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spacer regions and functions in rDNA copy
number control
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Trf4 is the poly(A) polymerase component of TRAMP4,

which stimulates nuclear RNA degradation by the exo-

some. We report that in Saccharomyces cerevisiae strains

lacking Trf4, cryptic transcripts are detected from regions

of repressed chromatin at telomeres and the rDNA inter-

genic spacer region (IGS1-R), and at CEN3. Degradation of

the IGS1-R transcript was reduced in strains lacking

TRAMP components, the core exosome protein Mtr3 or

the nuclear-specific exosome component Rrp6. IGS1-R

has potential binding sites for the RNA-binding proteins

Nrd1/Nab3, and was stabilized by mutation of Nrd1. IGS1-

R passes through the replication fork barrier, a region

required for rDNA copy number control. Strains lacking

Trf4 showed sporadic changes in rDNA copy number,

whereas loss of both Trf4 and either the histone deacety-

lase Sir2 or the topoisomerase Top1 caused dramatic loss

of rDNA repeats. Chromatin immunoprecipitation ana-

lyses showed that Trf4 is co-transcriptionally recruited to

IGS1-R, consistent with a direct role in rDNA stability. Co-

transcriptional RNA binding by Trf4 may link RNA and

DNA metabolism and direct immediate IGS1-R degradation

by the exosome following transcription termination.
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Introduction

The eukaryotic exosome is a complex of 10 core subunits,

including a 30–50 exonuclease and RNA-binding proteins, that

is involved in many aspects of RNA processing and surveil-

lance. The purified exosome alone does not display strong

RNA degradation activity (Mitchell et al, 1997) and is targeted

to specific substrates by different cofactors (reviewed in

Houseley et al, 2006). Two related complexes, TRAMP4 and

TRAMP5, target aberrant tRNA (Kadaba et al, 2004; LaCava

et al, 2005; Vanacova et al, 2005) and aberrant ribosomal

RNA for exosome degradation (Dez et al, 2006; Houseley and

Tollervey, 2006). These complexes also target a class of

cryptic unstable transcripts (CUTs), resulting in their immedi-

ate degradation following transcription (Wyers et al, 2005;

Arigo et al, 2006b; Thiebaut et al, 2006; Vasiljeva and

Buratowski, 2006). An apparently similar class of RNA has

been identified in mouse and human cells; like the CUTs,

these superficially resemble mRNAs in being RNA polymer-

ase II (Pol II) transcripts that carry 50 caps and 30 poly(A)

tails, but lack evident protein coding capacity (reviewed in

Willingham and Gingeras, 2006). Despite their apparent

conservation, little is known about the function of these

transcripts.

In many Eukaryotes, transcripts influence chromatin struc-

ture via the siRNA/RNAi system. In fission yeast, establish-

ment of centromeric heterochromatin involves the poly(A)

polymerases Cid12 (Motamedi et al, 2004) and Cid14 (Buhler

et al, 2007), which are in the same family as budding yeast

Trf4 and Trf5, and Cid14 resides in a TRAMP-like complex.

Saccharomyces cerevisiae lacks homologs of key components

of the machinery that processes siRNAs, but it seemed

possible that other mechanisms might transfer information

from the transcriptome back to the chromatin structure of the

genome.

The TRAMP complexes are composed of a poly(A) poly-

merase, Trf4 or Trf5, a putative RNA-binding protein, Air1 or

Air2, and the putative DEVH-box helicase Mtr4. Trf4 and Trf5

were originally isolated in a synthetic lethal screen with top1

mutations. Conditional double mutants of trf4 with top1-7

showed ribosomal DNA (rDNA) condensation phenotypes

(Sadoff et al, 1995; Castano et al, 1996), and were reported

to display defects in mitotic segregation (Wang et al, 2000;

Edwards et al, 2003). In addition, strains lacking both Trf4

and Trf5 (which are synthetic lethal) fail to complete DNA

replication (Wang et al, 2000). These reports suggested that

Trf4 and Trf5 play some role in DNA metabolism, particularly

in the rDNA, although the nature of this role remained

unclear.

Wild-type yeast contain a tandem array of approximately

200 rDNA repeats on chromosome XII, the number of

which is maintained by regulated recombination (Szostak

and Wu, 1980). Each repeat contains the 35S and 5S riboso-

mal RNA genes separated by intergenic spacer regions

IGS1 and IGS2 (see Figure 1). The IGS1 region of the

rDNA repeat contains a replication fork barrier (RFB)

(Voelkel-Meiman et al, 1987), where a protein complex
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including Fob1 imposes a unidirectional block to the progress

of DNA replication forks. This region also contains a

recombination hotspot that is necessary for double-

strand break formation and subsequent recombination

between sister chromatids to occur (Kobayashi and

Horiuchi, 1996).

The repeat tracts in two sister chromatids are normally

held together by the cohesin complex, which is concentrated

over the cohesin-associated region (CAR) in IGS2 (see

Figure 1) (Laloraya et al, 2000). This ensures that even

if recombination is initiated, it occurs only with the aligned

repeat in the sister chromatid, and does not result in a

change of repeat number. Two divergent Pol II transcripts

generated from the E-pro promoter within IGS1 (see Figure 1)

(Santangelo et al, 1988) have been suggested to regulate

recombination, as replacement of E-pro with a regulated,

divergent GAL1-10 promoter resulted in cohesin displace-

ment and extensive unequal recombination (Kobayashi

and Ganley, 2005). Unequal recombination leads to a net

change in repeat number for the chromatid that initiated

recombination. However, these analyses did not address

potentially distinct roles for the two Pol II transcripts,

which we designate here as IGS1-F and IGS1-R. IGS1-F is

transcribed through the CAR, consistent with its reported role

in cohesin displacement, whereas IGS1-R is transcribed

through the RFB.

The rDNA IGS regions, along with the telomeres and

inactive mating loci, are silenced for Pol II transcription by

the histone deactylase Sir2 (Smith and Boeke, 1997). Loss of

Sir2 leads to elevated expression of the IGS1 and IGS2

transcripts (Li et al, 2006) and hyper-recombination within

the rDNA array (Gottlieb and Esposito, 1989). This was

proposed to be a consequence of cohesin displacement

(Kobayashi et al, 2004).

Here we demonstrate that one of the non-coding RNA

(ncRNA) transcripts generated from the intergenic spacer

regions, IGS1-R, is targeted for degradation mediated by

Trf4 and the exosome. Trf4 is recruited to the rDNA spacer

region that includes the RFB, via the IGS1-R transcript, and is

required for stability of the rDNA repeat copy number. These

data provide evidence for novel links between RNA and DNA

metabolism in budding yeast.

Results

Cryptic transcripts from regions of repressed chromatin

accumulate in strains with defects in the TRAMP

complex or exosome

We speculated that transcripts may be generated from regions

of repressed chromatin in the yeast genome but degraded by

the TRAMP and exosome complexes. We therefore tested a

telomeric region (TEL05L), the intergenic spacer (IGS) region

of the rDNA repeat, a centromeric region (CEN3) and the

silenced mating-type cassettes (MATa/a). In each case, we

saw increased levels of a transcript in strains lacking Trf4,

but not in single mutant strains lacking Trf5, Air1 or Air2

(Figure 2A, compare lane 2 with lanes 3–5).

At many yeast telomeres, the terminal repeats are flanked

by the ‘Y0 region’, which is conserved in whole or in part at

16 yeast telomeres. At some telomeres, this region encodes a

putative DNA helicase (Yamada et al, 1998), designated

Yel077c in the case of TEL05L (Figure 2B). Strand-specific

probes demonstrated that the transcript elevated in the trf4D
strain is an ncRNA expressed antisense to YEL077C. The

TEL05L ncRNA is B6.5 kb in length and was detected by a

probe located within YEL074W (Figures, 2A and B) and by a

second probe located 2.8 kb further toward the chromosome

end (data not shown), showing it to extend across the Y0

region. 50 RACE generated a product that was enriched in

trf4D (arrow in Figure 2C), which was cloned and sequenced.

Three 50 ends were identified, located 106–128 bp beyond the

30 end of the open reading frame (ORF) of YEL077C. The

ncRNA therefore starts close to the chromosome end and

runs antisense through the entire putative helicase ORF.

Polymorphisms in sequenced products demonstrate that the

ncRNA is transcribed from at least two telomeres (data not

shown).

The TEL05L ncRNA was also elevated in a strain lacking

Rrp6 (Figure 2D, lane 6), indicating that it is a target for

exosome degradation. Depletion of Trf5 by growth of a trf4D
GAL-trf5 strain on glucose medium (Figure 2D, lane 5)

increased accumulation of the TEL05L transcript relative to

the trf4D single mutant. Overexpression of Trf5, in GAL-trf5

strains grown in galactose medium, can suppress the pheno-

type of trf4D strains on some TRAMP substrates (Houseley

and Tollervey, 2006), and this was the case for the TEL05L

transcript (Figure 2D, lane 4). We conclude that TRAMP4 and

TRAMP5 both participate in degradation, with TRAMP4

probably playing the major role, and function with the

exosome to degrade large ncRNAs generated from telomeric

regions.

We have not further characterized the B1.2 kb CEN3

transcript, and the structure of the MAT loci prevents un-

ambiguous assignment of the observed B1.2 kb transcript to

a silent cassette. However, connections between Trf4 and

Top1 mutations and rDNA structure (see Introduction)

suggested a functional link to IGS transcription, which was

therefore further investigated. The ncRNA products of tran-

scription from E-pro, IGS1-F and IGS1-R (Figure 1) are

normally present at very low levels (Santangelo et al, 1988)

and we speculated that this might reflect rapid degradation

involving the TRAMP and exosome complexes. To visualize

these ncRNAs, northern blots of RNA from TRAMP and

exosome mutants were probed with strand-specific probes

to both rDNA intergenic spacer regions (Figure 3B). An sir2D

Figure 1 Schematic of intergenic spacer region. Schematic repre-
sentation of the rDNA intergenic spacer regions showing ncRNA
transcripts. IGS, intergenic spacer; ARS, autonomously replicating
sequence (origin of DNA replication); ETS, external transcribed
sequence (the 35S has a 50 ETS and a 30 ETS); RFB, replication fork
barrier. Dotted lines with arrows show strand-specific RNA probes;
arrows point 50–30. Thick lines 1–7 indicate products of qPCR
reactions used for ChIP analysis.
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strain, which overexpresses IGS transcripts, was used as a

positive control. A top1D strain was also analyzed, as top1

trf4 double mutants were reported to show synthetic lethality

and rDNA condensation phenotypes (Sadoff et al, 1995;

Castano et al, 1996). Strains carrying sir2D and top1D showed

elevated levels of three ncRNAs IGS1-R, IGS1-F and IGS2-R

(Figure 3B, lanes 6 and 7).

The levels of IGS1-F and IGS2-R were unaltered in TRAMP

or exosome mutants, whereas the level of IGS1-R was sub-

stantially increased in trf4D and to a lesser extent in air1D
air2D and rrp6D strains. No stabilization of IGS1-R was seen

in trf5D strains, and overexpression of Trf5 under GAL

regulation did not suppress the trf4D phenotype (Figure 3C,

lanes 3 and 4). This suggests that Trf5 does not efficiently

target IGS1-R, even in the absence of Trf4. IGS1-R stabiliza-

tion in the rrp6D exosome mutant strain was weaker than

that in trf4D (Figures 3B (lane 5) and D (lane 3)) and we

therefore also examined the core exosome mutant mtr3-1

(Figure 3D). Even at permissive temperature (251C), accu-

mulation of IGS1-R was visible in the mtr3-1 strain. We

conclude that TRAMP4 functions with both Rrp6 and the

core exosome to degrade IGS1-R, whereas degradation of

IGS1-F and IGS2-R presumably involves other activities.

Two major forms of IGS2-R of approximately 1.6 kb and

850 nt in length were detected (see also Li et al, 2006). The

longer IGS2-R species also hybridized to a downstream probe

to IGS1, whereas the short species was not detected with this

probe, indicating that it is 30 truncated (data not shown).

This would be consistent with termination of some IGS2-R

transcripts around the location of the CAR, even in top1D and

sir2D strains. A shorter probe directed against the 30 region of

IGS1-R (NTS1 short; see Figure 3A) was also used. This

region is extremely AT rich and the probe hybridized poorly;

however, only the longer transcripts were detected by NTS1

short probe (Figure 3D, compare lanes 1–4 with 5–8). This

indicates that the IGS1-R transcripts show 30 heterogeneity.

To assess whether increased IGS1-R RNA reflects increased

transcription or post-transcriptional stabilization, chromatin

immunoprecipitation (ChIP) was performed to determine

RNA Pol II occupancy in wild-type, trf4D and top1D cells

(Figure 3E) and sir2D (data not shown). This revealed a clear

peak of Pol II within the IGS1-R region in the wild-type strain.

This peak was elevated in the top1D strain, consistent with

constitutive derepression (Bryk et al, 1997). In contrast, the

Pol II signal in the trf4D strain was lower than that in the

wild-type strain, despite elevated levels of the transcript.

We next wanted to determine how the TRAMP complex is

recruited to the IGS1-R transcripts. The Nrd1–Nab3 hetero-

dimer of RNA-binding proteins was reported to recruit the

exosome to substrate RNAs (Arigo et al, 2006b; Thiebaut et al,

2006). The longest observed IGS1-R transcript contains 10

potential binding sites for Nab3 (UCUU) including two promi-

nent clusters, and seven binding sites for Nrd1 (GUAA/G). The

level of IGS1-R was therefore assessed in ts-lethal nab3-11 and

nrd1-102 mutant strains (Figure 3F). IGS1-R was strongly

stabilized in the nrd1-102 mutant, demonstrating that it is

targeted by the Nrd1–Nab3 pathway. In contrast, the nab3-11

mutant conferred little or no stabilization (Figure 3F). Allele

specificity has, however, previously been reported for muta-

tions in these proteins (Conrad et al, 2000) and the data do not

demonstrate that Nrd1 is primarily responsible for targeting

IGS1-R for degradation. On other transcripts, Nrd1–Nab3 are

responsible for transcription termination (Steinmetz et al,

2001; Arigo et al, 2006a, b; Kim et al, 2006; Thiebaut et al,

2006). However, we saw no clear differences in the migration

of the IGS1-R transcripts in the nrd1 or nab3 mutants relative

Figure 2 Cryptic transcripts can be detected from regions of repressed chromatin in strains lacking TRAMP activity. (A) Northern analysis of
TRAMP mutants grown in YPD at 251C. RNA is resolved on a 1.2% agarose glyoxal gel (three upper panels) or a 6% acrylamide 7 M urea gel
(three lower panels). Probes are (top to bottom) YEL074W, NTS1 HpaI, TSA1, CEN3, MAT and TSA1. (B) Schematic representations of probed
regions. (C) 50 RACE PCR was performed on wild-type and trf4D RNA, with a primer located 138 bp from the 30 end of the annotated YEL077C
ORF. DNA products were stained with SYBR Safe. The indicated band was excised, cloned and sequenced. (D) Northern analysis of TRAMP and
exosome mutants probed with YEL074W and PGK1. Strains were grown at 251C on YPD except trf4D GAL-trf5, which was grown on YPGal and
shifted to YPD for 18 h prior to RNA extraction.
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to the wild type (Figure 3F), suggesting that termination is not

strongly impaired.

From the ChIP and northern data, we conclude that

transcription of IGS2-R and IGS1-F is strongly repressed by

a chromatin structure that requires Sir2 and Top1 for its

maintenance. IGS1-R is more actively transcribed than

IGS2-R or IGS1-F, but the resulting transcripts are rapidly

degraded by a mechanism that requires the Nrd1/Nab3

complex, TRAMP4 and both the core exosome and Rrp6.

IGS1-R is polyadenylated and shows extensive 3 0

heterogeneity

Primer extension was used to define the 50 end of the IGS1-R

transcript (Figure 4A). The 50 end was mapped by running

the primer extension products alongside a sequencing ladder

on a 40 cm denaturing polyacrylamide gel (data not shown).

The major 50 end lies at þ 599 nt from the end of the 25S

rRNA, with some secondary 50 ends spanning about 20 bp.

This position is 26 bp 30 to that originally described

(Santangelo et al, 1988) and around þ 175 nt from the RFB.

Conventional analyses of polyadenylation using RNase H

and oligo(dT) were complicated by the presence of two

genome-encoded poly(A) tracts within IGS1-R (Supple-

mentary Figures 1A and B). However, the results were

consistent with 30 heterogeneity, as were the northern ana-

lyses shown in Figure 3D. Oligo-dT-directed 30 RACE detected

multiple transcripts (Figure 4B), showing that IGS1-R is

polyadenylated even in trf4D strains, and of 16 30 RACE

clones sequenced, 6 terminated in genomic encoded

poly(A) tracts and the remaining 10 clones contained 9

different 30 ends, demonstrating substantial 30 heterogeneity

(Figure 4C).

Figure 3 IGS1-R is degraded by TRAMP and the exosome. (A) Locations of hybridization probes and ChIP primer sets used. (B) Northern
analysis of TRAMP and exosome mutants and control strains grown in YPD at 251C. Probes are (top to bottom) NTS1 HpaI, NTS2 R, NTS2 F and
ACT1. (C) Accumulation of IGS1-R in trf4D GAL-trf5 strain. Strains were grown at 251C on YPD (lanes 1–3) or YPGal (lane 4) and/or pre-grown
in YPGal and shifted to YPD for 18 h. Northern blot of poly(A)þ selected RNA was probed with random primed NTS1 and PGK1. (D) Northern
analysis of TRAMP and exosome mutant strains grown in YPD at 251C, probed with NTS1 HpaI, NTS1 short and ACT1. (E) ChIP analysis of
RNA polymerase II density in intergenic spacer regions, with primer sets shown in Figure 1. Error bars¼71 standard error, n¼ 3. (F) Northern
analysis of nrd1 and nab3 mutant strains grown in YPD at 231C and shifted to 371C for 1 h, probed with NTS1 HpaI and ACT1.
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Depletion of Trf5 from the trf4D strain had little effect on

transcript length (Figure 3C, lane 5), whereas transfer of a

ts-lethal pap1-2 trf4D strain to 371C resulted in shorter IGS1-R

transcripts (Figure 4D, compare lanes 4 and 8). At permissive

temperature, the abundance of IGS1-R transcripts was greater

in the pap1-2 trf4D double mutant than in either single

mutant (Figure 4D, compare lanes 2, 3 and 4). These results

indicate that IGS1-R is polyadenylated by Pap1 and suggest

that efficient polyadenylation promotes IGS1-R degradation.

We tested whether the polyadenylation activity of Trf4 is

required for degradation of IGS1-R (Figure 4E). Plasmids

expressing either Trf4 or the catalytically inactive Trf4-

DADA (Vanacova et al, 2005) fully suppressed the IGS1-R

stabilization phenotype in the trf4D strain. Recruitment of the

exosome and IGS1-R degradation does not therefore require

polyadenylation by Trf4 although the presence of the protein

is necessary.

Trf4 functions in rDNA copy number control

TRAMP and exosome mutants were tested for alterations in

rDNA copy number using pulsed field gel electrophoresis

(PFGE) (Figures 5A and B). In the wild-type strain, chromo-

some XII (B60% of which is composed of rDNA repeats)

showed a well-defined length corresponding to an rDNA

array of B200 repeats. In contrast, sir2D and top1D strains

showed hyper-recombination phenotypes that caused

chromosome XII to appear as smears (compare lane 1 with

lanes 6 and 7 in Figure 5A and lanes 1–3 with lanes 7–9 and

13 and 14 in Figure 5B) (Christman et al, 1988; Gottlieb and

Esposito, 1989; Bryk et al, 1997). Strains lacking the TRAMP

components, trf4D or air1D air2D, showed sporadic devia-

tions from the wild-type rDNA copy number, with the greatest

effect in trf4D strains. These deviations from wild-type repeat

number had only limited penetrance, with three out of eight

trf4D clones analyzed showing a clear repeat number reduc-

tion and two strains showing repeat expansion. We observed

no evidence of an rDNA hyper-recombination phenotype,

which would be indicated by smearing of the rDNA band,

in any trf4D single mutant analyzed, in contrast to a previous

report (Sadoff et al, 1995).

A METHtrf4 top1D strain was viable on restrictive high

methionine medium, and multiple top1D trf4D transformants

isolated in four independent experiments were all growth-

impaired but viable. This is in contrast to their reported

synthetic lethality (Sadoff et al, 1995; Castano et al, 1996;

Pan et al, 2006), and may reflect differences in alleles or

strain background. We also combined trf4D with sir2D, and

growth of the double mutant strain was similar to that of the

trf4D single mutant. The double mutants of trf4D with either

sir2D or top1D showed large losses in rDNA repeat number

Figure 4 IGS1-R is a 30-heterogeneous transcript polyadenylated by Pap1. (A) Primer extension analysis of IGS1-R performed on poly(A)þ
RNA from oligonucleotide NTS1 F3 (see C). (B) Ethidium-stained 6% acrylamide gel of 35-cycle 30 RACE reactions using NTS1 R2 (see C). (C)
Schematic of IGS1-R showing mapped 30 ends and primer locations for 30 RACE and primer extension. (D) Northern analysis of TRAMP and
Pap1 mutants grown at 251C in YPD and shifted to 371C for 1 h, probed with NTS1 HpaI and SCR1. (E) trf4D strains were transformed with Trf4
plasmids (Vanacova et al, 2005), grown to mid-log in synthetic media and probed with NTS1 HpaI and ACT1. Error bars¼71 standard error,
n¼ 3.
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(Figure 5B, lanes 10–12 and 15–17), and this phenotype was

observed in all clones tested (at least four of each combina-

tion). In contrast, the combination of trf5D with either sir2D
or top1D had no apparent effect on rDNA repeat number

(Supplementary Figure 2A). We also tested the exosome

mutant rrp6D (Supplementary Figure 2B). Loss of Rrp6

alone had no clear effect on repeat number (lane 2), but an

rrp6D top1D double mutant showed reduced heterogeneity

relative to top1D single mutant strains (lanes 3–7).

To assess potential links between stability of the rDNA and

transcription of IGS1-R, IGS1-F and IGS2-R, the trf4D sir2D
and trf4D top1D double and single mutant strains were

analyzed by northern hybridization (Figures 5C and D) and

Pol II ChIP (Figure 5E).

Levels of IGS1-R appeared to correlate with rDNA copy

number instability, being higher in sir2D trf4D and top1D
trf4D double-mutant strains than in the sir2D and top1D
single mutants. In Figure 5D, the quantification of the north-

ern data is normalized to rDNA repeat number. The levels of

IGS1-F were highest in the sir2D and top1D single mutants,

which showed the greatest repeat heterogeneity. In contrast,

the levels of IGS2-R appeared principally dependent on the

presence or absence of Sir2. The ratio of abundance of the

ncRNAs was altered between top1D and sir2D strains expres-

sing or lacking Trf4. It is possible that this has an effect

on repeat number, although we have no direct evidence for

this. Loss of Trf5 from either the sir2D or top1D strains had no

clear effect on the levels of any of the IGS ncRNAs

(Supplementary Figure 2C).

ChIP for RNA Pol II at the IGS1-R locus (Figure 5E) shows

that Pol II occupancy is not significantly altered in top1D trf4D
strains compared to top1D. Hence, the reduced heterogeneity of

the rDNA repeats in the trf4D top1D double mutant relative to

the top1D single mutant is not due to reduced transcription.

This also confirms that the high accumulation of transcript is

due to increased RNA stability in the absence of Trf4.

We conclude that deletion of TRF4, but not TRF5, from the

sir2D or top1D strains leads to greatly increased levels of

IGS1-R, due to increased RNA stability, and a drastic loss of

rDNA repeats. Deletion of RRP6 from the top1D strain

Figure 5 Loss of Trf4 alters rDNA copy number. (A, B) Pulsed field analysis of rDNA copy number in TRAMP mutants and controls. Strains
were grown to stationary phase in YPD, resolved on a 0.8% pulsed field gel and probed with 18S to highlight chromosome XII. Ethidium
bromide staining of other chromosomes shows integrity of preparation; the top chromosome visible is chromosome IV. Repeat numbers were
calculated from an S. cerevisiae PFGE marker (A) and an H. wingii PFGE marker (B). (C) Northern analysis of strains grown to mid-log in YPD
and probed with (top to bottom) NTS1 HpaI, NTS1 R, NTS2 F and ACT1. (D) Quantification of transcripts in (C). Results have been normalized
to average repeat number in the culture determined by Southern blot analysis of BglII-digested genomic DNA (data not shown). (E) ChIP
analysis of RNA polymerase II levels at the IGS1-R locus. The experiment is performed in Smc1-13Myc strains; however, northern analysis
shows that this does not alter transcript levels (data not shown). Error bars¼71 standard error, n¼ 3.
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appeared to reduce the heterogeneity in rDNA repeat number

without clearly decreasing average repeat length.

Trf4 catalytic activity is not required for repeat

regulation

One explanation for the loss of rDNA repeats in trf4D mutants

would be that Trf4 is a DNA polymerase involved in rDNA

replication, as previously proposed (Wang et al, 2000).

Were this the case, the polymerase activity of Trf4 would

be required to allow the hyper-recombination observed in

top1D strains.

To test this, we made use of the suppression of the

rDNA repeat heterogeneity seen in top1D strains by loss of

Trf4 (Figure 6A). We compared trf4D TOP1 (lanes 1, 4 and 7)

and trf4D top1D (lanes 2–3, 5–6 and 8–9). These strains also

carried plasmids lacking an insert (lanes 1–3), expressing

intact Trf4 (lanes 4–6) or expressing the catalytically inactive

Trf4-DADA (lanes 7–9). The top1D strains expressing wild-

type Trf4 showed a hyper-recombination phenotype (lanes 5

and 6). Hyper-recombination was suppressed in the absence

of Trf4 (lanes 2 and 3), but was clearly present when only

Trf4-DADA was expressed (lanes 8 and 9). Western blotting

confirmed that the mutant and wild-type Trf4 were expressed

at similar levels (data not shown). In this experiment, strains

were grown on minimal media to select for plasmid main-

tenance and recombination was less active than on complete

YPD media used in the experiments shown in Figure 5. Thus,

the poly(A) polymerase activity of Trf4 is not required

for IGS1-R degradation and is also not required for hyper-

recombination.

rDNA recombination frequency is unaffected by loss

of TRF4

These analyses do not resolve differences in recombination

frequency and stability of the rDNA repeat tract.

Recombination rates within the rDNA tract can be assessed

by integrating a single-copy marker gene and scoring for its

loss. The presence or absence of a functional MET25 gene can

be scored by a colony color test on medium containing Pb2þ ,

on which met25D colony sectors turn dark brown (Figure 6B)

(Smith and Boeke, 1997). A MET25-GFP construct was inte-

grated into the IGS2 region of a single rDNA repeat in one

strain of each genotype used in Figure 5. Three independent

MET25 insertion clones from each strain were then scored for

colony sectoring phenotypes (Figure 6C). Comparison

of sectoring levels in top1D and top1D trf4D shows that loss

of TRF4 has little or no effect on recombination frequency.

A transgene inserted at this location was previously shown to

be repressed by Sir2 (Smith and Boeke, 1997), and we

confirmed this for our insert by western blotting (data not

shown). Met25-GFP expression was lower in western blots

from trf4D strains than trf4D sir2D strains (data not shown),

showing that Sir2-dependent silencing was maintained. This

indicates that hypoacetylation of H3 and H4 by Sir2 is not

lost, since Sir2-dependent silencing requires its deacetylation

activity (Li et al, 2006).

In trf4D strains, transcription of the MET25-GFP reporter

was frequently reduced, resulting in dark pigmentation

(Figure 6B). This is consistent with the reduction of IGS1-F

expression seen in sir2D trf4D strains compared to sir2D,

but the effect was variable between fresh transformants and

old cells. The sir2D trf4D strain proved hypersensitive to

Pb2þ ions and could not be assessed in the sectoring assay.

Trf4 is recruited co-transcriptionally to IGS1

We hypothesized that the altered rDNA stability in trf4D
strains is due to direct effects of Trf4 on the rDNA or

chromatin rather than indirect consequences of defects in

RNA processing. In this case, the role of IGS1-R transcription

might be to recruit Trf4 to the rDNA in the vicinity of the RFB

region. Were this model correct, we would detect an associa-

tion of Trf4 with the rDNA IGS1-R region that is dependent on

RNA Pol II transcription.

ChIP analysis of Trf4-Myc over the rDNA IGS regions

(Figure 7B) showed clear enrichment over IGS1-R. To confirm

that this association was dependent on RNA Pol II transcrip-

tion, we analyzed an rpb1-1 strain, which carries a fast-acting

temperature-sensitive mutation in RNA Pol II (Figure 7A).

The ChIP signal for Trf4 was substantially reduced across the

IGS1-R region at the restrictive temperature, consistent with

its recruitment by IGS1-R nascent transcripts, although the

ChIP signal for Pol II showed greater reduction than the Trf4

signal (Figure 7B). To ensure that the protein context of the

rDNA is not generally altered in this strain, lysates from this

experiment were checked by ChIP for the presence of Sir2,

which was only mildly reduced at 371C (Supplementary

Figure 3).

These data indicate that Trf4 is recruited co-transcription-

ally to the nascent IGS1-R transcripts, probably via Nrd1/

Nab3. This is likely to be an important factor in allowing very

rapid degradation of IGS1-R as soon as transcription termina-

tion generates a free 30 end for exosome activity. This may

also be the case for other cryptic ncRNA transcripts.

Figure 6 The role of Trf4 in rDNA recombination. (A) Pulsed field
analysis of trf4D top1D strains with Trf4 plasmids. One TOP1 and
two top1D samples are shown in each case. Cells were grown in
synthetic media and harvested at stationary phase approximately 50
generations after TOP1 deletion. Gel was run and probed as in
Figure 5B. (B) An rDNA MET25 reporter was randomly integrated in
each strain, and cells were grown to mid-log before plating on
modified lead acetate plates at 251C. Once colonies were B1 mm
diameter, they were imaged and scored for the presence or absence
of sectoring. (C) Recombination frequency assessed by colony
sectoring. Three separate MET25 insertion clones were analyzed
twice for each strain. Error bars¼71 standard error, n¼ 6.
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Alterations in rDNA copy number in trf4D strains do not

reflect differences in cohesin recruitment

In order to address whether cohesin is displaced by IGS1-R

accumulation in the trf4D strains, we performed ChIP

analysis using a 13-Myc-tagged cohesin subunit Smc1. The

Smc1-Myc fusion is the only form of Smc1 present in the

cells, which showed no growth impairment. In addition,

rDNA recombination rates were unaltered, as judged by

the Pb2þ plate method described above (data not shown),

indicating that the fusion protein is fully functional.

In the wild-type background, Smc1-Myc showed the

expected distribution with a clear peak over the CAR

(Figure 7C). Neither the distribution nor the intensity of the

Smc1 ChIP signal was altered by the loss of Trf4. In contrast,

the Smc1 ChIP signal was strongly reduced by loss of Top1,

either in the presence or absence of Trf4. This makes

it unlikely that the effects of Trf4 on rDNA copy number

regulation are related to removal of cohesin from the

IGS region.

Discussion

Cryptic transcripts are generated from repressed

chromatin regions in S. cerevisiae

Genome-wide analyses of RNA Pol II density in yeast using

ChIP and tiling microarrays showed that almost the entire

genome is transcribed (David et al, 2006; Steinmetz

et al, 2006). A striking feature of these analyses was that

regions of repressed chromatin, notably in the rDNA IGS1

region and telomeres, showed Pol II occupancy that was

significantly below the background of ‘non-transcribed’

regions. Paradoxically, these repressed regions can be ac-

tively transcribed under some conditions, leading to the

suggestion that initial rounds of transcription might be

needed to establish subsequent silencing (Steinmetz et al,

2006). In strains lacking the poly(A) polymerase Trf4, we

detected cryptic transcripts derived from CEN3 and from

regions of repressed chromatin: a telomeric region

(TEL05L) and the rDNA intergenic spacer region IGS1-R.

The TEL05L ncRNA transcript stabilized in TRAMP and

exosome mutants is B6.5 kb in length and is derived from the

Y0 region, which is fully or partially conserved at most yeast

telomeres (Louis and Haber, 1992). The RNA initiates close to

the terminal telomeric repeats and runs antisense to an ORF

(YEL077C), which potentially encodes a 143 kDa protein

proposed to function as a DNA helicase involved in telomere

maintenance (Yamada et al, 1998). Sequence analyses

showed that ncRNAs are generated from at least two telo-

meres, and we speculate that they may be transcribed from

many or all telomeres. The identification of these ncRNAs

might be consistent with the model that cryptic transcripts

play a role in establishing silenced chromatin regions

(Steinmetz et al, 2006). In S. cerevisiae, centromeric regions

are very small, lack clear heterochromatic regions and were

not previously reported to be transcribed. In contrast, cen-

tromeric regions in Schizosaccharomyces pombe are tran-

scribed, but the RNAs are rapidly degraded by the TRAMP

and exosome complexes (Buhler et al, 2007). We detected an

RNA of B1.2 kb apparently derived from CEN3, which was

elevated in the trf4D strain, suggesting that cryptic centro-

meric transcripts may also be present in S. cerevisiae.

Previous reports functionally linked Trf4 with Top1 and

cohesion and condensation in the rDNA repeats (Castano

et al, 1996), and we therefore analyzed the IGS1 transcripts in

more detail. Two transcripts, IGS1-R and IGS1-F, are gener-

ated by divergent transcription from the E-pro promoter. We

showed that IGS1-R, but not IGS1-F, is recognized and

degraded by TRAMP4 and the exosome. Expression of a

catalytically inactive form of Trf4 showed that its poly(A)

polymerase activity is not required for degradation of IGS1-R.

Figure 7 Trf4 is recruited co-transcriptionally to the IGS1-R region
of the rDNA. (A, B) ChIP analysis of Trf4 recruitment to the IGS in
an rpb1-1 strain. rpb1-1 TRF4-13Myc cells were grown to mid-log at
251C in YPD and half were shifted to 371C for 30 min. Chromatin
was precipitated from 251C and 371C cultures using anti-RNA
polymerase II 8WG16 (A) and anti-Myc 9E10 (B). (C) ChIP analysis
of Smc1-13Myc distribution in cells growing at 251C in YPD. Error
bars¼71 standard error, n¼ 4 (A, B), n¼ 3 (C).
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The catalytic activity of Trf4 was also dispensable for degrada-

tion of HSP104 mRNA in THO complex mutants (Rougemaille

et al, 2007), but was required for degradation of hypomethy-

lated tRNAi
Met (Vanacova et al, 2005). This suggests that

polyadenylation aids degradation of structured substrates, but

is dispensable on less structured RNAs. The 30 ends of the

IGS1-R transcripts are polyadenylated by the canonical poly(A)

polymerase Pap1, and are very heterogeneous. We speculate

that this heterogeneity may result in part from termination by

collision with oncoming RNA polymerase I molecules.

ChIP analyses showed that Trf4 could be crosslinked to the

rDNA over the IGS1-R region, but not over IGS1-F. This

association is largely dependent on functional RNA Pol II,

since it was substantially reduced in an rpb1-1 mutant strain

at non-permissive temperature. We therefore propose that

Trf4 is recruited co-transcriptionally to the nascent IGS1-R

transcripts. The IGS1-R region contains multiple predicted

binding sites for the RNA-binding proteins Nab3 and Nrd1,

which were previously reported to act as cofactors for the

exosome in RNA degradation (Vasiljeva and Buratowski,

2006). Consistent with this, degradation of IGS1-R was

strongly inhibited by a mutation in Nrd1, indicating the

involvement of the Nrd1/Nab3 heterodimer in recruiting

the TRAMP and/or exosome complexes. Since Nrd1/Nab3

also function in transcription termination by RNA Pol II

(Arigo et al, 2006b; Thiebaut et al, 2006), they clearly have

the potential to bind co-transcriptionally to nascent tran-

scripts. We saw no evidence for effects of mutations in

Nrd1 or Nab3 on termination of the IGS1-R transcript, but

we predict that they act to recruit the TRAMP complex to

nascent IGS1-R transcripts.

Co-transcriptional binding of Nrd1–Nab3 and Trf4 may be

an important factor in the very rapid degradation that makes

many transcripts from yeast and other eukaryotes ‘cryptic’.

The exosome cannot degrade co-transcriptionally, since it

requires a free 30 end, but it appears that the IGS1-R

transcripts are already targeted during transcription, poten-

tially allowing their immediate degradation when the

transcript is released from the polymerase.

Links between Trf4 and rDNA copy number regulation

Strains carrying trf4D displayed sporadic alterations in copy

number. In contrast, strains carrying either top1D or sir2D
showed hyper-recombination, manifested as extensive rDNA

repeat length heterogeneity. The combination of trf4D with

either top1D or sir2D resulted in a synergistic phenotype with

drastic loss of rDNA repeats. Analysis of an integrated MET25

marker indicated that this does not reflect altered recombina-

tion rates, indicating that rDNA instability is responsible for

repeat loss. Deletion of exosome component Rrp6 in top1D
reduced the hyper-recombination phenotype, indicating that

Rrp6 is also required for normal rDNA stability.

The cohesin complex is believed to hold sister chromatids

together in the rDNA, so that recombination does not lead to

alterations in copy number (Huang et al, 2006). However,

loss of Trf4 did not detectably affect cohesin binding over

IGS1 and IGS2. Changes in rDNA recombination rate without

alteration of cohesin association were previously observed in

mutants of Lrs4/Csm1 (Huang et al, 2006).

Together the data are consistent with the model in

Figure 8. Transcription of IGS1-F through the CAR located

in IGS2, or the balance between transcription of IGS1-F and

IGS2-R may play important roles in cohesin displacement

(Kobayashi and Ganley, 2005; Li et al, 2006). However, we

predict that IGS1-R has a distinct function, which is important

for rDNA stability, although its exact nature remains unclear.

Trf4 and other factors binding to the nascent IGS1-R tran-

script may enhance rDNA stability at the site of transcription,

possibly by promoting the repair of DNA damage.

Alternatively, IGS1-R transcripts that escape degradation

might exert a dominant negative effect on rDNA repair or

recombination at other sites, and these models are not

mutually exclusive. The ChIP data showing co-transcriptional

recruitment of Trf4 would be consistent with association of

the TRAMP complex with the rDNA at the site of transcrip-

tion via IGS1-R. Rrp6 retains mRNAs with aberrant 30 ends

close to the site of transcription (Hilleren et al, 2001), and it is

conceivable that IGS1-R, which shows high 30 heterogeneity,

could also be linked to the transcription site by Rrp6.

The IGS1-R transcript passes through the RFB, a key region

for rDNA copy number regulation. Replication forks emanate

from replication origins (termed ARS; Figure 1) in each rDNA

repeat, but forks moving against the direction of pre-rRNA

transcription are stalled at the RFB, presumably to reduce

collision with RNA Pol I. Top1 binding sites flank the RFB and

are required to relieve DNA supercoiling generated by the

high Pol I transcriptional rate. We speculate that the lack of

Top1 activity leads to DNA damage over RFB regions carrying

stalled DNA replication forks. Strains lacking Sir2 should not

have excessive supercoiling at the RFB, but will have more

stalled replication forks in this region due to increased

activation of rDNA replication origins when Sir2 is absent

(Pasero et al, 2002).

There are a number of potential links between the exo-

some and its cofactors and the repair of DNA damage in

Figure 8 Model for the roles of ncRNAs in the rDNA spacer
regions. A DNA replication fork is shown blocked at the RFB.
Transcription of IGS1-F and IGS2-R may concentrate cohesin at
the CAR. This would potentially resemble the role of RNA Pol II in
concentrating cohesin to other sites of convergent transcription
(Lengronne et al, 2004). Alterations in the level or balance of
IGS1-F and IGS2-R may also be responsible for regulated cohesin
displacement, allowing misalignment of sister chromatids and
alterations in repeat number. The high rate of pre-rRNA transcrip-
tion and attendant DNA supercoiling may lead to DNA damage,
particularly at the DNA replication fork stalled at the RFB, when
Top1 is absent. The IGS1-R transcript is proposed to recruit Nrd1
and Nab3, which generally function together with the Sen1 RNA
helicase. These factors may stimulate co-transcriptional association
of the TRAMP complex and the exosome with the IGS1-R transcript.
Interactions between TRAMP, the exosome and the RFB region of
the rDNA, via the IGS1-R transcript, are envisaged to alter the
chromatin structure and/or promote DNA repair (see Discussion).
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yeast. Strains lacking Trf4 are hypersensitive to DNA cleavage

induced by the Top I inhibitor camptothecin (Walowsky et al,

1999). This was also the case for air1D air2D double-mutant

strains (our unpublished observations), showing this pheno-

type to be TRAMP-related. Strains lacking Trf4 were also

reported to be hypersensitive to DNA damage caused by

treatment with the alkylating agent MMS (Walowsky et al,

1999). In addition, the nuclear exosome components Rrp6

and cofactor Rrp47/Lrp1/C1D are implicated in the repair of

UV-induced DNA damage (Hieronymus et al, 2004), and

rrp47D strains are defective in both non-homologous end

joining and homologous recombination (Erdemir et al, 2002).

We speculate that the TRAMP and exosome complexes also

play a role in the repair of DNA damage at the RFB. Increased

histone mRNA levels leading to defects in DNA metabolism

have recently been reported (Reis and Campbell, 2006);

however, this was not found to be the case for a trf4D single

mutant, and we have also not observed this in our strains

(data not shown).

Recombination events are frequent in top1D mutants but

rare in trf4D. We predict that recombination-based repair is

infrequent in trf4D strains due to the action of Top1 in

removing supercoils and preventing DNA damage.

This may explain the low penetrance of the repeat number

change phenotype in trf4D, with events altering repeat num-

ber occurring only once in many generations. Notably,

however, some trf4D and air1D air2D samples contained

two populations with discrete rDNA lengths (Figure 5A and

data not shown), suggesting that a recombination event had

occurred during early growth of the culture. The top1D trf4D
strains are predicted to undergo frequent rDNA damage

repair by recombination. However, the repeat tract collapses

as these events are biased toward contraction, being based on

strand invasion rather than homologous recombination.

Degradation of the IGS1-R transcript resembles that of the

CUTs, which account for a significant proportion of

the genome of S. cerevisiae. A crude estimate based on

the microarray analyses of Wyers et al (2005) suggests a

minimum of 600 CUTs, or just under 10% of the number

of annotated genes (see Supplementary Figure 4 for

calculations). Strains lacking Trf4 are reported to show

defects in chromosome arm cohesion (Wang et al, 2000;

Edwards et al, 2003). Whether this is related to the recruit-

ment of TRAMP to the numerous and widely dispersed CUTs

remains to be determined.

Materials and methods

Strains and plasmids
Yeast transformation was performed by standard methods. Yeast
strains are described in Supplementary Table 1. Cells were grown in
YPD (2% peptone, 2% glucose, 1% yeast extract) or synthetic
media (0.5% (NH4)SO4, 1.7% yeast nitrogen base, 2% glucose,
amino acids) at 251C; temperature shifts to 371C were performed in
a shaking water bath. Plasmids are described in Supplementary
Table 2 and oligonucleotides used for cloning are listed in
Supplementary Table 5.

Recombination assays were performed as described by Cost and
Boeke (1996).

RNA analysis
Yeast RNA extraction and northern analysis were performed as
described (Tollervey, 1987); high molecular weight RNA was
separated on 1.2% glyoxal gels. Experimental details and probes
are described in Supplementary data and Supplementary Table 3.

PFGE
PFGE was performed as described (Kobayashi, 2003); see Supple-
mentary Materials and Methods for a detailed protocol.

ChIP
ChIP was carried out as described (Kotovic et al, 2003) with
modifications (see Supplementary Materials and Methods and
Supplementary Table 4).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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