) 
cells are present as a minority in the polar TE of the blastocyst 
and in the extraembryonic and chorionic ectoderm of wild-type 
embryos until at least E8.5.23 Recapitulating the developmental 
potency of their parental cell lineage, TS cells contribute exclu-
sively to trophoblast tissues following blastocyst injection and can 
differentiate into all trophoblast cell types of the chorioallantoic 
placenta.

The possibility of deriving a stem cell line representative of 
the primitive/extraembyonic endoderm (ExE) was first suggested 
by the finding that the EC cell line F9 could be differentiated 
into cells with properties indistinguishable from definitive pari-
etal endoderm.24,25 The derivation of extraembryonic endoderm 
(XEN) stem cells from blastocysts and ICMs was achieved using 
the same conditions as for TS cell derivation. XEN cells express 
markers of extraembryonic endoderm but not of trophoblast or 
embryonic derivatives and contribute exclusively to extraembry-
onic endoderm cell types following blastocyst injection.26

Hence all three cell lineages of the mouse blastocyst give rise 
to a distinct type of stem cell that can be cultured indefinitely in 
vitro and retain the lineage restriction imposed on its parental cell 
population.

Cytokines Critical for Stem Cell Maintenance

Each stem cell type depends on a unique set of cytokines to 
retain its full developmental potency. Leukemia inhibitory factor 
(LIF) and its downstream signaling components, the LIF receptor 
GP130 and the transcriptional regulator STAT3, are of key impor-
tance for the derivation of ES cells and for the maintenance of their 
pluripotent state.27-32 In the absence of LIF, ES cells lose the ability 
to self-renew and instead differentiate. However, the importance of 
LIF in early development is less clear. As expected for this signaling 
interaction, LIF transcripts are detected in the TE and gp130 
transcripts primarily in the ICM.33 Despite this, gp130 is dispens-
able for this stage of development, with mutant embryos instead 
dying between E12.5 and term.34 It has since been found that LIF 
signaling is essential for epiblast maintenance following delayed 
implantation, suggesting that this may explain the necessity of LIF 
for prolonged ES cell culture.35

TS cell derivation and self-renewal is dependant on FGF4 and 
MEF-conditioned medium. Withdrawal of both components 
causes TS cells to differentiate into various trophoblast subtypes, 
predominantly trophoblast giant cells.36 The identification of 
FGF4 as the critical cytokine was based on the observation that 
FGF signaling is indispensable in the early embryo. Fgf4 is 
expressed in the ICM of late blastocysts37 and in ES cells,38 whilst 
the FGF receptor Fgfr2 is expressed in a TE-specific manner from 
the early blastocyst stage.39 Mutations in Fgf4 and Fgfr2, as well as 
the downstream signaling transmitters Frs2a and Erk2/Mapk1, all 
lead to lethality soon after implantation, consistent with tropho-
blast proliferation defects.40-43 These data have supported the 
hypothesis that FGF4 produced by the embryo provides a niche for 
TS cells in the neighboring trophoblast. More recently, the active 
components of the MEF-conditioned medium were identified as 
TGFβ and the related protein activin, and TS cells can be derived 
and maintained in a self-renewing state in media only supple-
mented with serum, FGF4 and TGFβ.44 Consequently, TGFβ 
inhibition in normal media interferes with TS cell self-renewal and 
causes them to differentiate into trophoblast giant cells.

XEN cells were originally derived in the presence of the same 
media as used in TS cell derivation and culture. However, XEN 
cell derivation and maintenance does not require FGF4 or other 
purified cytokines, and is equally effective in MEF-conditioned 
medium alone without the need of a feeder cell layer. Hence, XEN 
cells appear to be the most ‘robust’ stem cell type of the blastocyst, 
and they are frequently co-derived in early stages of the ES and TS 
cell derivation process.26

Key Transcription Factors in Early Development and  
in Stem Cells

Recent years have seen major advances in our knowledge of 
transcription factors that are required for blastocyst formation as 
well as for the establishment and maintenance of the three stem 
cell types. Establishment of the ICM and epiblast depends on 
the mutually interacting transcription factors OCT4 (encoded by 
the Pou5f1 gene), NANOG, SALL4 and SOX2,45-48 and these 
four factors also fulfil a key requirement in maintaining ES cell 
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Lineage specification and transdifferentiation

Aberrant Transcription Factor Expression Leads to Loss of 
Lineage Identity and Transdifferentiation

In line with their importance for blastocyst formation, tran-
scription factors like OCT4, NANOG, SOX2, SALL4, CDX2 
and EOMES have lineage-specifying functions in stem cells. Thus, 
knockout or knockdown of OCT4 and SALL4 in ES cells leads 
to their differentiation into trophoblast giant cells.45,61 Similarly, 
knockdown of Nanog causes the upregulation of trophoblast genes, 
although Nanog-deficiency is predominantly associated with a 
differentiation into primitive endoderm.46,62,63 The functions of 
SOX2 appear to be particularly sensitive to absolute protein levels 
as both knockdown and overexpression cause differentiation of ES 
cells into various cell types, including an upregulation of trophoblast 
genes such as Cdx2, Hand1, Cdh3 and Esx1.63-65 Together with 
their function in maintaining the pluripotency of ES cells, several 
other transcription factors also contribute to the lineage-restricted 
differentiation potential of ES cells, and their downregulation leads 
to ectopic activation of trophoblast markers (Table 1). Hence a 
common feature of these pluripotency factors is that they repress the 
transcription of differentiation-promoting genes, including those 
that induce trophoblast differentiation. While several factors display 
a more general inhibitory function, it is noteworthy that OCT4 and 
SALL4, and possibly also RIF1 and ZFP27, seem to specifically 
prevent differentiation into the trophoblast lineage.66,67

Opposing the role of pluripotency genes, factors with tropho-
blast determining capacity can induce trophoblast differentiation 
from cells of the embryonic lineage. Thus, constitutive overexpres-
sion of Cdx2 and Eomes in ES cells leads to their conversion into 
fully functional TS cells that contribute exclusively to trophoblast 
tissues of the placenta when used in chimera experiments.68 
Intriguingly, in these experiments transdifferentiation does not 
depend on the downregulation of pluripotency factors such as 
OCT4, an observation that has also been made in other conditions 
that induce transdifferentiation.69,70 These findings indicate that 
it is not absolute presence or absence, but instead relative abun-
dance of lineage determining factors in proportion to each other 
that determine lineage specification. This suggestion is further 
supported by the fact that OCT4 and CDX2 can form a complex 
for the reciprocal repression of their target genes in ES cells. 
Mutual inhibition of transcription factors with opposing func-
tions thus appears to be one of the key elements of early lineage 
 differentiation events.68

Signaling Pathways with Lineage-Specifying Capacity

The unsuspected lineage-determining specificity of signaling 
cascades was revealed recently in experiments where activation 

pluripotency. Notably, all four factors auto-regulate their own 
transcription and activate each other and thereby form a self-
reinforcing transcriptional network of pluripotency. In addition, 
they can either directly heterodimerize, as in the case of OCT4 and 
SOX2, or are found in shared protein complexes.49-51

A key transcription factor for the trophoblast lineage is the 
caudal-type homeodomain protein CDX2. Cdx2-/- embryos die 
before implantation52 because the TE fails to maintain trophoblast 
identity and its epithelial integrity, resulting in the collapse of 
the blastocyst.53 Additionally, ES but not TS cells can be derived 
from Cdx2-mutant blastocysts, showing that CDX2 is indispens-
able for TS cell self-renewal. Trophoblast failure is also observed 
in the absence of the T-box gene Eomesodermin (Eomes).54 From 
genetic data, EOMES is positioned just downstream of CDX2.53 
However, while both CDX2 and EOMES are essential for TE 
maintenance and trophoblast function, initial formation of the TE 
layer can occur in their absence. A factor further upstream in the 
trophoblast specification sequence has been identified recently as 
TEAD4, which can activate CDX2 and may thus be the gene on 
top of the trophoblast-defining transcription factor cascade.55,56

In the extraembryonic endoderm lineage, the transcription 
factors GATA4 and GATA6 have been shown to have a key 
role. Gata4-/- and Gata6-/- embryoid bodies display a block in 
visceral endoderm formation and fail to express normal markers 
of endoderm differentiation.57 GATA6 null embryos do not form 
a morphologically recognizable primitive endoderm layer, and 
subsequently fail to form visceral and parietal endoderm leading 
to embryonic lethality between E6.5 and E7.5.58,59 Also, whilst 
GATA4 and GATA6 are initially co-expressed, GATA6 expression 
is rapidly lost in visceral endoderm after implantation, thereby 
discriminating parietal from visceral endoderm. Another transcrip-
tion factor, SOX7, appears to lie upstream of both GATA4 and 
GATA6 based on experiments in the F9 EC cell line. Knockdown 
of Sox7 parallels the block in parietal endoderm formation seen 
in Gata4/Gata6 double mutants. Additionally, Sox7 deletion 
leads to a decrease in both GATA4 and GATA6 expression, and 
upregulation of both of these downstream proteins restores normal 
endoderm differentiation potential.60

Since lineage identity is retained by stem cells derived from the 
early embryo, experimental situations in which this commitment is 
lost serve as an extremely useful model to unravel the genetic and 
epigenetic networks that establish lineage fate. In this context, we 
focus in particular on the restriction of the embryonic (i.e., ICM, 
epiblast, ES cell) lineage from the trophoblast (TE, TS cell) lineage. 
We summarize here the accumulating number of situations in 
which ES cells have been shown to lose their lineage commitment 
and transdifferentiate into trophoblast cell types (Table 1).

1518 Cell Cycle 2009; Vol. 8 Issue 10

Figure 1 (See previous page). Expression dynamics of key transcription factors during early embryonic development. (A) Labelled schematic diagrams 
of the early blastocyst (E3.5), late blastocyst (E4.5), and post-implantation conceptuses at E5.5 (egg cylinder stage) and E7.5; with red, green and blue 
representing the embryonic, primitive/extraembryonic endoderm and trophoblast lineages respectively. (B) Schematic diagrams shaded to show the 
expression patterns of the transcription factors Oct4/Pou5f1,53,103-107 Nanog,62,103,108-110 Sox2,48,111-113 Sall4,47,111,114-116 Rif1,117 Foxd3,118-120 
Tead4,55,56,121,122 Cdx2,53,81,82,106 Eomes,54,82,123-125 Elf5,69,126 Esrrb111,127-130 and Hand1.83-85,111 Black shading represents strong expression, 
dark grey shading significantly lower expression, and white a lack of expression. Light grey colouration of embryos indicates expression with an 
unknown distribution pattern at that stage. Esrrb is also expressed in ES cells. Onset of expression in cell types and tissues crossing the main embryonic-
extraembryonic boundaries (i.e., extraembryonic expression of Oct4/Pou5f1 and Nanog; embryonic expression of Cdx2, Esrrb and Hand1) immedi-
ately after E7.5 is also given. VE; visceral endoderm.
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Table 1  Genes/conditions associated with activation of trophoblast markers and trophoblast differentiation from 
ES cells and embryos

Gene Function Phenotype Assessment method Reference
Transcription Factors
Cdx2 Homeobox transcription Cdx2 overexpression in ES cells causes transdifferentiation Enlarged or multiple nuclei; epithelial 68 
 factor into the trophoblast lineage. TS-like cells produced are morphology; Cdh3 expression; 
  able to contribute to normal placental structures in vivo. upregulation of Hand1, Fgfr2, Pl1, 
   Tpbpa, Ets2, Psx1 and Dlx3; placental 
   contribution following blastocyst injection
Elf5 Ets family transcription Overexpression causes differentiation of ES cells into Adoption of trophoblast (giant cell)  69 
 factor trophoblast subtypes; Elf5 activation due to lack of DNA morphology; upregulation of 
  methylation leads to trophoblast differentiation Cdx2 and Eomes 
  from embryos and ES cells
Eomes T box transcription factor Eomes overexpression in ES cells causes cells to Very small colonies of large, flat cells 68 
  differentiate into the trophoblast lineage produced; Cdx2, Hand1, Ets2, Esx1, 
   Cdh3 and Dlx3 upregulation
Esrrb Nuclear receptor Esrrb knockdown in ES cells causes enhanced Flattened, ‘fibroblast-like’ cell morphology;  66, 63 
  differentiation into trophoblast, as well as into endoderm, Hand1 upregulation 
  mesoderm and ectoderm
Foxd3 Forkhead transcription Foxd3-/- ES cells display enhanced differentiation Upregulation of Cdx2, 99 
 factor along multiple lineages including trophoblast, Fgfr2 and Pl1 
  endoderm and mesendoderm while Oct4, Sox2 and 
  Nanog expression are maintained 
  Foxd3 expression is positively controlled by NANOG
Klf5 Kruppel-like transcription Klf5 knockdown in ES cells causes differentiation into Large, flattened cells produced;  100, 101 
 factor the trophoblast, mesoderm and ectoderm lineages Cdx2, Eomes and Pl1 upregulation
Nanog Homeobox transcription Nanog Knockdown in ES cells causes differentiation into the Morphological changes; upregulation 63 
 factor trophoblast, endoderm, mesoderm and ectoderm lineages of Cdx2, Hand1, Mash2, Pl1 and Ehox
Oct4 POU transcription factor A 50% or greater Oct4 knockdown in ES cells Flattened cell morphology; 45 
  causes enhanced differentiation into ‘trophoblastic’ cells. often nuclei enlarged; 
  Removal of FGF4 causes cells to adopt upregulation of Cdx2, Hand1, 
  trophoblast giant cell-like morphology Mash2, Tpbp, Pl1 and Esrrb
Rif1 Telomeric protein Rif1 knockdown in ES cells causes enhanced Flattened, ‘fibroblast-like’ cell morphology;  66 
  trophoblast differentiation Hand1 upregulation
Sall4 Spalt family Sall4 knockdown or heterozygous knockout in ES cells Flattened cellular morphology; 61 
 transcription factor causes Oct4 downregulation in a dose-dependent manner. Cdx2 and Hand1 expression; 
  Such a decrease in Sall4 mRNA is sufficient to cause ability to form Cdh3-positive giant cell-like 
  ES cells to transdifferentiate in feeder-free conditions cells; knockdown ES cells aggregated 
  in vitro and enables them contribute to the TE of with morula stage embryos contribute 
  blastocysts in chimeras to the TE of blastocysts
Sox2 Transcription factor Sox2 knockdown in ES cells promotes differentiation Flattened, epithelial cellular morphology; 64, 63 
  into trophoblast, endoderm, mesoderm and ectoderm upregulation of Cdx2 and Hand1 
  Sox2 overexpression in ES cells causes differentiation Flattened cellular morphology; reduced 65 
  into ectoderm, mesoderm and trophoblast lineages proliferation rates; increased cytoplasmic 
   to nuclear ratio; upregulation of Cdx2, 
   Cdh3 and Esx1
Zfp27 Zinc finger protein Zfp27 knockdown in ES cells causes differentiation Subtle morphological changes; upregulation 67 
  into the trophoblast lineage of Cdx2, Hand1, Eomes, Esx1 and Psx1
Epigenetic Factors
Cxxc1 CpG binding protein Cxxc1-/- ES cells differentiate into the trophoblast lineage Upregulation of Cdx2, Eomes, Elf5 and Pl1 69 
Dnmt1 DNA methyltransferase Dnmt1-/- embryos show ectopic differentiation of Adoption of giant cell morphology;  69 
  trophoblast cells. Dnmt1-/- ES cells differentiate into upregulation of Ascl2, Tpbpa, Pl1, Pl2 
  trophoblast giant cells in vitro and show increased (in vivo) and Cdx2, Eomes, Ascl2,  
  contribution to the TE in vivo Tpbpa, Pl1, Pl2, Fgfr2c (in vitro); 
   contribute to the TE following aggregation 
   with 8-cell embryos
Dnmt3a  DNA methyltransferases Dnmt3a/b-/- ES cells differentiate into the Upregulation of Cdx2, Elf5 and Pl1 69 
& Dnmt3b  trophoblast lineage
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it is likely that FGF4 provides the extracellular signal to acti-
vate the RAS/MAPK/ERK2 signal transduction cascade in the 
trophoblast lineage (Fig. 2). Consistent with these data is the 
finding that knockouts of many of the pathway components 
exhibit trophoblast- or placenta-specific defects.73,74 Interestingly, 
mutation of the nonreceptor protein-tyrosine phosphatase SHP2, 
which is required for ERK activation downstream of receptor 
tyrosine kinases, has revealed that the RAS-MAPK pathway is 
also important for trophoblast survival through the inhibition of 
the pro-apoptotic protein BIM.75 Therefore the same pathway 
couples lineage specification with pro-survival signals to specifi-
cally reinforce trophoblast cell fate (Fig. 2).

Other signaling pathways have also been implicated in stable 
lineage fate maintenance, although their effects are comparatively 

of the Ras proto-oncogene in ES cells induced the expression 
of trophoblast markers and allowed the derivation of TS cell 
lines.70 It was found that differentiation into the trophoblast 
lineage specifically depends on the RAS-MAPK-ERK2 pathway. 
Inhibition of MAPK signaling in cultured mouse embryos 
compromises Cdx2 expression, delays blastocyst development 
and reduces TE outgrowth from embryo explants. These find-
ings link the RAS-MAPK signaling pathway to the establishment 
and/or maintenance of the trophoblast lineage. In line with this 
observation, interference with FGF or ERK activity favours 
the pluripotent state of ES cells and restricts their ability to 
 differentiate.71 Since trophoblast proliferation critically depends 
upon the FGF4 signal transmitted through the FGFR2 receptor 
leading to ERK (predominantly ERK2/MAPK1) activation,72 

Table 1  Genes/conditions associated with activation of trophoblast markers and trophoblast differentiation from 
ES cells and embryos (continued)

Gene Function Phenotype Assessment method Reference
Eed Polycomb-group Eed-/- ES cells express markers of multiple lineages Upregulation of Cdx2 and Hand1 78 
 family protein including trophoblast, mesoderm and endoderm
Ezh2 Polycomb-group Ezh2 knockdown in ES cells causes differentiation into the Subtle morphological changes; upregulation 67 
 family protein trophoblast, endoderm, mesoderm and ectoderm lineages of Cdx2, Hand1, Eomes, Esx1 and Psx1
Jmjd2c H3K9me3 demethylase Jmjd2c knockdown in ES cells causes differentiation Flattened, fibroblast-like cellular 80 
  along the trophoblast, endoderm, mesendoderm morphology; upregulation of 
  and ectoderm lineages Cdx2 and Hand1
Mbd3 CpG binding protein Mbd3-/- ES cells are unable to proceed past an early  Upregulation of Pl1 and Tpbpa 102 
  stage of differentiation into embryonic lineages in embryoid 
  bodies but instead differentiate along the trophoblast lineage
Np95 Ring-finger type E3 Np95-/- ES cells differentiate into the trophoblast lineage Cells adopt trophoblast-like morphology;  69 
 ubiquitin ligase  upregulation of Cdx2, Eomes and Elf5
Parp1 Poly(ADP-ribose)  Parp1-/- ES cells produce trophoblast giant cells Production of cells with enlarged nuclei 79 
 polymerase in teratocarcinoma-like tumours in vivo, and giant cell-like morphology;  
  and in cultured cells in vitro upregulation of Pl1, Pl2, Plf, Plfr, Tpbp
Signaling Factors
Hras1 GTP-binding protein Conditional activation of Hras1Q61L (and KrasG12V)  Hras1 activation produces flat colonies of 70 
  in ES cells causes differentiation into the trophoblast epithelial-like cells and cells of giant cell 
  and endoderm lineages. TS-like cells derived can morphology; upregulation of Cdx2 and 
  differentiate into trophoblast giant cells and also colonize Hand1; cells contribute to the polar TE and 
  placental tissues in vivo. Conversely, the inhibition of later the placenta following aggregation 
  downstream MAPK signaling, but not PI3K signaling, with 4–8 cell embryos. MAPK inhibition 
  abrogates trophoblast differentiation reduces TE outgrowth from embryo explants
Lef1 Signal regulatory protein;  ES cells exposed to WNT3A show increased Lef1 overexpression increased Cdx2 76 
 transcription factor transdifferentiation when Lef1 is overexpressed. induction, whereas Lef1 knockdown 
  Conversely, Lef1 knockdown reduces transdifferentation. reduced Cdx2 expression
Wnt3a Signalling protein Exposure of ES cells to WNT3A increases differentiation TS cell-like morphology and subsequent 76 
  into the trophoblast and mesoderm lineages trophoblast giant cell-like cells observed; 
   Cdx2, Eomes, Hand1, Mash2, Gcm1, 
   Pl1 and Tpbp upregulation
Other Factors
ColIV Structural protein ES cells cultured on Collagen type IV differentiate along the Large, flat, cuboidal-shaped cells with 77 
  trophoblast, cardiovascular and hematopoietic lineages. enlarged nuclei; upregulation of Cdx2, 
  Cdx2-positive clones can be cultured as TS cells and Hand1, Eomes, Esrrb, Cdh3, Err2, Mash2, 
  give rise to trophoblast derivatives in vitro Tpbp, Pl2, Psx1, Psx2, Plac1, Plac8, 
   Esx1, Dlx3, Tpbg, Idb2 and Gcm1
Slc25a36 Solute carrier Slc25a36 knockdown in ES cells causes differentiation Giant trophoblast cell-like morphology;  67 
  into the trophoblast but not ectoderm, upregulation of Cdx2, Hand1, Eomes,  
  mesoderm or endoderm lineages Esx1 and Psx1

D
ow

nl
oa

de
d 

by
 [

B
ab

ra
ha

m
 I

ns
tit

ut
e]

 a
t 0

7:
53

 0
7 

Ju
ly

 2
01

5 



Lineage specification and transdifferentiation

www.landesbioscience.com Cell Cycle 1521

Figure 2. Model of signalling pathways and transcription factors that contribute to cell lineage specification and/or maintenance as revealed mainly by 
transdifferentiation phenotypes. RAS-MAPK-ERK2 activation is of major importance for trophoblast proliferation and survival, and RAS activation in ES 
cells induces a strong and dominant transdifferentiation phenotype into TS cells. Because of the importance of FGF signalling for the trophoblast lineage, 
FGF4/FGFR2 is the likely extracellular signal that activates this pathway. Specific trophoblast defects are also observed in intermediate transmitters of the 
extracellular signal such as FRS2a, SHP2, GRB2, SOS1 and GAB1.42,73-75 The RAS-MAPK pathway leads to rapid induction of Cdx2, while low levels 
of RAS activation induce primitive endoderm differentiation (and the PE marker Gata6) from embryonic cells by inhibiting Nanog.70 SHP2-RAS-ERK2 
activation also provides pro-survival signals for the trophoblast lineage as ERK2/MAPK1 phosphorylation leads to degradation of the pro-apoptotic 
protein BIM.75 Wnt signalling is important to maintain pluripotency of ES cells but also to direct their differentiation. In the context of lineage fate stabil-
ity, WNT3A has been shown to activate Cdx2 and induce some trophoblast differentiation from ES cells grown in the absence of leukemia inhibitory 
factor LIF.76 ELF5 is required downstream of initial lineage specification in trophoblast cells to maintain Cdx2 and Eomes expression. Elf5 is also the key 
target gene for the epigenetic restriction of embryonic versus trophoblast lineage fate that is imposed by DNA methylation.69 OCT4, SALL4, NANOG 
and SOX2 are required for embryonic lineage identity and pluripotency of ES cells. Deficiency of either of these factors induces trophoblast mark-
ers,45,61,63,64 whereas overexpression of OCT4 and SALL4 leads to primitive endoderm formation.45,61 In contrast, NANOG inhibits endoderm differ-
entiation by repressing GATA6.131,132 ICM, inner cell mass; ES, ES cells; PE, primitive endoderm; TE, trophectoderm; TS cells, trophoblast stem cells.
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in embryonic development. This situation has most likely arisen 
from the redeployment of available genes for trophoblast differen-
tiation during eutherian evolution. As such, the TS cell ‘markers’ 
Cdx2 and Eomes are expressed in embryonic structures soon after 
embryonic-trophoblast lineage separation. Cdx2 is detected at E7.5 
in the mesoderm of the developing allantoic bud and posterior 
primitive streak. At E8.5, expression is seen in all three germ layers 
at the posterior end of the embryo extending into the allantois, in 
the endodermal epithelium of the hindgut rudiment, and in the 
neural tube.52,81 Embryonic Eomes expression is observed even 
earlier, at E5.5-E5.75, in the posterior primitive streak region and 
overlying visceral endoderm.54,82 Another example is the frequently 
used trophoblast giant cell-expressed gene Hand1 that is also 
required soon after implantation for cardiac morphogenesis and is 
expressed from E8.5 onwards in the developing heart, pericardium 
and lateral mesoderm.83-85 Thus, the conclusion of trophoblast 
differentiation from ES cells on the basis of ‘marker’ gene analyses 
has to be treated with some caution, as expression of many of these 
genes may in fact represent ES cells recapitulating their activation in 
embryonic lineage derivatives slightly later in development.

As the placenta represents a relatively late acquisition in 
evolution, many genes with important functions in tropho-
blast development are also expressed elsewhere, and a recurrent 
pattern is the placenta-testis-brain axis.86,87 There are relatively 
few murine genes that are truly trophoblast-specific, for example 
the placental lactogen/prolactin family, some pregnancy-specific 
glycoproteins (Psg’s), the placenta-expressed cathepsin family and 
the Syncytins.88-95 In general, these genes are expressed in differen-
tiated trophoblast cell types, and well-characterized marker genes 
include Tpbpa, characteristic of ectoplacental cone trophoblast 
and spongiotrophoblast;96 Syncytins A and B (Syna and Synb), 
expressed in syncytiotrophoblast;97 and the placental lactogens 
I and II (Pl1/Prl3d1 and Pl2/Prl3b1), demarcating primary and 
secondary trophoblast giant cells, respectively.95,98 In conjunction 
with the activation of these specific marker genes, appearance of 
the morphologically distinct syncytiotrophoblast and trophoblast 
giant cells is a unique feature that can serve as a reliable indicator 
of trophoblast differentiation.

The most vigorous test for the functionality of trophoblast cells 
transdifferentiating from ES cells is to analyze their developmental 
potential in chimera experiments. Of all the situations for which 
trophoblast differentiation and/or activation of trophoblast genes 
has been described, such definitive proof has only been provided for 
very few genes (Table 1). Namely, Sall4 knockdown and Dnmt1-
deficient ES cells contribute to the TE at the blastocyst stage, 
and Cdx2-overexpressing and Ras-activated ES cells contribute to 
trophoblast tissues of the mature placenta.61,68-70

Despite these limitations, the accumulating evidence of extra-
cellular signals, signaling cascades, transcription factors and 
epigenetic modifiers that are involved in the specification and 
stable maintenance of lineage fate have provided significant 
insights into the mechanisms that underlie stem cell potency and 
the canalization of developmental pathways (Fig. 2).

minor and seem subordinate to the robust transdifferentiation 
induced by RAS-MAPK activation. Wnt signaling, for example, 
is important for pluripotency and differentiation in ES cells, but 
specific components of the pathway can also promote trophoblast 
differentiation from ES cells. In this context, WNT3A functions 
synergistically with LEF1 to induce expression of trophoblast 
(and mesodermal) lineage genes.76 It has also been observed that 
trophoblast differentiation is initiated when ES cells are plated on 
Collagen IV in the presence of FGF4 and feeder cells, implying 
that collagen IV-specific integrin receptor signaling (mainly 
through the α1β1 integrin receptor) can also alter lineage fate.77

Epigenetic Restriction of Cell Lineage Fate

After the embryonic and trophoblast cell lineages have been 
specified, a stable maintenance of lineage identity is ensured by 
an epigenetically imposed cellular memory. We have recently 
found that DNA methylation establishes a major restriction of 
lineage fate and is a critical epigenetic modification to enforce the 
clear-cut and heritable embryonic-trophoblast lineage boundary. 
Hence, ES cells deficient in DNA methylation due to a lack of 
Dnmt1, Dnmt3a/b, Np95 or Cxxc1, readily transdifferentiate into 
trophoblast derivatives when cultured in TS cell conditions.69 This 
lineage restriction is mainly mediated through epigenetic regula-
tion of the transcription factor Elf5. Elf5 is robustly methylated 
and repressed in ES cells, but is hypomethylated and expressed in 
TS cells. In the trophoblast compartment, ELF5 is necessary to 
maintain expression of the trophoblast stem cell genes Cdx2 and 
Eomes, and thereby reinforces trophoblast cell fate. This pathway 
is aborted in the embryonic lineage due to epigenetic silencing 
of Elf5. Thus, ELF5 functions downstream of initial lineage 
determination as a gatekeeper to ensure the stable and irreversible 
canalization of embryonic and trophoblast lineage pathways. The 
developmental restriction imposed by epigenetic regulation of 
Elf5 is likely complemented by other, albeit less stringent, epige-
netic mechanisms. In this context it is interesting to note that an 
upregulation of trophoblast markers is also observed in ES cells 
that lack the NuRD repressive complex component MBD3, the 
Polycomb repressive complex components EED and EZH2, the 
histone demethylase JMJD2C, or the poly(ADP-ribose)polymerase 
PARP1 (Table 1).67,78-80 Whether or not these modifications act 
on Elf5 or on other factors that contribute to lineage restriction 
remains to be elucidated.

The emerging picture from these data is that specific tran-
scription factors, some of which may be activated by extracellular 
signal-regulated kinase cascades, are able to direct differentiation 
into particular lineages. This lineage allocation is then fixed by 
epigenetic modifications, most notably DNA methylation, to 
ensure stable and heritable lineage commitment.

Expression Patterns of Lineage ‘Markers’

With the increasing number of conditions that have been reported 
to cause ‘trophoblast differentiation’ from ES cells, it is important 
to reassess the lineage specificity of genes that are commonly used 
as marker genes (Fig. 1). In this regard, it is particularly noteworthy 
that all known trophoblast determining factors also have a function 
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Perspectives

Understanding how the early cell lineages are specified and then 
maintained is of key importance for developmental biology and 
regenerative medicine. Thus, the ability to remove developmental 
restrictions may enable us to widen a stem cell’s potency towards 
that of a different cell lineage. At the same time, knowledge of the 
molecular basis for the progressive loss of developmental plasticity 
is fundamental to achieve directed and terminal differentiation into 
specific cell types. Insights into the roles of transcription factors, 
signaling pathways and epigenetic modifiers have highlighted their 
importance for the stability of cell fate determination and for the 
differentiative potency of stem cells. These recent findings open up 
new opportunities for the manipulation of lineage determinants 
and gatekeeper genes, or their epigenetic regulation, in experi-
mental approaches aimed at generating appropriate cell types by 
transdifferentiation or by reprogramming of somatic cells.
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