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C A N C E R

RRM2 enhances MYCN-driven neuroblastoma 
formation and acts as a synergistic target 
with CHK1 inhibition
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Laurentijn Tilleman12, Filip Van Nieuwerburgh12, Vanessa Vermeirssen1,2,13, 
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High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation 
load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications 
allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage 
impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate 
dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor 
formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction 
alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuro-
blastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit 
differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 
inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibi-
tion acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the 
therapeutic potential.

INTRODUCTION
Neuroblastoma is a pediatric tumor arising from immature sympa-
thetic neuroblasts (1, 2), with current survival rates for high-risk 
cases still being disappointingly low despite intensive multimodal 
therapy. Given that the number of mutations in newly diagnosed 
cases is typically very low, the search space for mutated druggable 
targets is limited except for ALK mutations. In contrast to the low 
mutational burden, DNA copy number changes are highly recur-
rent with 2p and 17q gains occurring in both MYCN-amplified 
and nonamplified high-risk cases, while 1p and 11q deletions are 
predominantly found in MYCN-amplified and MYCN-nonamplified 

high-risk cases, respectively. We and others previously showed that 
focal gains and amplifications can highlight candidate genes impli-
cated in neuroblastoma initiation and/or maintenance, potentially 
expanding the current number of available druggable targets (3, 4). 
Recent whole-genome sequencing efforts have uncovered recurrent 
complex rearrangements, including chromothripsis affecting the 
chromosome 2 short arm. These rearrangements are often accom-
panied by amplicon formation encompassing the MYCN locus and 
regulatory sequences driving MYCN expression, as well as additional 
genes that have been proposed to have a tumor-promoting role dis-
tinct from MYCN activity itself (5), such as ODC1 (6), the gene 
encoding for the rate-limiting enzyme in polyamine biosynthesis; the 
ALK gene implicated in neuronal development and codriver of MYCN- 
driven neuroblastoma formation (7, 8); and SOX11, encoding a pre-
sumed lineage dependency transcription factor with functions distinct 
from the core regulatory transcription factor circuitry (9).

Here, we report on the further dissection of focal chromosome 
2p imbalances and identified the “ribonucleotide reductase subunit 
M2” (RRM2) gene, located on 2p25.1, which encodes the small reg-
ulatory subunit of the ribonucleotide reductase (RNR) complex. 
RRM2 is the catalytic component of the RNR enzyme and is essen-
tial for the maintenance of deoxynucleotide triphosphate (dNTP) 
pool homeostasis required for DNA replication and repair. Synthesis 
of RRM2 protein is regulated in a cell cycle–dependent fashion, 
increasing to maximal levels during S phase of the cell cycle (10–12). 
Depletion causes G1-S phase arrest and rapidly leads to increased levels 
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of replicative stress due to DNA replication fork stalling and decreased 
cell proliferation. Replicative stress activates the ATR (Ataxia 
Telangiectasia and Rad3-Related Protein)-CHK1 (Checkpoint Kinase 1) 
DNA damage response to control cell cycle checkpoints, origin 
firing, and replication fork stability to ensure genomic stability. This 
response includes RRM2 up-regulation through CHK1-E2F Transcrip-
tion Factor 1 (E2F1) transcriptional regulation and ATR-controlled 
cyclin F inactivation to block RRM2 protein degradation (13). 
MYC and MYCN (V-Myc Avian Myelocytomatosis Viral Oncogene 
Neuroblastoma) proteins cause replicative stress, among others, 
through increased replication origin use and elevated global tran-
scriptional activity (14–17). This can explain the up-regulation of 
many DNA damage response genes including RRM2 to cope 
with toxic replicative stress levels and increased DNA damage 
(18). Evidence for a more direct role of RRM2 in cancer formation or 
maintenance comes from mouse models in which increased RRM2 
expression promotes lung (19), breast (20), and prostate cancer (21). 
Furthermore, RRM2 dependency was demonstrated in BRAFV600E- 
driven melanoma (22) and Ewing sarcoma (23). Of further inter-
est, RRM2 was shown to be the target of synthetic lethal interaction 
with G2 Checkpoint Kinase (WEE1) inhibition in H3K36me3- 
deficient cancers (12). Together, these studies underline the potential 
importance of RRM2 levels in oncogenesis and cancer cell survival, 
thus marking RRM2 as a potential drug target.

Here, we provide evidence for enhanced RRM2 levels resulting 
from increased RRM2 copy numbers through large segmental or focal 
chromosome 2p gains or high-level amplification. Elevated RRM2 
expression levels correlated with decreased overall and event-free 
survival in patients with neuroblastoma, and RRM2 expression levels 
were up-regulated during MYCN-driven neuroblastoma formation 
in mice. In vitro experiments support a role for RRM2 as a depen-
dency factor in both neuroblastoma cell lines and three-dimensional 
(3D) neuroblastoma spheroid cultures. Further evidence for a direct 
cooperative role of RRM2 in neuroblastoma formation was provided 
through combined overexpression with MYCN in the sympathetic 
neuronal lineage in zebrafish, which led to increased tumor pene-
trance from 16% up to more than 80%, while overexpression of 
RRM2 alone did not cause tumor formation. High-risk neuroblas-
toma cells are addicted to the replicative stress-response ATR-CHK1 
signaling pathway, with RRM2 as a key downstream factor of this 
signaling pathway. In vitro forced overexpression of RRM2 in neu-
roblastoma alleviates replicative stress, as monitored by pRPA32 
(phosphorylated Replication Protein A 32 KDa Subunit) levels. This is 
further supported in  vivo by our double transgenic MYCN-
RRM2 zebrafish neuroblastoma model, with tumor cells exhibiting 
reduced S345pCHK1 and γH2AX (gamma H2A Histone Family 
Member X) protein levels. Last, RRM2 inhibition synergistically 
enhances sensitivity of neuroblastoma cells to pharmacological 
targeting of ATR-CHK1 pathway addiction, thus suggesting the 
therapeutic potential for this drug combination in high-risk CHK1- 
addicted, primary neuroblastomas.

RESULTS
RRM2 is a target for focal gains and amplifications affecting 
gene dosage and neuroblastoma patient survival
DNA copy number profiles of 556 primary high-risk neuroblasto-
ma cases (24) were analyzed for recurrent small segmental gains or 
amplifications affecting chromosome 2p loci. In addition to known 

amplicons implicating MYCN, ODC1, ALK, and SOX11, we identi-
fied a previously unknown smallest region of overlap encompassing 
RRM2, encoded on 2p25.1 (Fig.  1A and fig. S1A). Subse-
quent additional analysis of high-resolution whole-genome data 
(63 cases; EGAS00001001308), whole-exome data (156 cases; 
EGAS00001003244), and low-resolution DNA copy number data 
(200 cases; GSE45480) revealed an additional 60 of 419 cases with 
2p gains or amplifications (fig. S1B), with amplification defined as 
>4-fold increase of RRM2 signal in relation to the number of 
chromosomes 2 and gains with a 1.5- to 4-fold copy number in 
accordance with the European Neuroblastoma Quality Assessment 
group. In some cases, the RRM2 locus was involved in more com-
plex amplicons, as illustrated by case “WGS-4” resulting from chro-
mothripsis involving chromosome 2p encompassing the RRM2 
locus, case “WGS-12” with the RRM2 locus being part of a complex 
amplification involving multiple loci across the entire chromo-
some 2, and case “WES-17” with the RRM2 gene involved in 
complex amplicon on 2p also involving MYCN and case “WES-19” 
displaying a similar pattern as observed for WES-17, but displaying 
an additional copy number jump within RRM2.

Given the crucial role of RRM2 in nucleotide metabolism and 
replicative stress control and its recent established role as (co)driver 
in various cancer subtypes, we performed further data mining to 
find support for a functional role for RRM2 in neuroblastoma. First, 
we evaluated the effects of RRM2 gene copy number increase on ex-
pression levels and observed a positive correlation (R = 0.39, P = 1.28 × 
10−11) (Fig. 1B). We also observed a positive correlation between 
MYCN copy number status and RRM2 expression levels (Fig. 1C), 
in keeping with a direct regulatory role for MYCN, based on publicly 
available chromatin immunoprecipitation sequencing (ChIP-seq) 
data indicating direct binding to the RRM2 promotor (fig. S1C). 
MYC/MYCN also regulates the transcription of the E2F1, E2F2, 
and E2F3 genes (25), which directly regulate RRM2 expression (26). 
The transcriptional consequences of MYCN knockdown have been 
extensively documented by previous studies and enabled to verify 
whether modulated MYCN levels indeed affect RRM2 expression. 
First, Valentijn et al. (18) performed time course experiments in 
IMR-32 neuroblastoma cells (MYCN amplified) upon MYCN knock-
down (fig. S1D), and our team executed similar experiments in 
IMR-5/75 neuroblastoma cells (fig. S1E) (also MYCN amplified) 
(27). In addition, Zeid et al. (28) characterized the kinetic effects of 
dynamic modulation of MYCN (at 0, 2, and 24 hours after inactiva-
tion) to profile changes in states with high, medium, and low levels 
of MYCN in Tet-OFF SHEP-21N neuroblastoma cells (fig. S1F). 
Collectively, these experiments consistently show strong down- 
regulation of RRM2 upon MYCN inactivation/depletion. Second, 
Kaplan-Meier analysis showed that high RRM2 expression levels 
predict both adverse overall and event-free survival probability of 
patients in three large primary tumor cohorts. These results are in 
keeping with our previously reported four-gene prognostic signature 
in neuroblastoma, which included RRM2 (Fig. 1D and fig. S1G) (29). 
Third, we looked into the gene expression dataset of early (hyper-
plastic) lesions at weeks 1 and 2 after birth and established tumors 
at week 6 from a murine model of MYCN-driven neuroblastoma 
(TH-MYCN) and expression data from normal matching sympa-
thetic mouse ganglia. This allowed monitoring of the dynamic reg-
ulation of gene expression during the tumor formation process, and 
we observed strong up-regulation of Rrm2 expression levels in 
comparison to wild-type mice sympathetic ganglia (Fig. 1E) (30).
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Fig. 1. In silico analysis of genomic and transcriptomic data of primary neuroblastoma converges toward RRM2 as a top-ranked 2p codriver in high-risk neu-
roblastoma. (A) Array CGH (comparative genomic hybridization) profiles of >200 high-risk neuroblastoma cases converge toward the RRM2 gene (2p25.1) as recurrently 
gained on 2p (red: gained/amplified region and blue: deleted region). (B) Left: Boxplot indicating the gene dosage effect for RRM2 expression in relation to the RRM2 
copy number status. Right: Correlation analysis of RRM2 expression with RRM2 copy number data [National Research Council (NRC) neuroblastoma cohort (n = 283); 
hgserver2.amc.nl]. ANOVA, analysis of variance. (C) Left: Boxplot indicating the gene dosage effect for RRM2 expression in relation to the MYCN copy number status. 
Right: Correlation analysis of RRM2 expression with MYCN copy number data [NRC neuroblastoma cohort (n = 283); hgserver2.amc.nl]. (D) High RRM2 expression levels 
correlate to a poor overall and event-free neuroblastoma patient survival [Kocak cohort (n = 283); hgserver2.amc.nl]. (E) Rrm2 expression is strongly up-regulated during 
TH-MYCN–driven neuroblastoma tumor development. (F) Pearson correlation of RRM2 and its upstream regulators (MYCN, WEE1, BRCA1, and CHD5) in expression data 
from various cancer entities available (hgserver2.amc.nl). AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia.

http://hgserver2.amc.nl
http://hgserver2.amc.nl
http://hgserver2.amc.nl
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We also investigated whether RRM2 expression levels could be 
enhanced through DNA copy number gains, affecting RRM2 up-
stream regulators (Fig. 1F). Besides MYCN, a second bona fide on-
cogene and target of amplification, LIN28B (31), also regulates 
RRM2 through down-regulation of let-7 (32). In addition, CHD5, a 
known tumor suppressor and commonly deleted gene in the critical 
1p36 chromosome region in neuroblastoma (33), is a transcriptional 
repressor of WEE1 (34), which itself controls cyclin-dependent kinase 2 
(CDK2) (35), ensuring RRM2 degradation during S-G2-M transition. 
Last, BRCA1 (Breast Cancer gene 1) (encoded on the recurrently 
gained 17q region in neuroblastoma) was shown to be recruited by 
MYCN to promoter- proximal regions to prevent MYCN-dependent 
accumulation of stalled RNA polymerase II (RNAPII) (36) and has 
also been reported to up-regulate RRM2 expression (37). Together, 
these data suggest that, in neuroblastoma, an integrated gene regula-
tory network controls RRM2 expression levels, which is further en-
hanced by recurrent increased DNA copy numbers affecting these 
loci (fig. S1H).

Functional in vitro and in vivo validation of RRM2 as a novel 
dependency factor in neuroblastoma
To assess the functional impact of RRM2 down-regulation, we per-
formed a transient RRM2 knockdown using two independent small 
interfering RNAs (siRNAs) (Fig. 2A, left) in two high-risk neuro-
blastoma-derived cell lines, the MYCN-amplified IMR-32 cells and 
nonamplified CLB-GA cells. Transient RRM2 down-regulation in-
duced the expected elevated levels of pRPA32 and 345pCHK1, re-
flecting increased replicative stress. In addition, RRM2 knockdown 
also led to increased DNA damage, evidenced by yH2AX induction 
known to result from replication fork collapse (Fig. 2B and fig. S2A) 
and reduced proliferation (Fig. 2C). In keeping with these findings, 
we also found evidence for p53 pathway activation illustrated by 
up-regulation of CDKN1A (encoding the p21 response gene) and 
RRM2B encoding the p53-controlled RNR (p53R2) (Fig. 2A, right).

Previous studies revealed strong effects on the cellular transcrip-
tome under conditions of nucleotide stress. We explored this in IMR-32 
and CLB-GA neuroblastoma cells by whole-transcriptome profiling 
followed by “gene set enrichment analysis” (GSEA) before and after 
RRM2 knockdown. This revealed a significant down-regulation of 
MYC and E2F targets (Fig. 2D, top) and up-regulation of p53 targets 
(Fig. 2D, bottom) compared to control cells, among others.

To investigate the role of RRM2 on MYCN-driven neuroblastoma 
formation in vivo, we evaluated the impact of increased RRM2 
expression on a MYCN-driven neuroblastoma zebrafish model. 
Therefore, a stable Tg(dh:hRRM2; dh:mCherry) zebrafish line 
(further designated as RRM2 line) was generated and crossed with 
Tg(dh:eGFP-MYCN)–overexpressing zebrafish, designated as MYCN 
(8). RRM2 overexpression in MYCN;RRM2 double transgenic zebra-
fish markedly increased tumor penetrance from 16 to 84% and accel-
erated in vivo neuroblastoma formation, which started already as 
early as 5 weeks of age (P < 0.0001) (Fig. 3A, left). To confirm these 
results and exclude an off-target effect of the integration site, we 
generated a mosaic model using the Tol2 transposase system (which 
induces random integration of overexpression constructs) to ex-
press cmlc2:eGFP/dh:RRM2 in the MYCN zebrafish, whereby the 
integration of the transgene is tracked by a green fluorescent signal 
in the heart of the zebrafish driven by the cmlc2 promotor. The mo-
saic model supports the data from the stable lines with significant 
(P = 0.0424) acceleration of tumor formation in MYCN zebrafish 

expressing RRM2 (Fig. 3A, right). Tumor penetrance is less marked 
as compared with the stable line experiments, which is expected 
given that constructs are not integrated into all the sympathetic 
lineage precursors in all evaluated embryos for the mosaic approach 
(38). We used fluorescence microscopy to follow up tumor formation 
in both MYCN-only and MYCN-RRM2 double transgenic zebrafish 
over time, with human MYCN and RRM2 being coexpressed with 
green fluorescent protein (GFP) and mCherry, respectively. By reverse 
transcription quantitative polymerase chain reaction (RT-qPCR) 
analysis, we could show specific human RRM2 overexpression in 
the established stable MYCN-RRM2 double transgenic zebrafish com-
pared to MYCN-only zebrafish (Fig. 3C). Next, we performed he-
matoxylin and eosin (H&E) staining and immunohistochemistry 
analysis for the markers GFP, TH, and MYCN, both on sections 
(×10 magnification) of MYCN and MYCN;RRM2 zebrafish (Fig. 3D), 
confirming that the tumors are indeed neuroblastomas in both 
model systems.

Increased RRM2 levels coincide with a CHK1-driven gene 
response indicative of enhanced replicative stress resistance
Previous studies showed that MYC(N) executes both transcriptional 
and nontranscriptional mechanisms to facilitate progression through 
the cell cycle. In cancer cells with weakened G1-S control, enhanced 
MYC/MYCN levels increase the number of origins of replication to 
accelerate DNA replication, which subsequently causes increased 
need for nucleotide supply, leading to nucleotide stress sensed by 
the ATR-CHK1 replication stress checkpoint (14). During early S 
phase, RRM2 levels are still low, and dividing cells are particularly 
vulnerable to fork stalling. MYC(N) also indirectly anticipates to 
increase dNTP supply among others through activating E2Fs, which 
directly regulate RRM2 transcription (fig. S1H) (25, 39). To gain 
further insight into the functional impact of RRM2 overexpression 
on the neuroblastoma phenotype, we first performed immunoblot-
ting for S345pCHK1 and yH2AX from protein extracts of both MYCN- 
only and MYCN-RRM2 double transgenic zebrafish. We could observe 
a down-regulation of S345pCHK1 and yH2AX in the MYCN-RRM2 
double transgenic zebrafish (Fig. 3E), hinting toward enhanced rep-
lication stress resistance upon RRM2 overexpression in vivo. Next, 
we conducted an in vitro time series experiment in CLB-GA neuro-
blastoma cells exposed to pharmacological CHK1 inhibition using 
prexasertib as a stressor over a 6- to 48-hour time frame and moni-
tored replicative stress marker induction (Fig. 3F). We observed in-
creased down-regulation of CHK1 autophosphorylation (S296pCHK1) 
together with reduction in total CHK1 and RRM2 protein levels as 
well as up-regulated yH2AX (double-strand DNA breaks) and 
pRPA32 levels (binds single-stranded DNA and is a marker for 
enhanced form stalling). Next, we evaluated the presumed rescue 
effect of doxycyclin-inducible overexpression of RRM2 in CLB-GA 
neuroblastoma cells under conditions of prexasertib exposure 
(Fig. 3G). Combining prexasertib exposure with RRM2 overex-
pression strongly attenuated pRPA32 levels in keeping with our 
proposed hypothesis that enhanced RRM2 expression can suppress rep-
licative stress. In addition to the direct and E2F-driven up-regulation of 
RRM2 through MYCN and other copy number–driven genes (see above), 
RRM2 levels are also tightly regulated through the ATR-CHK1 pathway 
(see fig. S1H). Moreover, ATR also dampens origin use to keep excessive 
effects of supraphysiological MYCN levels under control (40). In light of 
these observations, we further evaluated whether elevated RRM2 levels 
facilitate replication stress resistance in neuroblastoma cells. To this 
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Fig. 3. Combined MYCN-RRM2 overexpression in zebrafish sympathetic neuroprogenitor cells results in accelerated neuroblastoma development and increased 
tumor penetrance versus MYCN-only fish. (A) Kaplan-Meier analysis of dh-MYCN;RRM2 double transgenic zebrafish (left) and the mosaic model expressing cmlc2- 
eGFP/dh-RRM2 in dh-MYCN zebrafish (right) both show significant accelerated neuroblastoma formation and strongly increased tumor penetrance compared to 
dh-MYCN fish. (B) Fluorescence microscopy images show the development of neuroblastoma tumors over time in MYCN-only (GFP) or MYCN-RRM2 double transgenic 
fish (mCherry). (C) RT-qPCR analysis showing human RRM2 overexpression in the dh-MYCN;RRM2 double transgenic zebrafish compared to MYCN-only fish. Tdr7, looprn4, 
and hatn10 were used as housekeeping genes in this analysis. (D) H&E staining and immunofluorescent staining for the markers GFP, TH, and MYCN (×10 magnification). 
(E) Immunoblotting for S345pCHK1 and yH2AX for protein samples derived from MYCN and MYCN-RRM2 zebrafish. (F) Left: Time course analysis of replication stress markers 
in CLB-GA neuroblastoma cells upon prexasertib exposure by immunoblotting. Right: Quantification of the immunoblotting relative to vinculin. (G) Left: Time course 
analysis of replication stress markers in CLB-GA neuroblastoma cells before and after doxycyclin-inducible RRM2 overexpression by immunoblotting. Right: Quantification 
of immunoblotting relative to vinculin. (H) Signature score analysis of publicly available prexasertib sensitivity and resistance gene signatures in a large primary cohort of 
neuroblastoma cases (GSE62564). (I) Volcano plot showing the set of significantly up-regulated (red) and down-regulated (blue) genes in dh-MYCN;RRM2 double transgenic 
versus dh-MYCN fish. (J) GSEA of the gene expression profiles using the C5 curated MSigDB gene sets of dh-MYCN;RRM2 double transgenic versus dh-MYCN fish shows 
a significant up-regulation of DNA repair and genes related to cilium organization and movement, while down-regulated gene sets were predominantly related to synapse 
transmission gene sets [see volcano plot in (I) (blue)].
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end, we used the unique dataset of Blosser et al. (41) to score gene 
signatures related to sensitivity or resistance to pharmacological 
CHK1 inhibition by prexasertib in a large cohort of primary neuroblas-
tomas (GSE62564). We observed that high RRM2 expression indeed 
confers stronger sensitivity to prexasertib treatment, indicative of 
high ATR-CHK1 activity (Fig.  3H). The top-ranking gene sets in 
this transcriptional sensitivity signature include E2F transcriptional 
targets, G2-M cell cycle, and spindle-associated checkpoint genes (41).

To investigate the relation of RRM2 levels to replicative stress 
and ATR-CHK1 signaling activity, we also performed bulk RNA 
sequencing (RNA-seq) on emerging tumor from 6-week-old single and 
double transgenic fish. The volcano plot (Fig. 3I) shows top- scoring 
down- and up-regulated genes between the two groups [Padj < 0.05; 
log fold change < −1 (down) or log fold change > 1 (up)]. GSEA (Fig. 3J) 
for the differentially expressed genes between the double MYCN; 
RRM2 and MYCN-only transgenic fish shows up-regulated en-
richment in the double transgenic group for DNA repair genes. Ten 
(DDX11, TRIP13, POLQ, FOXM1, RAD41L, MMS22L, ERCC8, 
FANCB, PARPBP, and RAD51AP1) of 31 highest-ranked genes from 
both DNA repair gene sets overlapped with the top-ranked CHK1- 
correlated genes in the Kocak neuroblastoma patient cohort 
(n = 649; GSE45545), suggesting that MYCN-RRM2–driven neuro-
blastomas in the double transgenic zebrafish model are also marked 
by enhanced ATR-CHK1 signaling activity. This includes FOXM1, 
a critical regulator of S-G2 transition and DNA repair; POLQ impli-
cated in replication stress response (42); and the DNA helicase DDX11, 
which interacts with the fork protection complex to preserve repli-
cation fork integrity in stressful conditions (43). Of further interest, 
the differentially expressed RAD51D (44) plays a noncanonical role 
in sensing dNTP pool changes. We also find positive enrichment of 
genes related to cilium organization and movement, with 53 of pre-
viously reported cilia genes among the top 200 up-regulated genes 
from our analysis. In addition, the FOXJ1 (Forkhead Box J1) mas-
ter regulator transcription factor controlling the expression of cil-
ia genes was also among the top 50 regulated genes (log2 FC of 4.5, 
Padj of 2.15 × 10−8). It is highly intriguing that human ciliopathies 
have been brought into context of replicative stress, thus further 
pointing toward a functional role of increased RRM2 levels in 
MYCN-driven neuroblastoma in relation to replicative stress in our 
zebrafish model (45). In addition, recent studies point toward an 
association between primary cilia and cancer, as they play a role in 
the interactions between cancer cells and the tumor microenviron-
ment (46). In addition, a direct link between ciliary signaling and 
regulation of tumor growth and response to treatment has been 
described, with an impact on core cancer signaling pathways, in-
cluding DNA damage response (47). FOXJ1 and concomitant re-
duction of the ciliogenesis program have been previously linked to 
aggressive ependymoma tumor development (48). Further studies 
are warranted to clarify the possible role of FOXJ1 and cilia genes 
in connection to RRM2-enhanced MYCN-driven neuroblastoma 
formation.

Pharmacological RRM2 inhibition suppresses growth 
of high-risk neuroblastoma-derived cell lines
Several compounds targeting RRM2 or RNR activity have been 
reported, including the iron chelator triapine (further referred to as 
3AP) for which positive safety and tolerability data are available 
from several clinical trials (49–51). First, to assess 3AP sensitivity, 
we determined average inhibitory concentration (IC50) values in 

a panel of eight neuroblastoma cell lines and compared the effects 
with the deoxycytosine analog and the RRM1 inhibitor gemcitabine 
(52), a commonly used chemotherapeutic in cancer treatment, as 
well as the effects of hydroxyurea (further denoted as HU) (53), a 
well-established RRM2 inhibitor in the same cell line panel. Cell viabil-
ity was most effectively reduced with 3AP compared to gemcitabine 
or HU (Fig. 4A). MYCN-amplified cell lines and the nonamplified 
CLB-GA cell line responded well in the nanomolar range, while the 
other MYCN-nonamplified cell lines were poor responders to 3AP 
treatment. Correlation analysis of RRM2 expression levels with the 
area under the curve (AUC) values as obtained for 3AP (Fig. 4A) 
indicated that cell lines with high RRM2 expression display reduced 
sensitivity to 3AP (Fig. 4B). We next selected MYCN-amplified IMR-32 
and MYCN-nonamplified CLB-GA neuroblastoma cells to study 
further the phenotypic and molecular effects of 3AP treatment. A 
significant reduction in cell confluence (Fig.  4C) and increased 
apoptosis could be observed for both cell lines (Fig. 4D) when ex-
posed to respective IC50 and IC30 of 3AP. Notably, in nonmalignant 
murine NIH3T3 fibroblasts, no apoptotic effects were observed un-
der IC50 drug conditions in the presence of the expected reduction 
in proliferation (Fig. 4E). Flow cytometry analyses revealed an al-
most complete G1-S phase arrest and increase of cells in G1 upon 
treatment with 3AP at IC30 (Fig. 4F). Both IC30 and IC50 could im-
pose a reduction in the available dNTP pools (Fig. 4G), underscor-
ing the on-target effect of 3AP treatment. In addition, a significant 
up-regulation of the p53 target genes CDKN1A and RRM2B was 
induced, as measured by RT-qPCR (Fig. 4H). RRM2 inhibition at 
IC50 and IC30 3AP concentrations caused enhanced RPA32 phos-
phorylation (marker for increased single-stranded DNA) and ele-
vated yH2AX levels. In keeping with these observations, using DNA 
combing, we also found significant increased levels of stalled forks 
upon 3AP treatment versus controls (Fig. 4I), likely due to increased 
double-stranded DNA breaks (presumably reflecting increased fork 
collapse) (54). As expected, elevated fork stalling and accompanying 
increased pRPA32 and yH2AX levels led to S345pCHK1 activation 
(measured through pCHK1 levels) (Fig. 4J and fig. S2B). Given that 
p53 mutations can confer a more aggressive (drug-resistant) neuro-
blastoma phenotype, we also evaluated the phenotypic response to 
pharmacological RRM2 inhibition of the p53-mutant neuroblastoma 
cell line SK-N-BE(2)-C. We observed reduced cell confluence fol-
lowing 3AP treatment, with both IC30 and IC50 (fig. S3A) and con-
comitant cell death (fig. S3B). Immunoblotting following 3AP 
treatment of SK-N-BE(2)-C cells treated with 3AP showed up- 
regulated S345pCHK1 and pRPA32 levels. In addition, as observed 
in IMR-32 and CLB-GA cells, total CHK1 levels were down-regu-
lated following 3AP exposure at IC50 (fig. S3C).

Last, we evaluated the transcriptional responses of IMR-32 and 
CLB-GA cells after 48 hours of exposure to their respective IC30 and 
IC50 3AP concentrations. All four cell lines tested showed a p53 gene 
signature response induction (Fig. 5A). Furthermore, using GSEA, 
a strong overlap between 3AP and RRM2-targeting siRNAs induced 
gene signatures and was notable in both IMR-32 and CLB-GA cells, 
supporting the on-target effect of RRM2 pharmacological inhibition 
using 3AP (Fig. 5B). In further support of the on-target activity of 
3AP as demonstrated by dNTP measurements (Fig. 4G), we also 
compared the transcriptome profiles after 3AP exposure of IMR-32 
and CLB-GA neuroblastoma cells to published transcriptome pro-
filing data of prostate cancer cells (cell line C4-2) following expo-
sure to COH29, a small-molecule RRM2 inhibitor (21). From this 
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Fig. 5. 3AP leads to dormant origin activation following replication fork stalling at early firing origins, as measured by transferase-activated end ligation se-
quencing. (A) GSEA of RNA-seq–based transcriptome profiling using the C2 curated MSigDB gene sets for 3AP-treated IMR-32 and CLB-GA neuroblastoma cells. (B) GSEA 
shows a strongly significant overlap between up- and down-regulated gene signatures upon RRM2 knockdown and 3AP (IC50) treatment of IMR-32 and CLB-GA neuro-
blastoma cells. (C) GSEA shows a significant enrichment of publicly available transcriptome profiles of C4-2 prostate cancer cells upon exposure with the RRM2 inhibitor 
COH29 (10 M) in the transcriptomes of IMR-32 neuroblastoma cells treated with the RRM2 inhibitor 3AP. (D) GSEA shows a significant enrichment of publicly available 
transcriptome profiles of C4-2 prostate cancer cells upon exposure with the RRM2 inhibitor COH29 (10 M) in the transcriptomes of CLB-GA neuroblastoma cells treated 
with the RRM2 inhibitor 3AP. (E) TrAEL-seq read density and read polarity plots for IMR-32 cells treated for 24 hours with 3AP IC50 or DMSO alone. Read polarity was quan-
tified by (R − F)/(R + F); data shown is an average of two biological replicates. Orange bars represent regions replication IZs called from DMSO-only control samples, and 
gray boxes represent early replicating regions based on published Repli-Seq data (56). (F) PCA for the TrAEL-seq libraries. (G to I) Violin plots of TrAEL-seq read count 
distributions (corrected for probe length) from DMSO- and 3AP-treated IMR-32 cells and solid and dotted lines denote median, upper quartile, and lower quartile, respec-
tively. (G) Comparison of replication IZs to a set of 8760 random regions of equivalent average size. (H) Comparison of replication IZs that do or do not overlap with early 
replicating regions [defined in (E)]. (I) Read counts for early versus late replicating genomic regions defined on the basis of Repli-Seq data (56).
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analysis, we could show that 3AP-induced transcriptome changes 
in both IMR-32 and CLB-GA robustly overlap with those imposed 
upon COH29 exposure (Fig. 5, C and D).

Pharmacological RRM2 inhibition imposes dormant origin 
activation following replication fork stalling at early 
firing origins
In addition, to monitor the impact of 3AP on individual replication 
forks by DNA combing, we applied the novel sequencing method 
“transferase-activated end ligation” sequencing (TrAEL-seq) (55) to 
establish the detailed genome-wide landscape of DNA replication 
changes imposed on neuroblastoma cells by 3AP exposure (IC50). 
Using this method on IMR-32 cells, we could measure replication 
fork stalling events as well as the impact on replication fork direc-
tionality and origin usage. In the “read density plot” for 3AP-treated 
cells, which shows the distribution of replication forks across the 
genome (Fig. 5E, panel 3), large and defined peaks appear in com-
parison to the relatively uniform profile of dimethyl sulfoxide 
(DMSO)–treated cells, indicative of increased replication fork stall-
ing at these sites. Notably, these peaks line up with replication initi-
ation zones (IZs) containing replication origins active in untreated 
cells, defined on the basis of the DMSO “read polarity plot” that dis-
plays the average direction of replication fork movement (Fig. 5E, 
panel 2; regions transitioning from negative to positive polarity), 
indicating that most forks initiated at normal S-phase IZs rapidly 
stall upon 3AP exposure. In addition, multiple dormant origins be-
come active upon 3AP treatment (Fig. 5E, panel 4; regions transi-
tioning from negative to positive polarity). The read polarity plot 
also shows that the replication profile of 3AP-treated cells becomes 
more disordered, as the reduced bias in read polarity results from 
the direction of replication fork movement at any given genomic 
location becoming less well defined (Fig.  5E). These substantial 
changes and reproducibility of the data could be shown by means of 
a principal components analysis (PCA) (Fig.  5F). Genome-wide, 
replication forks are uniformly distributed between IZs and random 
locations in DMSO-treated cells but accumulate at IZs and are de-
pleted from random locations in 3AP-treated IMR-32 cells (Fig. 5G), 
with a particularly strong enrichment at early IZs (Fig. 5H) (56). 
Last, we observed an enrichment of 3AP-induced fork stalling at all 
early replicating regions and a depletion at late replicating regions 
relative to DMSO controls (Fig. 5I). Together, this shows that 3AP 
treatment induces significant stalling of replication forks initiated 
at commonly used and particularly early IZs, in keeping with the 
above-described cell cycle and gene expression data. Consequently, 
it appears that numerous typically dormant replication origins be-
come activated, attempting to complete replication, resulting in the 
disordered replication profiles seen in 3AP-treated cells.

Combined pharmacological RRM2-CHK1 inhibition 
as a novel therapeutic strategy in high-risk neuroblastoma
The ATR-CHK1 signaling axis plays a critical role on the control of 
replication fork stability and origin firing. CHK1 has been reported 
as a synthetic lethal target in MYCN-amplified neuroblastoma, and 
neuroblastoma was ranked as the most sensitive pediatric cancer for 
CHK1 inhibitor prexasertib (57). ATR inhibition has been shown to 
cause replication catastrophe under conditions of high replicative 
stress (58). Gemcitabine or HU has been used to enhance replicative 
stress and sensitize cells for CHK1 inhibition (59,  60). However, 
gemcitabine acts both directly on RRM1 (not RRM2) and through 

disruption of DNA synthesis through incorporation of dNTP ana-
logs, while HU acts on RRM2 but only in the higher micromolar 
range. In view of this and the above data showing potent effects of 
3AP, we selected this drug to further test its effect in combination 
with either ATR or CHK1 inhibitors. We first evaluated pharmaco-
logical ATR (BAY1895344) compared to CHK1 (prexasertib) inhi-
bition in combination with 3AP at low-dose concentrations (IC15). 
Cell confluency was measured by means of IncuCyte live cell imaging 
for human IMR-32 and CLB-GA neuroblastoma cells under conditions 
of low single-dose RRM2 or ATR pharmacological inhibition in 
comparison to combined treatment. Drug synergism was observed 
at 72  hours after treatment with respective Bliss indices of 0.47 
(IMR-32) and 0.36 (CLB-GA), concomitant with reduced cell con-
fluence (Fig. 6A) and significant induction of apoptosis (Fig. 6B), 
the latter supported by induction of CDKN1A and PUMA gene expres-
sion in CLB-GA cells (Fig. 6C). Treatment of nonmalignant NIH3T3 
fibroblast cells did not affect cell growth or survival, showing that 
neither cell confluence nor cell death was significantly changed in 
the combined treatment compared to single-agent or control treat-
ment, indicating that the combination treatment can be tolerated 
by normal cells (Fig. 6, A and B). Increased apoptosis was also accom-
panied by up-regulated yH2AX levels (Fig. 6D and fig. S2C). Notably, 
the DNA-dependent protein kinase (DNA-PK) salvage pathway, as 
measured by pDNA-PK, was activated upon combined RRM2 and 
ATR inhibition (reducing p-ATR levels), in line with previous ob-
servations (40).

In a second step, using a similar approach, we dissected the pheno-
typic and molecular consequences of combined 3AP and prexasertib 
treatment. In comparison to combined RRM2 and ATR inhibition, 
higher BLISS indices were observed for this drug combination of 
0.69 (IMR-32) and 0.58 (CLB-GA), respectively, and significant re-
duction of cell confluence (Fig. 7A). The drug combination also 
increased the caspase 3/7 signal (Fig. 7B) compared to single-drug 
and control-treated (DMSO) cells. In contrast, NIH3T3 fibroblast 
cells did not exhibit any measurable effects of a similar combined 
pharmacological RRM2-CHK1 inhibition (Fig.  7,  A  and  B), thus 
suggesting low or no toxicity in normal cells. Reduced cell conflu-
ence was concomitant with a clear induction of an S phase arrest in 
the combination treatment versus controls (Fig. 7C). The induction 
of apoptosis was further confirmed by RT-qPCR analysis, indicat-
ing both p53 pathway activation (up-regulated CDKN1A and 
RRM2B expression) and increased expression of proapoptotic 
markers BAX, NOXA, and PUMA (Fig.  7D). Furthermore, 3AP- 
prexasertib synergism increased pRPA32 and yH2AX levels, and 
marked reduction in RRM2 protein levels was noted (Fig. 7E), 
suggesting that RRM2 could represent the target for synthetic lethal 
interaction. In contrast to combined RRM2-ATR pharmacological 
inhibition, we could no longer observe increased pDNA-PK levels 
upon combined RRM2-CHK1 inhibition, indicating that this drug 
combination can circumvent this rescue pathway while efficiently 
imposing DNA damage, as evidenced by up-regulated yH2AX levels 
(Fig. 7E and fig. S2D). Similar as for the 3AP single treatment, we 
also evaluated the phenotypic consequences of combined 3AP- 
prexasertib treatment in p53-mutant SK-N-BE(2)-C cells. Exposure 
of SK-N-BE(2)-C cells to 3AP-prexasertib combination treatment 
shows a synergistic effect on attenuated cell confluence, as mea-
sured by IncuCyte live cell imaging (fig. S3D), as well as cell death 
compared to control or (low-dose) single treatments (fig. S3E). 
Immunoblotting following combined 3AP-prexasertib treatment 
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showed up-regulation of S345pCHK1 and yH2AX levels, together 
with reduced RRM2 and total CHK1 protein levels (fig. S3F), in 
line with the observations in IMR-32 and CLB-GA neuroblastoma 
cells. The effects of nucleotide inhibition by RNR inhibitors or 
RRM2 knockdown on CHK1 levels have been reported by several 
teams (61, 62). Particularly instructive is the recent work of Ohmura 
et al. in Ewing sarcoma (23), who demonstrated that, upon exposure 
to the gemcitabine RNR inhibitor, total CHK1 is down-regulated 
together with down-regulation of global protein levels. These 

authors also showed that, upon RRM2 knockdown, similar results 
are observed. Moreover, we could show that, upon combined 3AP- 
prexasertib treatment, S296pCHK1 autophosphorylation is effectively 
reduced, concomitant with an increase in S345pCHK1 signal (fig. 
S4A). It has been demonstrated that functional inhibition or knock-
down of RRM2 directly affects protein translation through inhibi-
tion of the translational inhibitor 4E-BP1. We therefore also 
investigated whether the loss of the inhibitory phosphorylation 
of 4E-BP1 also occurred in neuroblastoma cells upon combined 
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Fig. 7. Identification of 3AP-prexasertib as a synergistic drug combination in neuroblastoma. (A) IncuCyte live cell imaging indicates a drug synergism between 
RRM2 and CHK1 pharmacological inhibition resulting in reduced cell confluence in IMR-32 and CLB-GA neuroblastoma cells, while not affecting NIH3T3 confluence. 
(B) Combined 3AP-prexasertib treatment of IMR-32 and CLB-GA neuroblastoma cells leads to a significant induction of apoptosis compared to a single compound treatment 
or DMSO-treated cells, while NIH3T3 cells did not show any apoptotic response. (C) Combined 3AP-prexasertib treatment of IMR-32 and CLB-GA neuroblastoma cells re-
sults in a strong S phase arrest compared to a single compound treatment or DMSO-treated cells. (D) RT-qPCR analysis for the p53 targets CDKN1A and RRM2B as well as 
the proapoptotic genes BAX, NOXA, and PUMA upon combined 3AP-prexasertib treatment. (E) Immunoblotting for various DNA damage markers in IMR-32 and CLB-GA 
cells upon treatment with DMSO or 3AP or prexasertib as a single agent or combined 3AP and prexasertib (see quantification in fig. S2). (F) 3AP-prexasertib combined 
treatment synergistically affected neuroblastoma spheroid cell viability 120 hours after treatment.
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pharmacological RRM2-CHK1 inhibition. Our data indeed show a 
decrease in p4E-BP1 levels, which indicates activation of this trans-
lational inhibitor, in keeping with the observed reduction of both 
CHK1 and RRM2 protein levels (fig. S4B).

In a next step, we further explored the 3AP-prexasertib drug 
synergism using four different primary human neuroblastoma- 
derived 3D spheroid cultures, representative for three major adren-
ergic neuroblastoma subtypes: MYCN amplified (NB129; ALK mutated 
and AMC717T, ALK wild-type), MYCN nonamplified (NB139; ALK 
wild-type), and MYCN nonamplified and ATRX deleted (AMC772T2; 
ALK wild-type). The 3AP-prexasertib synergism could be achieved 
in all tested spheroids (Fig. 7F).

Combined 3AP-prexasertib drugging induces expression 
of the nucleotide stress–induced transcriptional regulator 
and tumor suppressor HEXIM1 (Hexamethylene  
Bis-Acetamide-Inducible Protein 1)
To gain further mechanistic insight into the observed drug syner-
gism, we performed gene signature analysis following transcriptome 
profiling by RNA-seq. GSEA revealed a significant down-regulation of 
G2-M cell cycle genes and E2F targets (Fig. 8A). The set of up-regulated 
genes was also strongly enriched for p53 target genes and revealed 
that combined 3AP-prexasertib treatment significantly reduced the 
expression of various oncogenes with an established role in neuro-
blastoma, including TWIST1 (a direct MYCN target and interac-
tion partner) (28, 63) and PBK (a converging target gene of LIN28B/
let-7 and MYCN) together with a strong induction of expression of 
tumor suppressor HEXIM1, a negative regulator of the transcrip-
tional regulator pTEFb (Fig. 8B). Transcriptional up-regulation of 
HEXIM1 was confirmed by RT-qPCR (Fig. 8C). To gain further in-
sight into the upstream regulators of RRM2 expression, we per-
formed an unbiased landscaping of RRM2 upstream regulators using 
CasID as a proximity-based labeling approach for RRM2 promotor 
interactome mapping (64). A total of four different single guide 
RNAs (sgRNAs) were designed that cover the RRM2 promotor in a 
tiling approach [300 base pairs (bp) upstream to transcription start site] 
versus a control sgRNA against lacZ. Following biotin-streptavidin 
affinity purification in SK-N-B(E)2-C cells over four biological rep-
licates, high-confidence RRM2 promotor interactors [false dis-
covery rate (FDR) ≤ 0.05] were identified (Fig. 8D and table S1), 
including HMGB2 and HEXIM1, as well as the NurD, PAF, and 
COMPASS chromatin modifier complexes. HEXIM1 is a negative 
regulator of the positive transcription elongation factor P-TEFb 
complex (consisting of CDK9 and cyclin T1). Recent data suggest 
that HEXIM1 could act as a tumor suppressor to block transcription 
under conditions of nucleotide stress by sequestration of P-TEFb 
(65). In addition, the P-TEFb component CDK9 itself was signifi-
cantly enriched in the performed CasID experiment (FDR < 0.05). 
We also scrutinized this hit list using the “Ingenuity Pathway Anal-
ysis” (IPA) tool, indicating a clear enrichment of DNA damage and 
checkpoint proteins (Fig. 8D). Although we could not detect MYCN 
itself in our assay, IPA analysis indicated, among others, MYCN, 
E2F4, and CDKN2A/p16 as putative key upstream regulators of the 
enriched RRM2 regulator pool, and publicly available MYCN ChIP-seq 
data in neuroblastoma cell lines showed direct MYCN binding on 
the RRM2 promotor region (Fig. 1E). Next, we also evaluated the 
activity scores of various publicly available gene signatures in the tran-
scriptome profiles obtained in IMR-32 and CLB-GA cells upon expo-
sure to single and combined 3AP/prexasertib: (i) Scoring of prexasertib 

response gene sets established by Blosser et  al. (41) showed a 
significant down-regulation of genes that are negatively correlated 
to prexasertib sensitivity and a significant up-regulation of genes 
that are correlated to prexasertib resistance (Fig. 8E); (ii) the adren-
ergic neuroblastoma gene set established by Van Groningen et al. (66) 
was significantly down-regulated upon combined 3AP-prexasertib 
treatment both in IMR-32 and CLB-GA cells, while the mesenchymal 
signature was not significantly altered (Fig. 8, F and G); and (iii) we 
determined the activity score of AKL (Anaplastic Lymphoma Receptor 
Tyrosine Kinase) signaling and observed that the set of genes activated 
downstream of the ALK receptor (67) was significantly up-regulated 
upon exposure of IMR-32 and CLB-GA cells to combined 3AP- 
prexasertib treatment compared to single- agent and control (DMSO) 
treatment (Fig. 8, H and I).

In vivo validation of synergistic RRM2-CHK1 inhibition
Next, we aimed to validate the observed in vitro synergism between 
3AP and prexasertib using an in vivo murine xenograft model in 
immunodeficient mice. Here, subcutaneous xenografted tumors from 
IMR-32 neuroblastoma cells were treated with vehicle, 3AP only 
(10, 7.5, 5, or 2.5 mg/kg), prexasertib only (10 mg/kg), or a combi-
nation. Mice treated with 3AP or prexasertib monotherapy dis-
played no obvious signs of toxicity based on their body weight and 
animal behavior (Fig. 9, A and B). However, in the combination 
therapy, mice treated with higher 3AP doses (5, 7.5, or 10 mg/kg) and 
prexasertib (10 mg/kg) suffered from severe drug toxicities (Fig. 9A) 
and were euthanized before the end of the treatment regime as they 
reached the preset humane end points of this in  vivo study. Mice 
treated with the lowest 3AP dose (2.5 mg/kg) in combination with 
prexasertib (10 mg/kg) also presented mild (seven of eight) to 
severe (one of eight) signs of toxicity, including a significant drop in 
body weight at the end of the treatment regime (P = 0.004) (Fig. 9C). 
Upon treatment discontinuation, these mice regained body weight 
and fully recovered.

Next, we evaluated the effects of the treatment on the tumor pro-
gression. Mice treated with a dose range of 3AP monotherapy dis-
played little or no effect on the in vivo tumor progression rate 
compared to the vehicle-treated group (Fig. 9D). Single treatment 
with prexasertib (10 mg/kg) could slow down tumor growth (P = 0.04; 
Fig. 9E). Our results show that combined 3AP (2.5 mg/kg) and 
prexasertib (10 mg/kg) were strongly synergistic and could com-
pletely halt neuroblastoma tumor development in vivo (Fig. 9E). 
Again, a strong significant difference could be observed at day 24 
(4 days after the treatment was stopped) between vehicle and com-
bined 3AP (2.5 mg/kg) with prexasertib (10 mg/kg)–treated mice 
(P = 0.004). These observations were further confirmed in terms of 
progression-free survival of the different treatment groups included 
in this study (Fig. 9, F and G). No statistical difference (log-rank 
Mantel-Cox test) in tumor size could be observed between vehicle- 
and 3AP-treated mice for all tested 3AP concentrations including 
10 mg/kg (P = 0.90), 7.5 mg/kg (P = 0.07), 5 mg/kg (P = 0.59), and 
2.5 mg/kg (P = 0.18), while only slight significance was noted for the 
prexasertib-treated group (P = 0.05) (Fig. 9, F and G). In contrast, a 
clear significant difference (log-rank Mantel-Cox test) in tumor size–
based survival could be shown between vehicle-treated mice and 
those that received the combination treatment of 3AP (2.5 mg/kg) 
and prexasertib (10 mg/kg) (P = 0.0007).

Last, we also evaluated 3AP-prexasertib synergism in patient- 
derived xenograft (PDX) models. First, three different concentration 
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Fig. 9. In vivo validation of 3AP-prexasertib synergism. (A) Survival probabilities were measured over time of control-treated, 3AP single compound–treated, and 
prexasertib-treated mice and mice treated with different concentration combinations of 3AP and prexasertib. Statistical analyses were performed using the log-rank 
(Mantel-Cox) test. (B) Time course analysis of the average mouse weight per 3AP treatment group included in this murine cell line xenograft study. (C) Time course analysis 
of the average mouse weight per 3AP, prexasertib, and combination treatment groups included in this murine cell line xenograft study. (D) Average tumor volume (TV) 
of the different 3AP treatment groups included in this murine cell line xenograft study. (E) Average TV of the 3AP, prexasertib, or combination treatment group included 
in this murine cell line xenograft study. (F) Time course analysis of the survival probabilities of the different 3AP treatment groups included in this murine cell line xeno-
graft study. (G) Time course analysis of the survival probabilities of the 3AP, prexassertib, and combination treatment group included in the experiment. (H) Average TV 
of the 3AP, prexasertib, or combination treatment group included for the treatment schedule of a MYNC-nonamplified (p53 wild type) neuroblastoma PDX model. 
(I) Average TV of the 3AP, prexasertib, or combination treatment group included for the treatment schedule of a MYNC-amplified (p53 wild type, ALK R1275Q mutant) 
neuroblastoma PDX model. (J) Relative mean TV of the 3AP, prexasertib, or combination treatment group included for the treatment schedule of a MYNC-nonamplified 
(p53 wild type) neuroblastoma PDX model. (K) Relative mean TV of the 3AP, prexasertib, or combination treatment group included for the treatment schedule of a 
MYNC-amplified (p53 wild type, ALK R1275Q mutant) neuroblastoma PDX model. CR, complete response; PR, partial response; PD, progressive disease.
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combinations of 3AP and prexasertib [3AP (2.5 mg/kg) and prexasertib 
(10 mg/kg), 3AP (2.5 mg/kg) and prexasertib (5 mg/kg), and 3AP 
(2 mg/kg) and prexasertib (5 mg/kg)] were evaluated in nontumor 
nonobese diabetic (NOD) severe combined immunodeficient (SCID) 
gamma (NSG) mice to evaluate toxicity effects. No mortality was 
observed for any of the dose levels tested. However, significant weight 
loss was observed in treated animals at the highest dose level [i.e., 
3AP (2.5 mg/kg) + prexasertib (10 mg/kg)], and treatment was only 
tolerated for 1 week because of severe weight loss and poor clinical 
appearance. In contrast, animals treated with lower doses [i.e., 3AP 
(2.5 mg/kg) + prexasertib (5 mg/kg) and 3AP (2 mg/kg) + prexas-
ertib (5 mg/kg)] had few to no dosing holidays and were tolerated 
for nearly two treatment cycles (fig. S5A). In addition, serial blood 
cell count measurements were performed, which show treatment- 
associated anemia and thrombocytopenia, but with consequent re-
covery (fig. S5B). On the basis of the tolerability data, the middle 
dosing [i.e., 3AP (2.5 mg/kg) + prexasertib (5 mg/kg)] was used for 
subsequent therapeutic study in which we evaluated responses in 
two PDX models [one MYCN nonamplified/p53 wild type and one 
MYCN amplified/p53 wild type/ALK mutant (R1275Q)] over a treat-
ment period of 4 weeks [3AP (2.5 mg/kg) and prexasertib (5 mg/kg)]. 
For both PDX models, we could achieve significant differences when 
comparing the combination response to the other arms, both in 
terms of average (Fig. 9, H and I) and relative mean tumor volumes 
(Fig. 9,  J and K). However, given that only three mice per treat-
ment group were included, further experiments are warranted to 
learn whether the combination treatment is truly synergistic in 
these models compared to the single-treatment arms.

DISCUSSION
High-risk neuroblastoma genomes are predominantly marked by a 
landscape of highly recurrent large segmental and focal DNA copy 
imbalances, while mutations are sparse. Multiple loci located on the 
short arm of chromosome 2 frequently undergo segmental gains or 
chromothripsis events, causing focal high-level amplifications of 
which MYCN amplification is the most frequently altered target. 
Here, we identified RRM2 as a previously unidentified copy num-
ber–driven dependency gene, which is strongly associated with poor 
prognosis, up-regulated during MYCN-driven mouse neuroblastoma 
formation and causing increased penetrance and accelerated neuro-
blastoma formation under forced combined overexpression with 
MYCN in the developing zebrafish sympathetic neuronal lineage. 
In vitro knock down experiments and pharmacological inhibition of 
RRM2 showed strong dependency in adrenergic neuroblastoma cell 
lines and neuroblastoma patient tumor-derived spheroid cultures.

How do we explain the RRM2 dependency in neuroblastoma 
cells? First, high MYCN/MYC activity causes weakened G1-S con-
trol and activates dormant origins of replication, causing enhanced 
proliferation but at the cost of increased demand for nucleotides 
(among others), which causes enhanced replicative stress levels and 
ATR-CHK1 activation. Second, RRM2 is cell cycle–regulated, and 
while induced during G1-S transition, RRM2 levels are still low 
during early S phase. In view of this, ATR-CHK1 activation is criti-
cal in suppressing origin firing and enhancing RRM2 levels through 
control of CDK2-mediated E2F degradation during early S phase. 
In this context, the previously reported synthetic lethality for CHK1 in 
MYCN-amplified neuroblastomas (57) is not unexpected and 
further supported by the highest CHK1 inhibitor sensitivity for 

neuroblastoma across a wide range of tumor entities. Further 
evidence that elevated RRM2 levels facilitate replication stress re-
sistance in neuroblastoma cells comes from the data from Blosser et al. 
(41), showing that high RRM2 expression is associated with en-
hanced sensitivity to the prexasertib CHK1 inhibitor, thus indica-
tive of high ATR-CHK1 activity. Forced RRM2 overexpression in 
MYCN- nonamplified CLB-GA neuroblastoma cells suppresses exces-
sive prexasertib- induced replicative stress and further supports the 
role of elevated RRM2 expression for suppression of excessive rep-
licative stress. Moreover, GSEA for the differentially expressed 
genes for double MYCN-RRM2 versus MYCN-only transgenic 
zebrafish neuroblastomas also reveals enhanced ATR-CHK1 signaling 
activity in keeping with increased pCHK1 and yH2AX in MYCN- 
versus MYCN/RRM2-overexpressing zebrafish neuroblastomas. This 
dataset also revealed possible involvement of cilia genes and their 
master regulator FOXJ1. However, the exact significance of this in-
triguing finding remains to be unraveled by further studies.

Elevated MYC/MYCN activity is also considered to induce tran-
scriptional amplification of actively transcribed loci, which may cause 
so-called transcription-dependent replicative stress because of the 
formation of paused transcriptional complexes and R loops, which 
pose a physical and topological challenge to the DNA replication 
machinery and subsequent slowing down and stalling of DNA rep-
lication forks (68). Evidence has emerged that several factors are reg-
ulated by MYC/MYCN that alleviate replicative stress. Among others, 
the work of Herold et al. (36) revealed a pronounced role for AURKA 
(Aurora Kinase A) in suppressing R loop formation and a novel role 
for BRCA1 (located on 17q and also often affected by gains) in limiting 
MYCN-driven accumulation of stalled RNAP (36). Further studies 
are warranted to investigate the role of ATR-CHK1 control of RRM2 
levels in relation to transcription-replication conflicts and R loop 
suppression.

While monotherapies for RRM2 inhibition have not led to dura-
ble responses on tumor growth inhibition, previous effects of gem-
citabine, which inhibits DNA replication through RRM1 inhibition 
and incorporation of toxic nucleotide analogs, showed the potential 
for CHK1 sensitization. Given the previously established strong de-
pendency of neuroblastoma for CHK1-mediated checkpoint con-
trol and, thus far, poorly explored potential for synergistic drugging, 
we therefore decided to evaluate the use of RRM2 inhibition to en-
hance CHK1 sensitivity. We observed a strong synergism between 
the combined inhibition of RRM2 and CHK1, using 3AP and prex-
asertib, respectively. Both in a cell line xenograft and several initially 
treated PDXs, sensitivity was noted at the initially used high con-
centrations. In the cell line xenograft, a short period of 4 days of 
treatment already resulted in a complete regression of the engrafted 
tumor, both for prexasertib monotherapy and the 3AP-prexasertib 
combination. Upon drug withdrawal, tumors treated with “prexasertib 
only” rapidly recurred, while mice remained tumor free for almost 
40 days in the combination treatment group, indicating the potential 
value of 3AP-prexasertib combination to treat patients with high-
risk neuroblastoma. Next, we also evaluated the response to the 3AP- 
prexasertib combination in PDXs (MYCN nonamplified or MYCN 
amplified with ALK mutation) and observed similar strong growth 
reduction.

Using a combined transcriptome and proteome approach, we 
also sought for mechanistic insights into the underlying molecular 
mechanism driving the synthetic lethal drug interaction. In re-
sponse to combined RRM2 and CHK1 inhibition, we consistently 
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observed strong transcriptional HEXIM1 induction. HEXIM1 was 
reported to respond to nucleotide stress and acts as a negative regu-
lator of transcription elongation regulator at oncogenic loci and 
stabilizes mRNAs of tumor suppressor genes in melanoma (69). Of 
further importance, we used programmable DNA binding of dCas9 
with the promiscuous biotin ligase BirA* (CasID) for proximity 
biotinylation of proteins (table S1), and we identified HEXIM1 as 
one of the RRM2 promotor–bound proteins that, together with ATR- 
induced E2F1 degradation, may further attenuate RRM2 transcrip-
tion. In addition, several epigenetic regulatory protein complexes 
were identified at the RRM2 promotor, including NurD, PAF, and 
COMPASS chromatin factors. Furthermore, CHD5 is encoded on 
the commonly deleted 1p36 chromosomal region in neuroblastoma 
and known to replace CHD4 in NurD complexes during neuronal 
differentiation (70), suggesting that tight RRM2 regulation may also 
be an important factor in normal differentiation of sympathoblasts. 
In addition, HMGB2 was one of the top enriched factors in this as-
say, recently described as a master regulator of the chromatin land-
scape during senescence (71), with loss of its nuclear expression 
being instructive to CTCF (CCCTC-binding factor) clustering (72), 
the latter also strongly enriched in our CasID assay.

RRM2 expression and function is tightly regulated by various 
factors. Several of these regulators are also affected by copy number 
changes, further suggesting that these highly recurrent chromo-
somal and focal genomic imbalances exert effects that support 
tumor initiation and/or maintenance. To the best of our knowledge, 
RRM2 is the first copy number–driven dependency gene for which 
direct impact of transcriptional up-regulation has been successfully 
modeled in the zebrafish MYCN-driven neuroblastoma model. We 
are currently also generating mouse and zebrafish models over-
expressing RRM2-dTAG to allow to monitor in vivo the effect of 
RRM2 protein degradation on tumor maintenance as a prelude for 
previously unknown protein-degrading drugging approaches. At 
present, it is difficult to irrefutably prove the impact of a copy num-
ber gain for a given gene on neuroblastoma formation and behavior 
and, even more so, to establish the biological (and possible epistatic) 
effects of multiple genes implicated in large chromosomal gains or 
losses. One approach that has been tested is CRISPR-based chro-
mosomal deletions in mouse neural crest cells before MYCN 
overexpression–mediated transformation to neuroblasts and injec-
tion in mice (73).

In conclusion, our results converge toward a key RRM2 depen-
dency in neuroblastoma cells by RRM2-controlled modulation of 
checkpoint integrity and replication fork stability in response to 
MYCN-induced replicative stress. Co-overexpression of RRM2 in-
duced enhanced neuroblastoma formation and increased tumor 
penetrance in the MYCN-driven zebrafish model. We provide evi-
dence that elevated RRM2 levels facilitate neuroblastoma cells to 
cope with replicative stress along with evidence for enhanced acti-
vation of ATR-CHK1 response. We present preclinical evidence 
that selective and/or combinatorial targeting of the RRM2 axis opens 
perspectives for potent and tolerable previously unidentified targeted 
drug combinations for the clinic. The emerging role of RRM2 and 
CHK1 dependency in other tumor entities including Ewing sarco-
ma and glioblastoma may warrant to broaden clinical trial efforts to 
evaluate the potential of the proposed combination therapy. Given 
the critical role of RRM2 in high-risk neuroblastoma, we also hope 
that our work will trigger further investigation toward novel phar-
macological compounds, such as protein degraders to target RRM2 in 

combination with previously unknown replication stress checkpoint 
signaling drugs.

MATERIALS AND METHODS
Cell culture
Human neuroblastoma cell lines SK-N-AS, SH-SY5Y, SK-N-BE(2)-C, 
IMR-32, CLB-GA, NB-1, SH-EP, and SK-N-FI were grown in RPMI 
1640 supplemented with 10% fetal calf serum (FCS), penicillin/
streptomycin (100 IU/ml), and 2 mM l-glutamine. NIH3T3 cells were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplement-
ed with 10% FCS, 10 nM -mercaptoethanol, penicillin/streptomycin 
(100 IU/ml), and 1 mM nonessential amino acid. All cell lines used were 
cultured in 5% CO2 atmosphere at 37°C on plastic cultured plates.

Patient-derived neuroblastoma tumor organoids AMC717T (74) 
were grown in DMEM-GlutaMAX containing low glucose and sup-
plemented with 25% (v/v) Ham’s F-12 nutrient mixture, B27 sup-
plement minus vitamin A, penicillin (100 IU/ml), streptomycin 
(100 g/ml), epidermal growth factor (EGF) (20 ng/ml), and fibro-
blast growth factor-basic (FGF-2) (40 ng/ml). Patient-derived neu-
roblastoma tumor organoids (NB129 and NB139) and AMC772T2 
were grown in DMEM-GlutaMAX containing low glucose and 
supplemented with 20% (v/v) Ham’s F-12 nutrient mixture, B27 
supplement minus vitamin A, N-2 supplement, penicillin (100 IU/ml), 
streptomycin (100 g/ml), EGF (20 ng/ml), FGF-2 (40 ng/ml), 
insulin-like growth factor 1 (IGF-1) (200 ng/ml), platelet-derived 
growth factor–AA (PDGF-AA) (10 ng/ml), and PDGF-BB (10 ng/ml). 
EGF, FGF-2, PDGF-AA, and PDGF-BB were obtained from Pepro-
Tech, and IGF-1 was obtained from R&D Systems. B27 minus vitamin 
A and N-2 supplements were obtained from Thermo Fisher Scientific. 
The origin of the cell lines is provided in table S2, and all cell culture–
related materials are provided on table S3.

Inducible RRM2 overexpression cell line
The RRM2 fragment was amplified by PCR (forward and reverse 
primer sequences are provided on table S6), and OriGene clone 
GC-Z9335-GS was used as a template. The obtained fragment was 
gel-purified and ligated into the opened Mlu I/Nde I sites of re-
sponse vector pLVX-TRE3G-Zsgreen1 producing pLVX-TRE3G-
Zsgreen1- IRES-RRM2. The sequence of the constructed plasmid 
was verified by Sanger DNA sequencing (GATC).

Lenti-X 293T cells were transfected with the regulator vector pLVX- 
pEF1a-Tet3G and Lenti-X Packaging Single Shots (VSV-G) according 
to the manufacturer’s instructions. The supernatant containing the 
lentivirus was collected, filtered through a 0.45-m filter, and concen-
trated using PEG-it. CLB-GA cells were infected with the concentrated 
virus. After 48 hours of incubation, the transduced clones were ob-
tained by limiting dilution. After clonal expansion, the TAT protein 
expression in each clone was checked by immunoblotting using TetR 
monoclonal antibody (clone 9G9). In addition, induction of each 
expressing clone was tested after transduction with the pLVX-TRE3G- 
Luc control vector. Selected clones were transduced with the lentivirus 
produced, as described above, from vector pLVX-TRE3G-Zsgreen1- 
IRES-hsRRM2 and subsequently selected with only 4 g/mL of 
puromycin.

Compounds and chemicals
3AP, gemcitabine, and HU were obtained from Sigma-Aldrich; 
prexasertib and BAY1895344 were obtained from Bio-Connect.
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Cell viability measurements for a single 
compound treatment
The adherent cell lines were plated in 96-well plates at a density of 
2 × 103 to 1.5 × 104 cells per well, depending on the cell line. Cells were 
allowed to adhere overnight, after which different compounds—3AP, 
HU, and gemcitabine—were added in a range of concentrations. 
Cytotoxicity assays were performed at 48 and 72 hours after treat-
ment with CellTiter-Glo reagent. In addition, the apoptosis levels 
were measured, at 72 hours after treatment, using the Caspase-Glo 3/7 
Assay System. Both protocols were adapted, adding 50 l of reagent 
for each assay. The results were normalized to vehicle (0.1% DMSO), 
and the different inhibitory concentration values and AUC were 
computed using GraphPad Prism Software (version 9.2). The dose- 
response curve analysis was performed through ECanything equa-
tion assuming a standard slope of −1.0. For the caspase analysis, 
each caspase signal was normalized to the area of occupancy, given 
by the IncuCyte Software. The error bars in figures represent the SD 
from three biological replicates.

Combination and synergism measurements
To find synergism, cells were seeded in 384-well plates at a density of 
1.5 × 103 to 2 × 103 cells per well, depending on the cell line. Cells were 
allowed to adhere overnight, after which these were exposed in a range 
of concentration of different compounds, alone or in a combination 
matrix or in fixed combination (3AP, prexasertib, and BAY1895344). 
The treatment was performed using a D300 TECAN instrument. Cell 
proliferation was monitored for 72 hours, in which pictures were 
taken through IncuCyte Live Cell Imaging System. Each image was 
analyzed through the IncuCyte Software. Cell proliferation was moni-
tored by analyzing the occupied area (percentage of confluence) of 
cell images over time. The synergism was computed according to the 
Bliss independent (BI) method (75) using the HTSplotter tool (75). 
Once the combinations with the highest BI score were selected, the 
adherent cell lines were plated in 96-well plates at a density of 2 × 103 to 
1.5 × 104 cells per well, depending on the cell line. These ones were 
allowed to adhere overnight, following their exposure to a deter-
mined concentration of each different compound as mentioned 
above. The proliferation was monitored for 72 hours by the same sys-
tem, as well as the analyses of each image. From the same plate, once 
the latest time point was scanned by the IncuCyte software, the apop-
tosis levels were measured using the Caspase-Glo 3/7 Assay; however, 
this protocol was adapted by adding 50 l of reagent for each assay. 
The caspase analysis was performed as mentioned above. Proliferation 
plots were generated using our recently published HTSplotter tool 
(76), in which the SD from three or more biological replicates is rep-
resented as error bars. As for the caspase assay, the data was mean- 
centered and autoscaled.

Organoid cell viability screening
Patient-derived neuroblastoma tumor organoids were harvested us-
ing Accutase solution (Sigma-Aldrich), made single cell, filtered using 
a 70-m nylon cell strainer (Falcon), and resuspended in an appropriate 
growth medium. Subsequently, cells were plated at densities ranging 
from 1000 to 6000 cells per well using the Multi-drop Combi Reagent 
Dispenser on repellent black 384-well plates (Corning). Following 
24 hours of recovery time, cells were treated with 0 to 10 nM prexas-
ertib and/or 0 to 10 M 3AP or DMSO (negative control) using the 
Tecan D300e Digital Dispense (HP). Two technical replicates were 
included in each experiment, and two biological replicates were 

completed for each patient-derived neuroblastoma tumor organoid. 
After 5 days of treatment, adenosine triphosphate levels were mea-
sured using CellTiter-Glo 3D (Promega) according to the manufac-
turer’s instructions. The results were normalized to vehicle (0.1% 
DMSO), and data were analyzed with GraphPad Prism v7.04.

siRNA-mediated knockdown of RRM2
NB cells were transfected using the appropriate Neo kit (catalog no. 
MPK10096) with siRNA toward RRM2 [s12361 (siRRM2-61) and 
s12362 (siRRM2-62)] (Ambion, Life Technologies) and or scram-
bled siRNA (Ambion, #AM4635). After transfection, the cells of 
each condition were split and seeded in a 96-well plate, at a density 
of 1.5 × 104 to 3 × 104 cells per well, and in a T-25, at a density of 
2.2 × 106 cells per flask. The cells seeded in a 96-well plate were moni-
tored for proliferation during 72 hours in which pictures were taken 
through IncuCyte. Proliferation was analyzed as mentioned above. 
From the same plate, once the latest time point was scanned in IncuCyte, 
the apoptosis levels were measured using the Caspase-Glo 3/7 Assay 
System. The protocol was adapted, adding 50 l of reagent for each 
assay. The caspase analysis was performed as mentioned above, and 
the HTSplotter tool (75) was used to generate the proliferation plots. 
The error bars from the proliferation assay represents the SD from 
three or more biological replicates, while the ones showed on the 
caspase assay were mean-centered and autoscaled. The cells seeded 
in a T-25 flask were collected for RNA and protein isolation, 72 hours 
after transfection. The knockdown was evaluated by RT-qPCR and 
immunoblotting.

DNA combing
Exponentially expanding neuroblastoma cells were pulse-labeled 
for 20 min with 25 M thymidine analog 5-iodo-2′-deoxyuridine. 
Cells were washed with warm medium and pulse-labeled a second 
time for 20 min with 5-chloro-2′-deoxyuridine, and, depending on 
the condition, 500 M HU and 500 or 250 nM 3AP were combined. 
Cells were refreshed three times with warm medium and harvested 
by trypsinization. The cell pellet was washed with ice-cold phosphate- 
buffered saline (PBS); cells were resuspended at a cell density of 1 × 
106 cells/ml and placed on ice. In total, 2 l of the cell suspension 
was spotted at one end of a glass slide. When the drop became opaque, 
7 l of the lysis buffer [50 mM EDTA, 200 mM tris (pH 7.4), and 
0.6% SDS] was added. After 7 min of incubation, tilting the slide 
allowed the spreading of the DNA fibers. The air-dried slides were 
immersed in methanol/acetic acid (3:1), dried, and stored at −20°C 
until immunofluorescence staining. DNA fibers were acid-treated 
with 2.5 M HCl for 80 min, blocked in 5% bovine serum albumin 
(BSA) in PBS with Tween 20 and immunolabeled overnight at 4°C with 
mouse anti–5-bromo-2′-deoxyuridine (BrdU) B44 (1:100; BD347580) 
and rat anti-BrdU Bu1/75 (1:150; Ab6326). The secondary antibodies 
were goat anti-mouse AF647 (1:100; Life Technologies, A21241) and 
goat anti-rat AF488 (1:100; Life Technologies, A11006). Incubation 
time was 1 hour at room temperature. The slides were rinsed with 
PBS followed by an alcohol series (70 to 95% ethanol), dried, and 
mounted with 1% propyl gallate as an antifading reagent. Imaging was 
done on a Zeiss Axio Observer.Z1 epifluorescence microscope equipped 
with a Plan-Apochromat 63×/1.40 Oil DIC M27 lens and connected 
with an Axiocam 506 mono camera. The length of the fiber tracks 
was converted from pixels to micrometers and measured with Fiji 
(ImageJ) software. The measured fibers were further randomly se-
lected the usingrandom.choice function from Python (version 3.9).
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Cell culture for fluorescence-activated cell sorting, RNA, 
and protein collection
The neuroblastoma cell lines were seeded in a T-75 flask at a density 
of 2 × 106 to 2.25 × 106 cells per flask, depending on the cell line. As for 
the inducible CLB-GA RRM2 overexpressing cell line, doxycyclin 
was added at 1 g/ml immediately upon seeding. Cells were allowed 
to adhere for 48 hours, after which the medium was replaced by 
fresh medium and the treatment was added. Upon the selected 
treatment time points, the cells were scraped and centrifuged for 
5 min at 1200 rpm, and the pellet was washed twice with ice-cold 
PBS. During each wash, the cells were pelleted during 5 min at 
1200 rpm. The samples were divided for RNA and protein isolation 
and/or for flow cytometric analysis for cell cycle measurements.

dNTP pool assay
Neuroblastoma cells were seeded in a six-well plate at a density of 
3.0 × 105 cells per well, depending on the cell line. Cells were al-
lowed to adhere overnight, after which the medium was replaced by 
fresh medium and treatment was added. After 48 hours of treat-
ment, the medium of all conditions were collected for further anal-
yses. The plates were put on ice, in which each well was washed with 
1 ml of ice-cold washing solution (0.9% NaCl). Next, 300 l of ice-
cold extraction buffer was added and incubated for 2 to 3 min on 
ice. Then, the cells were scraped and collected.

Next, 20 l of each sample was loaded into the Dionex UltiMate 
3000 LC System (Thermo Fisher Scientific, Bremen, Germany) 
equipped with a C-18 column (Acquity UPLC-HSS T3, 1.8 m; 
2.1 mm by 150 mm; Waters) coupled to a Q Exactive Orbitrap mass 
spectrometer (Thermo Fisher Scientific) operating in negative ion 
mode. A step gradient was carried out using solvent A [10 mM 
tetrabutylammonium hydroxide (TBA) and 15 mM acetic acid] and 
solvent B (100% methanol). The gradient started with 5% of solvent 
B and 95% of solvent A and remained at 5% B until 2 min after in-
jection. A linear gradient to 37% B was carried out until 7 min and 
increased to 41% until 14 min. Between 14 and 26 min, the gradient 
increased to 95% B and remained at 95% B for 4 min. At 30 min, 
the gradient returned to 5% B. The chromatography was stopped at 
40 min. The flow was kept constant at 0.25 ml/min at the column 
that was placed at 40°C throughout the analysis. The mass spec-
trometry operated in full scan mode (mass/charge ratio range: 
[400,000 - 600,000]) using a pray voltage of 4.80 kV, capillary 
temperature of 300°C, sheath gas at 40.0, and auxiliary gas at 10.0. 
The AGC (Automatic Gain Control) target was set at 1.0E+006 
using a resolution of 35,000, with a maximum IT (injection time) 
fill time of 200 ms. Data collection was performed using the 
Xcalibur software (Thermo Fisher Scientific). The data analyses 
were performed by integrating the peak areas (El-Maven Polly- 
Elucidata). This experiment was performed once with three tech-
nical replicates.

Cell culture for fluorescence-activated cell sorting, RNA, 
and protein collection
The neuroblastoma cell lines were seeded in a T-75 flask at a densi-
ty of 2 × 106 to 2.25 × 106 cells per flask, depending on the cell line. 
Cells were allowed to adhere for 48 hours, after which the medium 
was replaced by fresh medium and the treatment was added. After 
48 hours of treatment, the cells were scraped and centrifuged for 
5 min at 1200 rpm, and the pellet was washed twice with ice-cold 
PBS. During each wash, the cells were pelleted during 5 min at 

1200 rpm. The samples were divided for RNA and protein isolation 
and for flow cytometric analysis of cell cycle.

Cell cycle analysis
Cell pellet was fixed in cold 70% ethanol for at least 1 hour. After 
fixation, cells were centrifuged for 5 min at 1200 rpm. The pellet 
was washed twice in 1 ml of PBS. During each wash, the cells were 
pelleted during 5 min at 1200 rpm. Then, the pellet was resuspended, 
and ribonuclease A (RNase A) was added to a final concentration of 
0.2 mg/ml in PBS. The samples were incubated for 1  hour at 
37°C. Last, 59.8 M propidium iodide (PI) was added to the solu-
tion. Samples were analyzed in PI/RNase A solution by Bio-Rad S3 
fluorescence-activated cell sorting (FACS) cell sorter flow cytometer. 
All data were further analyzed by FlowJo software, following the cell 
cycle instructions.

Western blot analysis
Cells were lysed in cold radioimmunoprecipitation assay (RIPA) 
buffer [12.7 mM; 150 mM NaCl, 50 mM tris-HCl (pH 7.5), 0.01% SDS 
solution, and 0.1% NP-40] supplemented with protease and phos-
phatase inhibitors. Samples were rotated for 1 hour at 4°C to 
obtain more complete lysis. The cleared lysates were collected and 
centrifuged at 10,000  rpm in a microcentrifuge for 10 min at 
4°C. Protein concentrations were determined using the Pierce BCA 
Protein Assay Kit. The lysates were denaturized before loading on a gel, 
through five times Laemli denaturation buffer supplemented with 
-mercaptoethanol. Thirty micrograms of protein extracts was 
loaded on 10% SDS–polyacrylamide gel electrophoresis (SDS-
PAGE) gels with 10× tris/glycine/SDS buffer and run for 1 hour at 
130 V. Samples were blotted on nitrocellulose or polyvinylidene 
difluoride (PVDF) membranes in 10% of 10× tris/glycine buffer 
and 20% of methanol. The membranes were blocked during 1 hour 
in 5% milk or 5% BSA in Tris-buffered saline with 0.1% Tween® 20 
detergent (TBST). Primary antibody incubations were done in 
blocking buffer overnight at 4°C. Blots were washed three times 
with TBST before the incubation for 1 hour of secondary anti-
bodies. The immunoblots were visualized by using the enhanced 
chemiluminescent Femto (Bio-Rad). The protein quantification 
analysis of the generated blots was performed through ImageJ 
software, where the area from each protein was normalized to 
the loading protein in respect to each blot. Antibodies used 
were the following: RRM2, pCHK1(Ser345), pCHK1(Ser296), CHK1, 
pRPA32, RPA32, yH2AX, vinculin, tubulin, ATR, p-ATR, 4E-BP1 
(53H11), and p-4E-BP1(Thr37/46). The material origin used for 
Western blot and the antibodies are provided on tables S4 and S5, 
respectively.

RNA isolation complementary DNA synthesis 
and real-time qPCR
RNA extraction was performed, practicing the manufacturer’s in-
structions of miRNeasy kit (QIAGEN) including on-column de-
oxyribonuclease treatment, and NanoDrop (Thermo Fisher Scientific) 
was used to determine the concentration. Complementary DNA 
(cDNA) synthesis was achieved, practicing the iScript Advanced 
cDNA synthesis kit instructions from Bio-Rad. The PCR mix con-
tained 5 ng of cDNA, 2.5 l of SsoAdvanced SYBR qPCR super mix 
(Bio-Rad), and 0.25 l of forward and reverse primers (to a final 
concentration of 250 nM; Integrated DNA Technologies). The RT- 
qPCR cycling analysis was performed using a LC-480 device (Roche). 
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qBasePlus software 3.2 (www.biogazelle.com) was used for the 
analysis of the gene expression levels. For the neuroblastoma cell 
lines, the following reference genes were used: B2M, HPRT1, TBP, 
and YHWAZ. The error bars in figures represent SD after error 
propagation, with mean centering and scaling to control. The primer 
designs are provided on table S6.

CasID
To identify the putative upstream regulators of RRM2 binding at its 
promotor region, we exploited the CasID technology. Briefly, SK-
N-BE(2)-C cells were transduced with lentiviral constructs for 
stable expression of the different tested RRM2 promotor–targeting 
sgRNAs (Addgene) (MP-I-1142 sg86RRM2, MP-I-1143 sg150RRM2, 
MP-I-1144 sg403RRM2, and MP-I-1145 sg685RRM2) versus an 
sgRNA-targeting LacZ as control (MP-I-1104 sgLacZ). Infections 
were done with titers corresponding to a final multiplicity of infec-
tion of 15. Cells were seeded at a density of 7.5 × 106 cells 24 hours 
after infection and incubated with doxycycline (48 hours) and 50 M 
biotin (18 to 24 hours) (1 g/ml) and subsequently harvested. Har-
vested cells were washed twice with PBS and collected by scraping 
in urea lysis buffer [50 mM Hepes (pH 8) and 9 M urea]. The ob-
tained lysates were cleared by centrifugation. To the supernatant, 
1/278 volume of 1.25 M dithiothreitol was added and incubated for 
30 min at 55°C. Next, 1/10 volume of iodoacetamide solution was 
added and incubated at room temperature for 15 min. Next, the 
sample is fourfold diluted with 20 mM Hepes (pH 8.0) to a final 
concentration of 2 M urea. Subsequently, 30 l of prewashed GE 
Streptavidin Sepharose High Performance bead suspension was 
added to each sample and incubated for 2 hours with agitation at 
room temperature. Beads were washed three times with 20 mM 
Hepes (pH 8.0) + 2 M urea and resuspended in resuspend beads in 
20 l of 20 mM Hepes (pH 8.0) + 2 M urea. In a next step, 0.4 g of 
LysC (Wako) was added to the beads/proteins [assume 100 g; 
1:250 (w/w)] and digested in an incubator, for 4 hours at 37°C. Then, 
1 g of trypsin (Promega) was added to the beads/proteins [assume 
100 g; 1:100 (w/w)] and digested in an incubator overnight at 
37°C, and beads were removed by centrifugation at 500g for 2 min. 
Add trifluoroacetic acid to the digest for a final pH of 2 to 3. After 
acidification, precipitate was allowed to form by letting it stand for 
15 min on ice. The acidified peptide solution was centrifuged for 
15 min at full speed (room temperature) to remove the precipitate and 
was analyzed on a Q-HF standard gradient. The mass spectrometry 
proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE repository with the dataset identifier 
PXD029630.

RNA-seq processing and GSEA
RNA-seq was carried out for siRNA-mediated knockdown of RRM2 in 
IMR-32 and CLB-GA cells, 3AP treatment (48 hours) with two dif-
ferent concentrations (IC30 and IC50; table S7) for IMR-32 and 
CLB-GA cells and combined 3AP-prexasertib treatment (48 hours) for 
IMR-32 and CLB-GA cells. Libraries for mRNA-seq were prepared 
using the QuantSeq 3′ mRNA library prep kit (Lexogen, Vienna, 
Austria) with umi barcoding according to the manufacturer’s pro-
tocol. The libraries were equimolarly pooled and sequenced on an 
Illumina NextSeq 500 high-throughput flow cell, generating single- 
end 75-bp reads. Sequencing quality was confirmed using FastQC 
(version 0.11.7). Trimmed reads were aligned to the human reference 
genome using the STAR alignment software. The resulting mapped 

files were inspected for quality using Qualimap BamQC. Feature 
counts were used to infer gene-level expressions from the mapped 
data, and expression levels per sample were aggregated using cus-
tom Python scripts. All subsequent analyses were conducted in R 
statistical language. BioMartR was used for obtaining gene annota-
tion and references from BioMart. DESeq2 was used for differential 
gene expression analysis; data were additionally normalized using a 
regularized log transformation (rlog2) followed by log FC shrinkage 
to account for variability at extreme ranges (lfcShrink). As apparent 
batch effects between cell lines were observed in the data, Limma’s 
“batchEffectCorrection” method was used to account for batch 
effect to deeper investigate the distinct conditions. GSEA was done 
using either the c2 gene set collection from MSigDB (gsea-msigdb.
org) or gene lists compiled from this study. All RNA-seq data are 
available through the Gene Expression Omnibus (GEO) repository 
(GSE161902).

TrAEL-seq library preparation and data processing
IMR-32 cells were seeded in a T-25 (2.2 × 106 cells per flask) and 
allowed to adhere for 48 hours, after which the medium was re-
placed by a fresh one with either 0.1% of DMSO (vehicle) or 3AP 
treatment (689.5 nM). After 24 hours of treatment, the supernatant 
of each flask was collected and added to the trypsinized cells and 
centrifuged (5 min at 1200 rpm), and the pellet was washed with 
ice-cold PBS. Cells were collected, 1 × 106 per condition, and washed 
with L buffer [100 mM EDTA (pH 8), 10 mM tris (pH 7.5), and 
20 mM NaCl] and lastly resuspended in 60 l of the buffer. The cell 
suspension was warmed for at least 2 min at 50°C before adding 
to 40 l of melted and warm CleanCut agarose. The mixture was 
vortexed for 5 s and directly pipetted into a plug mold.

Agarose-embedded DNA from IMR-32 cells was generated and 
processed into libraries as previously described (55), and libraries 
were sequenced on an Illumina NextSeq 500 as high-output 75-bp 
single end by the Babraham Institute Next-Generation Sequencing 
facility.

Scripts used for unique molecular identifier (UMI) handling and 
more detailed information on data processing are available at https://
github.com/FelixKrueger/TrAEL-seq and described in detail in (55). 
TrAEL-seq read structure is NNNNNNNN(T)nSEQUENCESPECIFIC, 
where NNNNNNNN represents the UMI and (T)n represents 
poly(T). Before TrAEL-seq preprocessing, sequences were dedupli-
cated on the basis of the first 23 bp on their 5′ end (using the script 
TrAELseq_sequence_based_deduplication.py). This region contains 
both the UMI sequence and the first 15 bp of genomic sequence and 
identifies (and removes) PCR-amplified multicopy sequences that 
would, under normal conditions, survive the UMI-aware dedupli-
cation procedure by aligning to several different genomic regions at 
random. The script TrAELseq_preprocessing.py was then used to 
remove and store the first 8 bp (UMI). Up to 3 T (inclusive) at the 
start of the sequence were removed, and reads were subjected to 
adapter and quality trimming using Trim Galore (v0.6.5; default 
parameters; https://github.com/FelixKrueger/TrimGalore). UMI- 
preprocessed and adapter-/quality-trimmed files were then aligned 
to GRCh38 with Bowtie2 (v2.4.1; option: --local; http://bowtie-bio.
sourceforge.net/bowtie2/index.shtml) using local alignments. Last, 
alignment results files were deduplicated using UmiBam (v0.2.0; 
https://github.com/FelixKrueger/Umi-Grinder). This procedure 
deduplicates alignments on the basis of the mapping position, read 
orientation, and the UMI sequence. Deduplicated mapped reads were 
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imported into SeqMonk v1.47 (www.bioinformatics.babraham.ac.uk/
projects/seqmonk/) and immediately truncated to one nucleotide at 
the 5′ end, representing the last nucleotide 5′ of the DNA end. 
Reads were then summed in 200-kb running windows spaced every 
10 kb. Read counts were normalized to reads per million mapped, 
exported from SeqMonk, and plotted in GraphPad Prism 8. Read 
polarity values were calculated and plotted for each quantification 
window using the formula read polarity = (R − F)/(R + F), where 
F and R relate to the total forward and reverse read counts, respec-
tively. The R code to generate these plots can also be found here: 
https://github.com/FelixKrueger/TrAEL-seq. To determine regions 
where replication initiates, the ForkCall program was used using 
the read polarity data (the code for ForkCall can be found here: 
https://github.com/s-andrews/forkcall). The read polarity signal from 
200-kb running windows tiled every 10 kb along the genome was 
smoothed using LOWESS regression to remove local noise. Filters 
were applied to remove poorly covered or particularly short areas, 
and remaining regions where the directionality index consistently 
increases were called as replication IZs and imported into SeqMonk 
v1.47. Early and late replicating regions were defined on the basis of 
Repli-Seq data from HCT116 cells (GSE137764) (56). Gaussian 
smoothed and normalized data from BrdU-labeled reads from the 
first three time points (S1 to S3; early replicating) and last three time 
points (S14 to S16; late replicating) in S phase were totaled. The 10% of 
regions with the highest values were imported into SeqMonk v1.47 and 
used to define replication timing. All sequencing data are available 
through the GEO repository (GSE186122, SuperSeries GSE161902).

Cell line xenograft
All animal experiments were performed according to the Guide for 
the Care and Use of Laboratory Animals (Eight Edition) following 
approval of the Committee on the Ethics of Animal Experiments of 
Ghent University (permit number: ECD 20/55). Persons who car-
ried out the described experiment received appropriate training in 
animal care and handling. The mice were allowed to acclimatize for 
1 week before the experimental procedure started and were randomly 
assigned to the different treatment groups. IMR-32 cells were cul-
tured as described above to investigate the synergistic effect of the 
combinatorial 3AP and prexasertib treatment in vivo. A total of 
2 × 106 cells were mixed with Matrigel (354230, Corning) and sub-
sequently injected subcutaneously in the right flank of 5-week-old 
female Crl:NU-Foxn1nu nude mice (strain code 088, Charles River 
Laboratories). Compound treatment was started when tumors reached 
300 mm3. For 3AP, a dose range of 10, 7.5, 5, and 2.5 mg/kg was 
tested, while the dose of prexasertib was fixed to 10 mg/kg. Treat-
ment was continued for five consecutive days for 3AP (intraperito-
neally; 10% DMSO in sterile H2O, twice a day with a minimum of 
8 hours in between treatments) and three consecutive days for prex-
asertib (subcutaneously; 20% Captisol in sterile PBS, twice a day). 
The control group received both vehicles. Following treatment dis-
continuation, animals were observed for another 6 to 7 weeks to 
determine complete or partial response (PR) to the compound 
treatment (i.e., regrowth of tumors). TV was assessed using a caliper 
and calculated according to the spheroid formula: V = 0.5 × a × b2, 
with a as the largest and b as the smallest superficial perpendicular 
diameter. To control for systemic toxicity during the treatment 
period, the body weight and physical status of the animals were 
monitored by animal caretakers until they were judged to be in 
discomfort. When systemic toxicity (weight gain/loss of 20% or 

more) or maximum TV (2000 mm3) was reached, the animal was 
euthanized by cervical dislocation.

Patient-derived xenograft
Patient tumor tissue used to generate a PDX was obtained under the 
Memorial Sloan Kettering Cancer Center (MSKCC) Institutional 
Review Board–approved protocols #17-387 and #06-107. Tumors 
were implanted in the subcutaneous flank of NSG mice (NOD.
Cg-Prkdcscid Il2rgtm1Wjl/SzJ; Jackson Laboratory). Mice were moni-
tored at least weekly until signs of tumor engraftment were observed. 
Tumor measurements were performed using manual calipers, and 
treatment was initiated when TV was ~100 mm3 (TV = 1/2 length × 
width2). Animals were assigned to four treatment arms through 
block randomization and included vehicle (30% polyethylene glycol, 
molecular weight 400/5% Tween 80/10% n-methyl-2-pyrrolidone in 
5% dextrose water), prexasertib [5 mg/kg, intraperitoneally (IP); 
BID Monday/Wednesday/Friday], 3AP (2.5 mg/kg, IP; BID (twice 
a day) 5 days on/2 days off), and combination at equivalent single- 
agent doses for prexasertib and 3AP. Animals were treated for 
4 weeks, with tumors measured twice weekly. Treatment cohorts 
were compared using Mann-Whitney-Wilcoxon test. Time to 
progression was estimated using a Kaplan-Meier estimator and 
compared using a log-rank test. Progressive disease was defined as 
doubling of TV relative to baseline, stable disease is <100% TV 
relative to baseline and <50% TV regression, PR is >50% TV regres-
sion, and complete response (CR) is >95% TV regression or no 
measurable tumor. Disease control rate is defined as the sum of 
stable disease + PR + CR. All animal studies were conducted under 
barrier conditions, and experiments were performed using proto-
col and conditions approved by the MSKCC Institutional Animal 
Care and Use Committee under protocol 16-08-011.

Zebrafish modeling
Zebrafish maintenance and generation of a stable line
Zebrafish were housed in a Zebtec semiclosed recirculation housing 
system (Techniplast, Italy) and maintained following standard pro-
cedures. All zebrafish studies and maintenance of the animals were 
in accordance with protocol #17/100, approved by the Ethics Com-
mittee for the use of animals in research of the Faculty of Medicine 
and Health Sciences at Ghent University. The dh:hRRM2 DNA 
construct for the Tg(dh:hRRM2; dh:mCherry) transgenic line was 
generated using multisite Gateway cloning by combining three 
entry clones: dbh-pDONRP4-P1R (gift from the Look laboratory), 
RRM2-pDONR221 (GeneCopoeia, #GC-Z9335-GS) (see also table 
S8), and p3E-polyA (gift from the Look laboratory) into a modified 
destination vector containing I-SceI cleavage sites (gift from the 
Look laboratory) (8).
Generation of stable Tg(dh:hRRM2; dh:mCherry) 
transgenic fish
One-cell-stage wild-type zebrafish embryos were injected with mix 
containing dh:RRM2 (12 ng/l), dh:mCherry (20 ng/l) (gift from 
the Look laboratory), I-SceI enzyme (0.5 U/l), and CutSmart buf-
fer (0.5 U/l). The injected fish were raised to adulthood and crossed 
to screen for founder fish. The offspring of the founder fish were 
raised, and DNA and RNA samples were collected to confirm the 
presence of the dh-hRMM2 construct in the genome and expres-
sion of hRRM2 mRNA, respectively. For analysis, the following primer 
pairs were used: CCAACAGAAGTGGACCAACA (forward) and 
GGCAGCTGCTTTAGTTTTCG (reverse). A 472-bp fragment of 
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the dh:RRM2 transgene fragment was amplified and further con-
firmed by Fragment Analyzer (Applied Biosystems). RT-qCPR 
primers were the same as used for the in vitro experiments. The 
Tg(dh:eGFP-MYCN) line was a gift from the Look laboratory.
Generation of mosaic dh:MYCN;RRM2 fish
The dh:RRM2 DNA construct for the mosaic injections was generated 
using the same multisite Gateway cloning strategy, but using a 
destination vector containing Tol2 transposase sites as well as a 
cmlc2- GFP sequence (gift from the Langenau laboratory). Each time, 
20 ng/l was injected together with transposon mRNA (35 ng/l). 
Tumor watch was executed in the same way as done for the stable 
transgenic lines.
Screening and sample collection
From 5 weeks on, fish were screened every 2 weeks for neuroblastoma 
development by the use of a fluorescent microscope (Nikon, SMZ18) 
using the NIS Elements software. Statistical analysis was performed 
using GraphPad Prism software version 5.0 (La Jolla, CA). The 
method of Kaplan and Meier was used to estimate the rate of tumor 
development. Fish that died without evidence of EGFP+ or mCherry+ 
masses were censored. The log-rank test was used to assess differ-
ences in the cumulative frequency of neuroblastoma between MYCN- 
only transgenic fish and MYCN;RRM2 transgenic fish.
Western blot analysis
Cells were lysed using a tissue lyser and cold RIPA buffer [12.7 mM; 
150 mM NaCl, 50 mM tris-HCl (pH 7.5), 0.01% SDS solution, and 
0.1% NP-40] supplemented with protease and phosphatase inhibi-
tors. Samples were rotated for 1 hour at 4°C to obtain more com-
plete lysis. The cleared lysates were collected and centrifuged at 
10,000 rpm in a microcentrifuge for 10 min at 4°C. Protein concen-
trations were determined using the Pierce BCA Protein Assay Kit. The 
lysates were denaturized before loading on a gel, through five times 
Laemli denaturation buffer supplemented with -mercaptoethanol. 
Thirty micrograms of protein extracts was loaded on 10% SDS-
PAGE gels with 10× tris/glycine/SDS buffer and run for 1 hour at 
130 V. Samples were blotted on nitrocellulose or PVDF membranes 
in 10% of 10× tris/glycine buffer and 20% of methanol. The mem-
branes were blocked during 1 hour in 5% milk or 5% BSA in 
TBST. Primary antibody incubations were done in blocking buffer 
overnight at 4°C. Blots were washed three times with TBST before 
the incubation for 1 hour of secondary antibodies. The immuno-
blots were visualized by using the enhanced chemiluminescent Femto 
(Bio-Rad). The protein quantification analysis of the generated blots 
was performed through ImageJ software, where the area from each 
protein was normalized to the loading protein in respect to each 
blot. Antibodies used were the following: pCHK1(Ser345), yH2AX, 
and vinculin. The material origin used for Western blot and the anti-
bodies are provided on tables S4 and S5, respectively.
Bulk RNA-seq after FACS of the zebrafish lines
A pool of three to five 6-week-old fish per sample (for a total of three 
samples of MYCN;RRM2 and five samples of MYCN fish) was euth-
anized using an overdose of MS-222. After mechanical dissociation 
in resuspension solution (0.9× PBS and 10% FCS) using a scalpel, the 
cell suspension was passed through a 40m mesh filter before cell 
sorting. The cell suspension was analyzed by imaging flow cytometry 
in collaboration with the Flow Cytometry Core Facility (VIB, Ghent 
University, Belgium). Forward and side scatters were used to gate for 
live, single cells, while sorting itself was based on enhanced GFP 
(eGFP)–positive cells and could also be evaluated through imaging 
on the sorter. Images were captured using a BD Biosciences FACS 

imaging–enabled prototype cell sorter that is equipped with an opti-
cal module, allowing multicolor fluorescence imaging of fast flowing 
cells in a stream enabled by BD CellView Image Technology based on 
fluorescence imaging using radiofrequency-tagged emission (77). No 
other markers were used. The sorted cells were collected in lysis 
buffer (RTL) of the RNeasy plus micro kit (QIAGEN, 74,034), 
supplemented with 2-mercaptoethanol (10 l/1  ml of RTL, as 
recommended). The cells were kept on ice/cooled in the sorter during 
the whole procedure. Further RNA isolation was done using the 
RNeasy plus micro kit (QIAGEN, 74,034). Integrity and concentra-
tion of the RNA was evaluated using the Fragment Analyzer (Advanced 
Analytical Technologies) with the High Sensitivity RNA analysis kit 
(DNF-472-0500). The ProSize software version 3.0.1.5 was used to 
determine the RQN (RNA quality number) RNA integrity score 
considering the entire electropherogram. Full-length cDNA synthesis 
and amplification were done using the SMART-Seq v4 Ultra Low 
Input RNA Kit (Takara Biosystems, 634,890). An input of 1 ng of 
SMART-Seq v4 amplified cDNA was used for Nextera XT DNA li-
brary prep (Illumina, FC-131-1024), and the libraries were sequenced 
using a NextSeq 500 (Illumina). Quality control on fastq files was per-
formed with FastQC (www.bioinformatics. babraham.ac.uk/projects/
fastqc/). Reads were aligned to Danio rerio reference genome GRCz10 
with STAR v2.4.2a using a two-pass strategy. Genes were quantified 
using the Danio_rerio.GRCz10.91.gtf transcriptome. The DESeq2 R 
package was used for count normalization and differential gene ex-
pression analysis. The normalized read counts were used to generate 
PCA plots, heatmaps, and the correlation matrix. Pearson’s correla-
tion coefficient was calculated on log-transformed normalized read 
counts. Preranked GSEA was preformed using GenePattern 2.0 
(www.genepattern.org).
Immunohistochemistry analysis
For immunohistochemistry analysis, fish were euthanized with an 
overdose of MS-222, and their belly was cut open with a scalpel to 
increase impregnation. They were fixed overnight using modified 
Davidson fixation buffer (for 100 ml: 22 ml of 37% formaldehyde, 
12 ml of glacial acetic acid, 33 ml of 95% EtOH, and 33 ml of dis-
tilled water). The fish were subsequently emerged overnight in 10% 
neutral buffered formalin. After fixation, the fish were decalcified with 
citric acid for several hours. Thereafter, the fish were dehydrated and 
brought to paraffin (70% EtOH overnight, 2 hours of 90% EtOH, 3× 
1 hour of 100% EtOH, 3× 1 hour of xylene, and 2× 2 hours of paraffin 
at 65°C). Sagittal sections were made, and standard H&E staining 
was performed next to immunohistochemistry staining with the 
primary antibodies MYCN (Santa Cruz Biotechnology, sc-53993), 
TH (Pel-Freez Biologicals, P40101), and GFP (Cell Signaling Tech-
nology, #2956).
Quantification and statistical analyses
Expression datasets available in R2 (https://r2.amc.nl) were down-
loaded, and Pearson correlation from SciPy (version 1.6.2) from 
Python (version 3.9) was applied to evaluate the correlation between 
the selected genes. In vitro quantitative data were presented as means 
and SD from at least more than three biological replicates. Paired 
two-tailed Student’s t test was applied to the qPCR data using Micro-
soft Excel. As for the caspase 3/7 activity, the statistical analysis was 
applied to mean-centered and autoscaled data. As to determine the 
overall P value, Kruskal-Wallis test was applied, followed by a post 
hoc comparison by Dunn’s test. The analysis was done on Python 
(version 3.9) using SciPy (version 1.6.2) and scikit-posthocs library 
(version 0.6.7). One-way analysis of variance (ANOVA) and 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.genepattern.org
https://r2.amc.nl
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Holm-Šídák method for multiple comparison testing were applied to 
DNA combing fibers using GraphPad Prism 9.2.0 software.

For the in vivo xenograft, the Mantel-Cox method was applied for 
the survival analysis using GraphPad Prism 9.2.0 software. For all 
the analyses, the P value lower than 0.05 was considered as statisti-
cally significant. For the significance, P values lower than 0.05 were 
represented as “*,” P values lower than 0.01 as “**,” P values lower 
than 0.001 as “***,” and, lastly, P values lower than 0.0001 as “****.”

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn1382

View/request a protocol for this paper from Bio-protocol.
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