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Abstract: Genomic imprinting is an epigenetic marking process that results in the monoallelic
expression of a subset of genes. Many of these ‘imprinted’ genes in mice and humans are involved
in embryonic and extraembryonic growth and development, and some have life-long impacts on
metabolism. During mammalian development, the genome undergoes waves of (re)programming of
DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting
disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition
by which imprinting defects touch more than one locus. Although most cases with MLID present
with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in
‘molar’ pregnancies-which are characterized by highly compromised embryonic development-and
in other forms of reproductive compromise presenting clinically as infertility or early pregnancy
loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex
(SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of
moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes
which have been associated with altered imprinting status of the oocyte, embryo and/or placenta.
The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic
methylation at critical times in gamete or early embryo development has wider implications beyond
these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition,
or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review
key milestones in DNA methylation patterning in the female germline and the embryo focusing on
humans. We provide an overview of recent findings regarding DNA methylation deficits causing
BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with
regard to early embryonic arrest, BiCHM, and MLID.

Keywords: oocyte; epigenetics; genomic imprinting; DNA methylation; subcortical maternal com-
plex; embryo arrest; infertility; epimutations

1. Introduction

DNA methylation is one of the best-studied epigenetic modifications and plays an
essential role in mammalian development [1]. It is thought to be involved in multiple
processes including the regulation of gene expression, heterochromatin formation, and
genome integrity. DNA methylation is deposited by the de novo DNA methyltransferases.
DNA methyltransferase 3A and 3B (DNMT3A and DNMT3B) are the major de novo
DNA methyltransferases, and DNMT3L, which does not possess enzymatic activity, stim-
ulates DNMT3A and DNMT3B activity by binding to their catalytic domains [2]. DNA
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methylation is maintained during replication by the maintenance DNA methyltransferase
1 (DNMT1) in collaboration with ubiquitin-like with PHD and RING finger domains 1
UHRF1 [3,4]. However, DNMT1 also contributes to de novo DNA methylation in mouse
oocytes [5].

Sexual reproduction in mammals requires the reprogramming of methylation marks.
Nearly all DNA methylation is removed through a comprehensive reprogramming process
in primordial germ cells (PGCs), which are the gamete precursors. This step is referred to as
erasure (Figure 1). Subsequently, new methylation patterns are re-established in the germ
cells in an asymmetrical fashion in the male and female germline, which give rise to highly
specialized gametes ready for fertilization [6]. This step is called establishment (Figure 1).
Studies in mice have demonstrated that in the male germline, de novo methylation begins
prenatally in mitotically arrested prospermatogonia and is completed after birth [7,8]. The
mature sperm has a uniform methylation pattern similar to somatic cells: the genome
is ubiquitously hypermethylated with the exception of CG-rich regions of the genome,
called CpG islands, most of which remain unmethylated [9,10]. In female germ cells, the
establishment of methylation takes place after birth in growing oocytes arrested at meiotic
prophase I. The mature oocyte in both mice and humans has a comparatively low overall
methylation level that is almost exclusively restricted to transcribed gene bodies but about
10% of CpG islands is also hypermethylated [11–14].

1 
 

 

Figure 1. DNA methylation programming and reprogramming during development in humans and mice. DNA methylation
is globally erased in primordial germ cells (PGCs) derived from epiblast during their proliferation and migration to the
genital ridges (solid gray line). Therefore, de novo DNA methylation subsequent takes place on a largely blank slate
during male and female gametogenesis. In the male, new methylation is established from soon after demethylation and
is almost completed by the time of birth (solid blue line). In females, there is no gain of methylation until after birth.
Growing oocytes arrested in the first meiosis prophase gain methylation between birth and puberty, as well as in adult life
(solid pink line). Maternally and paternally imprinted DMRs become differentially methylated in gametes over the same
time window (dashed pink and blue lines, respectively). After fertilization, the parental genomes undergo genome-wide
demethylation, which does not include imprinted DMRs (dashed combined pink and blue lines). The timing and extent
of demethylation are different for the two parental genomes. The paternal genome is rapidly demethylated in part via
TET proteins activity (solid blue line). The maternal genome is protected against TET activity and undergoes passive
demethylation following DNA replication (solid pink line). By the time of implantation, the genome–except for imprinted
DMRs–undergoes re-methylation events that are necessary for cell-lineage determination (combined red and blue lines).
Placenta-specific imprinting that is present only in humans is shown with the solid coral orange line.



Genes 2021, 12, 1214 3 of 33

Following fertilization, the genome of the mouse zygote undergoes another repro-
gramming wave (Figure 1). The timing and mode of reprogramming differ between the
parental genomes. Most of the paternal genome is actively demethylated: Demethyla-
tion occurs rapidly and has been observed even before pronuclear fusion [15]. In part, it
is mediated by Ten-Eleven Translocation 3 (TET3)-driven oxidation of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC) [16]. Conversely, maternal-genome methylation
is largely protected at this stage and is slowly diluted during DNA replication, mainly
because of the absence of DNMT1 activity [15,17]. However, it has been shown in both
human and mouse that the maternal genome is subject to both de novo methylation and
hydroxylation events [18,19].

In mammals, genomic imprinting is an important consequence of sexual reproduction.
Genomic imprinting is an epigenetically regulated process in which DNA methylation
marking in a parent-of-origin-specific manner of one allele of a gene or its control element
causes monoallelic expression [20]. Many imprinted genes are organized in clusters and
each cluster is regulated by an imprinting control region (ICR). An ICR that acquires mono-
allelic DNA methylation in the germline serves as a primary imprinting mark and is, thus,
referred to as germline differentially methylated region (gDMR). These primary gDMRs
escape embryonic reprogramming and their parent-of-origin dependent mono-allelic DNA
methylation persist in somatic tissues. This step is called maintenance (Figure 1) [21].

Altered monoallelic expression of imprinted genes caused by genetic or epigenetic
defects is associated with imprinting disorders [22]. In other words, any disruption in
erasure, establishment or maintenance of imprints can result in an imprinting disorder.
For example, the failure to establish imprints during female gametogenesis or maintain
them is shown to be associated with BiCHM, which is an aberrant human pregnancy
characterized by placental overgrowth and absence of embryonic tissues [23,24]. The
results from studies of patients with imprinting disorders suggest that maintenance of
gDMR methylation during post-fertilization reprogramming requires the expression of
maternal-effect genes in the oocyte and early embryo. Several of these encode proteins of
the subcortical maternal complex (SCMC). The SCMC is a multi-protein structure present in
the mammalian oocyte and early embryo involved in several important cellular processes in
the egg-to-zygote transition. Maternal ablation of some SCMC members impairs embryonic
development and is implicated in adverse reproductive outcomes, including pregnancy
loss and hydatidiform moles as well as live-born children with multi-locus imprinting
disturbances (MLID) [25–29]. In the latter, an imprinting disorder is accompanied by
methylation defects at multiple ICRs.

This review investigates the relationship between DNA methylation deficits and ab-
normal early development in humans, focusing on the female germline. Therefore, we first
describe the DNA methylation landscape in human PGCs, oocytes, pre-implantation em-
bryos, and extra-embryonic lineages in detail. Second, by focusing on the role of the SCMC,
we address the current understanding of defective DNA methylation reprogramming in
relation to three forms of the restricted developmental disorder: MLID, BiCHM, and early
embryonic demise. We also summarize SCMC mutations that impair development by
causing the above conditions. Although MLID and BiCHM are rare genetic disorders of
imprinting, knowledge of their etiology, together with a full understanding of the mecha-
nisms of imprint establishment and maintenance, are key to recognizing the potential that
factors, such as adverse maternal physiology, nutrition or other exposures, and assisted
reproduction procedures, have for disrupting the fidelity of imprinting and precipitating
lifelong epigenetic errors.

2. DNA Methylation Programming and Reprogramming in the Female Germline and
Early Embryo
2.1. Primordial Germ Cells and Oocytes

Human PGCs are specified at approximately two weeks post-fertilization (pf), af-
ter which they migrate from the yolk sac wall and colonize the gonadal ridge between
3–5 weeks pf. Here, they undergo substantial proliferation before sexual differentiation [30].
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Until week 5, the genomes of PGCs are highly methylated (Figure 1), but must be repro-
grammed to give rise to functional gametes. DNA methylation reprogramming at this stage
is concomitant with the downregulation of DNMT3A, DNMT3B, and UHRF1, the DNMT1
accessory factor, and the upregulation of TET1 and TET2 [31]. The lowest DNA methylation
level in the human genome is achieved after this reprogramming at 10–11 weeks pf. At this
stage, global DNA methylation levels were reported to be 8% in male PGCs at 11 weeks
and 6% in female PGCs at 10 weeks (Figure 1) [32,33].

The timing of methylation establishment during oogenesis in humans has recently
been described by Yan et al. [34]. Single-cell multi-omics sequencing revealed that de
novo methylation occurs in growing oocytes, similar to what has been described in the
mouse. De novo methylation correlates with chromatin accessibility and transcription [34].
Although the timing and pattern of de novo methylation during human oogenesis may
be analogous to those in mice, the roles of DNMTs may differ. In mice, knockout studies
have shown that de novo methylation in the oocyte requires DNMT3A and its co-factor
DNMT3L, but not DNMT3B [35,36]. Interestingly, transcripts for DNMT3B are expressed
10-fold higher than DNMT3A in human oocytes and DNMT3L is not expressed at all.
Therefore, it has been suggested that DNMT3B, or an oocyte-specific isoform of DNMT3B,
may replace DNMT3L in human oocytes as a partner for DNMT3A [13,37]. In the Yan et al.
study, DNMT1 and DNMT3A transcripts were found in both growing and fully grown
oocytes, while DNMT3B and UHRF1 were mostly expressed in mature oocytes [34].

Mature human oocytes (meiotic metaphase II, MII) show an intermediate level of
genomic CpG methylation with a mean of 53.8% [13,38]. Like mouse oocytes, the human
oocyte has a bimodal DNA methylation pattern, with broad hypermethylated and hy-
pomethylated domains [13,34,39]. The majority of hypermethylated domains correspond
to actively transcribed gene bodies and gene body methylation levels correlate with tran-
scription levels. The remainder of the genome remains largely unmethylated, indicating
that active transcription may drive DNA methylation in human oocytes in a similar manner
as in the mouse [13,34,38,40]. However, unlike in mice, promoter accessibility positively
correlates with gene-body methylation in human oocytes. Although comparable numbers
of transcripts are detected in mouse and human oocytes, more genes are hypermethylated
(>75% methylation) in human oocytes. In addition, a greater number of non-transcribed
intergenic regions that become methylated in human growing oocytes have been identi-
fied [34]. In humans, follicle growth is an extended process: almost 120 days are required
for primordial follicles to reach the preantral follicle stage and a further 85 days to reach the
ovulatory follicle stage [41]. The relatively long time over which DNMTs are active has been
suggested as a possible cause of methylation of a greater proportion of genes in humans
compared to mice [42]. Alternatively, there may be some differences in the chromatin
determinants of de novo methylation or expression levels of necessary chromatin factors.

In their exploration of the oocyte and sperm methylome, Okae and colleagues identi-
fied differentially methylated regions (DMRs) between male and female gametes (defined
as ≥80% methylation present in only one gamete) and described 29,424 regions that are
exclusively methylated in the oocyte genome [13]. These oocyte-specific hypermethylated
domains localize primarily to intragenic regions and are enriched for CpG islands (CGIs),
gDMRs, gene promoters, gene bodies, and transposable elements such as short interspersed
nuclear elements (SINEs), the evolutionary younger superfamily of Alu elements, and long
interspersed nuclear elements (LINEs) [19,38].

2.2. Preimplantation Embryo

Soon after fertilization, the genome undergoes global demethylation (Figure 1). The
removal of epigenetic marks inherited from gametes leads to the restoration of develop-
mental potency in the zygote and adjusts the parental epigenomes of the embryo [43].
This global wave of epigenetic reprogramming is part of the egg-to-embryo transition,
which also includes zygotic genome activation (ZGA) and the removal of maternal fac-
tors. The initial cell divisions and growth of the developing new embryo rely entirely on
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stored proteins and RNAs that are expressed from the maternal genome in the developing
oocyte. The genes from which these RNAs are expressed are referred to as maternal-effect
genes as they are transcribed from the maternal genome before fertilization, but their
products are essential for the developing embryo until its genome is transcribed. After
fertilization, the maternally provided transcripts and proteins gradually degrade while
ZGA (which is completed at the four to the eight-cell stage in human embryos and at the
two-cell stage in mouse embryos) encompasses the beginning of embryonic transcription,
which will gradually take over control of processes, such as cell differentiation and future
development [44–46].

DNA demethylation in the human preimplantation embryo occurs in a stepwise
manner reaching a mean DNA methylation level of 25.7% in blastocyst-stage embryos
at five to six days pf [13,19]. This is significantly lower than the median DNA methyla-
tion levels in the egg of 54.5% and sperm of 82%, indicating a significant reduction from
the highly specialized gametes to the totipotent embryo [13,19]. Generally, the oocyte
hypermethylated domains maintain intermediate methylation levels in the blastocyst [47],
but they respond differently to global demethylation based on their genomic properties.
For example, transposable elements which are hypermethylated in oocytes are drastically
demethylated in blastocysts, with the exception of SINE-VNTR-Alu (SVA) and LTR12 sub-
families, which retain high levels of residual methylation throughout the preimplantation
period [13,48]. More so than in mouse embryos, highly methylated CGIs retain substan-
tial levels of methylation in human embryos (median of methylation of these CGIs and
gDMRs in the blastocyst is 37.5% and 39.2%, respectively) [13]. The maternal genome is less
demethylated in humans than in mouse embryos during preimplantation development.
Consequently, the global methylation levels of the human blastocyst closely resemble those
of the oocyte [47].

Demethylation of the paternal genome is much faster and more profound than that of
the maternal genome in human embryos, which is more similar to the same process in the
mouse, suggesting that active demethylation is conserved between the two species [38,48].
Accordingly, the residual DNA methylation levels, in either male pronuclei or the paternal
genome domains from the 2-cell stage onward are always lower compared to those of the
maternal genome [19,38].

In addition to genome-wide demethylation events, limited de novo methylation
of active repeat elements during preimplantation development in human embryos has
recently been reported [19]. In particular, SINEs, LINEs, and long terminal repeats (LTRs)
acquire DNA methylation at two stages: from the early male pronuclear to the mid-
pronuclear stage and from the four-cell to the eight-cell stage on the paternal genome. The
function of this de novo methylation has not been elucidated, and the majority of de novo
methylated sites lose their methylation again after the next cell division. One hypothesis is
that de novo methylation of active repeat elements guarantees genome stability by further
repressing those elements at a stage where genome integrity is at its greatest risk [19,38,49].

2.3. Post-Implantation Embryo

The blastocyst represents the stage at which the first cellular lineages have become
apparent, comprising the trophectoderm (TE), which gives rise to the extraembryonic
tissues, and the inner cell mass (ICM), which gives rise to embryonic tissues. In humans,
the embryo implants into the uterine wall approximately on day seven after fertilization.
By the time the blastocyst progresses to the post-implantation stage, the genomes of both
embryonic and extraembryonic tissues have undergone massive tissue-specific and stage-
specific DNA-remethylation (Figure 1) [50]. In the mouse, DNMT3A/B are responsible for
this de novo methylation which is essential for gastrulation and proper cellular differentia-
tion into the three germ layers: Endoderm, mesoderm, and ectoderm [51,52]. However,
in mice, the regulation of DNA methylation in the extraembryonic lineages (which give
rise to the placenta) is different from that in the embryonic lineages [53]. Human placental
villi are composed of trophoblast, which derives from the TE, and mesenchyme, which
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originates from ICM-derived extraembryonic mesoderm [54]. As mentioned above, during
post-implantation development the genome acquires de novo methylation. However, the
placenta maintains a general hypomethylated epigenome compared to the embryo [55].
The placental methylome is organized into partially methylated domains (PMD) and highly
methylated domains (HMD) [56]. PMDs are large domains covering about 40% of the
genome with an average DNA methylation level of 45% (compared to 80% in HMDs) and
overall lower transcription levels than the rest of the genome. The placenta is the only
somatic tissue with such extensive PMDs, which are stable throughout gestation. Genes
enriched within PMDs have low gene-body methylation levels and lower gene expression
compared to those within HMD.

3. Methylation Patterning of Imprinted Genes

Imprinted genes occupy a small fraction of the genome and are mono-allelically ex-
pressed in a parent-of-origin-dependent manner. They fulfill important functions during
the development and disruption of their mono-allelic expression results in several dif-
ferent imprinting syndromes, depending on the affected gene(s) [57]. Many imprinted
genes are organized in clusters and each cluster is regulated by an ICR [20,58]. Canon-
ical imprinted genes have differential methylation of the ICR that is established in the
germline (gDMR) and is protected from the waves of demethylation and re-methylation
during early embryonic development. In contrast, non-canonical imprinting is a DNA-
methylation-independent imprinting process [59,60]. This mode of imprinting has recently
been described in mice, but it is not yet known if it also occurs in humans and its significance
also remains unclear. Non-canonical imprinting is set by H3K27me3 in the oocyte, which
results in mono-allelic expression of the corresponding genes from the paternal allele in the
preimplantation embryo. However, the H3K27me3 mark is lost during preimplantation
development and replaced by monoallelic DNA methylation during post-implantation de-
velopment specifically in the extra-embryonic lineages [60,61]. Further research is needed
to understand how this form of imprinting is maintained throughout pre-implantation
development, whether the mechanism is conserved in other species and the particular
function of placenta-specific imprinting.

The majority of imprinted genes are epigenetically specified in the female germline.
Maternal gDMRs are set during the phase of de novo DNA methylation in the growing
oocyte along with the remainder of the methylome. While the rest of the genome is subject
to reprogramming after fertilization, gDMRs are largely protected and maintain their
methylation from the zygote to post-implantation stage [38,62]. In mice, DNA methylation
of the methylated allele of ICRs is maintained by ZFP57, a Kruüppel-associated box (KRAB)-
containing zinc finger protein. ZFP57 recognizes and binds to the methylated allele of all
murine and most human gDMRs and recruits its cofactor KAP1 (also known as TRIM28).
The ZFP57/KAP1 complex then recruits other epigenetic modifiers, including SETDB1
and DNMT1, to the gDMRs to protect the methylated allele from demethylation [63,64].
In mice, ZFP57 is continually expressed from the oocyte to the early embryo, and it has
been shown that oocyte expression of ZFP57 is required for the proper maintenance of
gDMRs [63]. In humans, ZFP57 is expressed only in the early embryo with zygotic genome
activation [45,65]. It is unclear if this difference in expression has any effect on function,
but loss of function mutations of human ZFP57 disrupt the maintenance of imprinting
resulting in MLID [66]. Even so, in these patients, not all imprinted genes are affected
suggesting that other complementary factors may play a role. Recent studies identified
other zinc finger proteins, ZFP445 and ZNF202, that bind the majority of ICRs and are
expressed in oocytes; ZFP445, in particular, appears to be more important for imprinting
maintenance in human embryos. In a recent study, for the first time a homozygous ZFP445
variant was found. This pathogenic variant caused Temple syndrome and MLID in the
patient [65,67,68].

During the remethylation phase in the post-implantation embryo, the unmethylated
allele of canonical imprinted genes is protected against de novo methylation, passing
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lifelong memory of parental origin into the next generation (Figure 1) [69,70]. In humans,
some gDMRs are maintained exclusively in the placenta. This phenomenon is called
placenta-specific imprinting and has not yet been observed in the mouse [47,54,71–74].
Most placenta-specific imprinted genes are transient and retain methylation of maternal
origin set in the oocyte [54,71]. Placenta-specific imprinted genes show mono-allelic
methylation on the maternal allele in placental villi, cytotrophoblasts, trophoblast, and
mesenchyme mostly become unmethylated in somatic tissues [54,71]. The incomplete
demethylation of the maternal allele during preimplantation development or incomplete
de novo methylation of the paternal allele post-implantation are proposed as mechanisms
of placenta-specific imprinting [47].

4. Global Loss of Imprinting Results in Hydatidiform Molar Pregnancies

The two waves of DNA methylation reprogramming in the germline and the early
embryo are important for normal development. In particular, the establishment and mainte-
nance of imprints have been shown to be crucial for the maintenance of a healthy pregnancy.
Therefore, the loss of imprinting results in a variety of developmental abnormalities [21,75].
The most severe form is the hydatidiform mole (HM), which is a gestational abnormality
characterized by trophoblast overgrowth and the absence of embryo development [76].
In most cases, HM pregnancies occur sporadically and are the result of an androgenetic
embryo that has two paternal genome copies and is lacking the maternal copy. The lack
of the maternal copy consequently means that all maternal imprints are missing, while
the paternal imprints are fully methylated, which is thought to be the main factor driving
the HM phenotype. In mice, androgenetic pregnancies lacking maternal imprints show
similarities to the HM phenotype in that they are characterized by trophoblast overgrowth
and abnormal development of the embryo proper [77,78]. The lack of imprinting results in
the imbalance of imprinted gene expression. In a recent study using bipaternal mice, this
imbalance of expression was corrected at seven imprinted loci, which resulted in the birth
of live pups, highlighting the importance of mono-allelic expression of imprinted genes for
normal pregnancies [79].

In rare cases, HM are recurrent, and in most such instances, this coincides with a
biparental genome. These are termed biparental complete hydatidiform mole (BiCHM). The
majority of BiCHM pregnancies have been associated with mutations in the maternal-effect
genes NLRP7 (~75%) and KHDC3L (~5–10%) [25]. Recently, a patient with a PADI6 mutation
was identified [80]. In contrast to androgenetic HMs, BiCHM has a maternal copy of the
genome. Their phenotype is associated with widespread loss of methylation at (almost) all
maternal gDMRs in patients with disease variants in NLRP7 and KHDC3L [22,81–84]. Given
that only the maternal and not paternal gDMRs appear to be affected, it was suggested
that the loss of methylation originates in the oocyte. Indeed, a recent study assessing DNA
methylation in oocytes of a patient with a KHDC3L mutation showed that global DNA
methylation establishment in the oocyte was impaired, including but not limited to the
maternal gDMRs [24]. While the majority of the methylome recovered post-implantation,
as assessed in the molar tissue, thus suggesting normal de novo methylation in the embryo,
the maternal gDMRs were not rescued [24]. However, this has only been shown for a single
patient with a KHDC3L mutation and does not exclude the possibility that in other patients
BiCHM pregnancies may be a result of failed gDMR maintenance or a combination of
defects in the oocyte and preimplantation embryo. This is supported by patients in which
NLRP7 mutations have been associated with MLID in which paternal gDMRs were also
affected [28].

5. Molar Pregnancies Indicate a Role for the Subcortical Maternal Complex in
Ensuring Imprinting

Although the evidence described above implicates NLRP7 and KHDC3L in the estab-
lishment of maternal gDMRs in the oocyte, the mechanism of how this may occur remains
unexplained. NLRP7 and KHDC3L are both parts of the same oocyte multi-protein com-
plex, the subcortical maternal complex (SCMC) [85]. The SCMC was first described in mice
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and regulates several essential cellular processes during the egg-to-embryo transition, such
as spindle assembly, chromosome alignment, and symmetric cell division in cleavage-stage
embryos [86,87]. The SCMC has since also been detected in other mammalian species,
including humans [85,88]. In humans, seven genes have, so far, been described to encode
proteins of the SCMC: NLRP5 (MATER), OOEP (FLOPED), TLE6, NLRP2, NLRP7, KHDC3L
(C6ORF221), and PADI6 [85,89–91].

The SCMC is localized in the subcortical region of the cytoplasm just below the cell
membrane or cortex of the oocyte and persists throughout preimplantation development
until the blastocyst stage, where it is excluded from regions with cell-cell contact. The
cytoplasmic localization of the SCMC makes a potential role in imprinting regulation all
the more intriguing. As discussed above, mutations in NLRP7, KHDC3L, and, potentially,
PADI6 are associated with BiCHM pregnancies. Other genes, including NLRP5, NLRP2,
NLRP7, PADI6, and OOEP, have been associated with MLID and miscarriages [22,27,28,92].
MLID is thought to occur from failure of gDMR maintenance in preimplantation embryos
because, in contrast to BiCHM, only a variable subset of gDMRs is affected in MLID.
The cause of the high frequency of miscarriages in some women with SCMC mutations
is unknown [22,27,28]. One possibility is that the number of imprinted genes affected
varies between offspring, and only milder cases develop to term. Another gene frequently
mutated in MLID is ZFP57 [66] which, together with DNMT1 and TRIM28, encodes
part of the DNA methylation maintenance machinery of gDMRs during preimplantation
development [93]. How the SCMC members impact the maintenance machinery remains
to be resolved. One possibility is that the SCMC functions as a regulator of cellular
organization and through that can regulate the localization of proteins involved in DNA
methylation, such as DNMTs. Indeed, knockout of Nlrp2 in mice disrupts the subcellular
localization of DNMT1, but not DNMT3A [94]. Immunofluorescence showed that DNMT1,
which was enriched in the cortex together with other SCMC proteins in control oocytes and
preimplantation embryos, had a more diffuse cytoplasmic rather than cortical localization
in maternal knockout zygotes [94]. This would suggest an involvement of NLRP2 in
DNA methylation maintenance, which fits with the association of NLRP2 with MLID in
humans [28,92]. Mid-gestation embryos and neonates from Nlrp2-deficient oocytes did
indeed show small alterations in methylation at imprinted gDMRs [94]. Nlrp2 is so far
the only mouse gene in which a link between the SCMC and imprinting regulation has
been made. It will be interesting to assess the role of Nlrp2 and other SCMC genes in
imprinting in mice more comprehensively, to improve our understanding of conditions
such as BiCHM and MLID.

Studying SCMC function in humans is challenging, as the genes are exclusively
expressed in oocytes and human material is extremely rare, even more so from patients
with pathogenic variants. Furthermore, not all SCMC members are conserved in mammals,
as some, such as the NLRPs, belong to rapidly evolving gene families [95]. For example,
NLRP7, the major gene involved in BiCHM, is not found in the mouse, making the use of
animal models difficult. Mouse knockout studies have shown that the SCMC proteins are
tightly regulated. Except for Khdc3 (Filia), the mouse orthologue of KHDC3L, the knockout
of any one of the SCMC genes destabilizes the entire complex and results in dispersing
protein localization of the other members [86,96,97]. These knockout studies also showed
that ablation of one of the SCMC proteins usually results in embryo arrest at the zygote or
early cleavage stages [29,86,98]. This very early embryo arrest is not linked to imprinting,
as oocyte-specific deletion of Dnmt3a or Dnmt3l in mice, which results in complete loss of
maternal imprinting, does not cause any phenotype until later in development [35,99].

The discrepancy between human and mouse studies may partly be caused by under
ascertainment of human cases. Mosaicism in patients may affect the diagnosis of MLID [21].
Furthermore, pathogenic genetic variants that are compatible with life in the case of MLID
or with pregnancy in the case of BiCHM are more likely to be detected than those that
cause early preimplantation embryo arrest. There is growing evidence supporting that
mutations in genes encoding SCMC members may be associated with early embryo arrest
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independent of imprinting disorders [100–104]. It has been proposed that there might be a
causal link between the SCMC, DNA methylation, and genome integrity, as imprinting
aberrations have been associated with aneuploidies in the embryos of patients with SCMC
mutations [21,22,28,75]. A role for the SCMC in ploidy is also supported by a mouse study,
in which maternal ablation of Khdc3 caused abnormal spindle assembly, chromosome
misalignment, and spindle assembly checkpoint inactivation during the early embryo
cleavage stages, resulting in increased aneuploidy rates [96]. A combination of imprinting
defects and aneuploidy may therefore be at the core of explaining miscarriages often
observed in patients with SCMC mutations.

6. Pathogenic Variants Identified within Human SCMC Genes

Numerous families and singletons with early embryonic lethality, MLID, and BiCHM
have been studied to find the causative genes for these conditions. DNA from probands
and family members have been subjected to whole-genome or whole-exome sequencing,
and variants have been classified and annotated. Rare homozygous and compound het-
erozygous variants have been identified in NLRP2, NLRP5, NLRP7, KHDC3L, TLE6, PADI,
OOEP, UHRF1, and ZAR1. In most cases, the segregation in familial presentations was
confirmed. Reported variants in genes that encode SCMC proteins and associated clinical
features have been compiled in the Table 1.
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Table 1. Summary of familial and singleton variants within SCMC genes causing early embryonic lethality, MLID, and BiCHM.
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55449464 2077C>T p.Arg693Trp Missense

mutation 2.74E-04 6.69E-04 NA NA

Autosomal
recessive
(Homozy-

gous)

Exon 5

Complete
hydatidi-

form
mole

Germany

M
oI

n6
8

Chr19:
55449463 2078G>C p.Arg693Pro Missense

mutation 4.77E-05 NA tolerated
(0.07)

benign
(0.056)

Autosomal
recessive
(Homozy-

gous)

Exon 5

Complete
hydatidi-

form
mole

India



Genes 2021, 12, 1214 11 of 33

Table 1. Cont.

G
en

e

Fa
m

il
y

hg19
Position

G
en

B
an

k

cDNA
Mutation

Protein
Mutation

Mutation
Effect

gnomAD_
Exomeall

MAF

gnomAD_
Genomeall

MAF
SIFT Polyphen Inheritance Domain/

Exon
Pregnancy
Outcomes Country Ref

M
oI

n6
9-

2 Chr19:
55441939 c.2738A>G p.Asn913Ser Missense

mutation 1.35E-04 7.33E-04 deleterious
(0)

probably_
damag-

ing
(0.991)

Autosomal
recessive

(Com-
pound

heterozy-
gous)

Exon 5
Complete
hydatidi-

form mole
and

invasive
mole

India

Chr19:
55449463 c.2078G>C p.Arg693Pro Missense

mutation 4.77E-05 NA tolerated
(0.07)

benign
(0.056) Exon 9

N
LR

P7

Fa
m

ily
6 Chr19:

55447768

N
M

_0
01

12
72

55
.1

c.2161C>T p.Arg721Trp
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56552341 c.2840T>C p.Leu947Pro Missense

mutation 2.61E-04 2.23E-04 deleterious
(0)

probably_
damaging
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gotic pair)
was SRS–

MLID

Germany

Fa
m

ily
5

Chr19:
56539298
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arrest

China [107]

N
LR

P2 Fa
m

ily
1

Chr19:
55494543

N
M

_0
17

85
2.

4

c.1479_1480
delAG

p.Arg493Ser
fsTer32

Frameshift
mutation

7.56E-05 NA NA NA

Autosomal
recessive
(Homozy-

gous
Mother),

Heterozy-
gous in

both
probands

LRR
domain

MLID Germany [28]

Fa
m

ily

Autosomal
recessive
consan-

guineous
family

Proband
with BWS–

MLID
Pakistan [92]
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Exomeall
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gnomAD_
Genomeall
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Fa
m

ily
2

Chr19:
55497553 c.2237delA p.Asn746Thr

fsTer4
Frameshift
mutation 3.98E-06 NA NA NA

Heterozygous
mother

and
proband

Exon 8 Proband
with SRS Germany

Family
previ-
ously

re-
ported

in
[108]
and
[109]

Fa
m

ily
3

Chr19:
55505788

c.2860_2861
delTG

p.Cys954Gln
fsTer18

Frameshift
mutation NA NA NA NA Heterozygous

mother

Exon
11/LRR
domain

Proband
47, XXY,

Symmetri-
cal growth
restriction
and devel-
opmental

delay

Germany [28]

Fa
m

ily
4

Chr19:
55485901 c.314C>T p.Pro105Leu Missense

mutation 2.79E-05 NA tolerated
(0.15)

possibly_
damaging

(0.604)

Heterozygous
mother Exon 3 TNDM [28]

Fa
m

ily
5 Chr19:

55494951 c.1885T>C p.Ser629Pro Missense
mutations

1.01E-03 1.12E-03 deleterious
(0)

probably_
damaging

(0.959)

Compound
Heterozy-

gous
(Mother

and
Proband)

Exon 6

SRS UK [28]
Chr19:

55501424
c.

2401G>A
p.

Ala801Thr 9.17E-03 1.27E-02 tolerated
(0.51)

benign
(0.097) Exon 9
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Fa
m

ily
1

Chr19:
55495027

N
M

_0
17

85
2.

5

c.1961C>A p.Ser654Ter Nonsense
mutation NA NA NA NA Autosomal

recessive Exon 6

MLID China [104]

Fa
m

ily
2 Chr19:

55493839 c.773T>C p.Phe258Ser Missense
mutation 3.98E-06 NA deleterious

(0)

probably_
damag-

ing
(0.993)

Compound
Heterozy-

gous

NACHT

Chr19:
55497571 c.2254C>T p.Arg752Ter Nonsense

mutation 3.98E-06 NA NA NA Exon 9

Fa
m

ily
3

Chr19:
55493591 c.525G>C p.Trp175Cys Missense

mutation NA NA tolerated
(0.06)

probably_
damag-

ing
(0.979) Compound

Heterozy-
gous

Exon 6

Chr19:
55501876 c.2544A>T p.Glu848Asp Missense

mutation NA NA deleterious
(0.01)

probably_
damag-

ing
(0.994)

LRR

Fa
m

ily
4 Chr19:

55493728 c.662C>T p.Thr221Met Missense
mutation 8.85E-02 9.05E-02 deleterious

(0.04)

probably_
damag-

ing
(0.989)

Compound
Heterozy-

gous

NACHT

Chr19:
55494913 c.1847A>T p.Glu616Val Missense

mutation 7.96E-06 NA deleterious
(0.04)

benign
(0.405) Exon8

Fa
m

ily
5 Chr19:

55493728 c.662C>T p.Thr221Met Missense
mutation 8.85E-02 9.05E-02 deleterious

(0.04)

probably_
damag-

ing
(0.989)

Compound
Heterozy-

gous

NACHT

Chr19:
55494534 c.1469C>T p.Arg490Cys Missense

mutation 1.28E-04 3.20E-05 deleterious
(0.01)

benign
(0.03) Exon7
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K
H

D
C

3L

Fa
m

ily
L

Chr6:
74072455

N
M

_0
01

01
73

61
.3

c.3G>T

p.Met1Ile
next

available
downstream
ATG codon

lies at
residue 14

Loss of
start codon 3.98E-06 NA deleterious

(0)

probably_
damaging

(0.916)

Autosomal
recessive
(consan-
guineous
family)

Exon1

Familial
Biparental
Hydatidi-

form
Mole

Pakistan

[26]

Fa
m

ily
T

Chr6:
74072970

c.322_325
delGACT

p.Asp108Ile
fsTer30

Frameshift
mutation 2.39E-05 NA NA NA Exon 2

Complete
Hydatidi-

form
Mole

Tunisia

Fa
m

ily
W

Chr6:
74072453 c.1A>G p.Met1Val Missense

mutation NA NA deleterious
(0)

probably_
damaging

(0.916)
Compound
Heterozy-

gous

Exon 1 Complete
Hydatidi-

form
Mole

Asia

Chr6:
74072969

c.322_325
delGACT

p.Asp108Ile
fsTer30

Frameshift
mutation 2.39E-05 NA NA NA Exon 2

Pa
ti

en
tD Chr6:

74072453 c.1A>G p.Met1Val Start
codon loss NA NA deleterious

(0)

probably_
damaging

(0.916)

Autosomal
recessive BiCHM Iran [24]

TL
E6

Fa
m

ily
1

Chr19:
2993572

N
M

_0
01

14
39

86
.2

c.1529C>A p.Ser510Tyr Missense
mutation

NA NA deleterious
(0)

probably_
damaging

(0.912)

Homozygous
in 2

probands
WD40

domain
repeats
(Ctermi-

nal)

Early
embryonic
Arrest (1,2
and 4 cell

stage)

Saudi
Arabia

[100]

Fa
m

ily
2 Homozygous

in consan-
guineous

family
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PA
D

I6

Fa
m

ily
1

Chr1:
17720537

N
M

_2
07

42
1.

4

c.1141C>T p.Gln381Ter Nonsense
mutation NA NA NA NA

Homozygous
in consan-
guineous

family

PAD
domain

Early Em-
bryonic
Arrest

(arrested
at the 2- to

4-cell
stage)

China [101]

Fa
m

ily
2

Chr1:
17727858

c.2009_2010
del

p.Glu670Gly
fsTer48

Frameshift
mutation NA NA NA NA

Compound
Heterozy-

gous

PAD
domain

Early Em-
bryonic
Arrest

(arrested
at the 1- to

2-cell
stage)

Chr1:
17708541 c.633T>A p.His211Gln Missense

mutation 3.21E-05 NA deleterious
(0.02)

probably_
damaging

(0.936)

PAD
middle
domain

Fa
m

ily
3

Chr1:
17722159 c.1618G>A p.Gly540Arg Missense

mutation 4.08E-06 NA tolerated
(0.05)

benign
(0.159) Compound

Heterozy-
gous

PAD
domain

Early Em-
bryonic
Arrest

(arrested
between

the 2- and
5-cell

stages)
Chr1:

17718616 c.970C>T p.Gln324Ter Nonsense
mutation NA NA NA NA

Fa
m

ily

Chr1:
17725285 c.1793A>G p.Asn598Ser Missense

mutation NA NA tolerated
(0.05)

probably_
damaging

(0.911) Compound
Heterozy-

gous

PAD
domain

Recurrent
hydatidi-

form
moles
(RHM)

China [80]

Chr1:
17727894

c.2045
G>A

p.
Arg682Gln

Missense
mutation 8.03E-06 NA deleterious

(0)

probably_
damaging

(0.992)
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Fa
m

ily
1

Chr1:
17718714 c.1067G>A p.Trp356Ter Nonsense

mutation NA NA NA NA Probands
mother is

Com-
pound

Heterozy-
gous

PAD
domain
(Exon

10)

Beckwith-
Wiedemann
syndrome
with multi-

locus
imprinting

distur-
bance

Italy [110]

Chr1:
17727743 c.1894C>G p.Pro632Ala Missense

mutation 4.01E-06 NA deleterious
(0)

probably_
damag-

ing
(1)

PAD
domain
(Exon

17)

Fa
m

ily
2

Chr1:
17721538 c.1429A>G p.Met477Val

Missense
mutation

4.01E-06 NA tolerated
(0.48)

possibly_
damag-

ing
(0.452)

Proband’s
mother is

Com-
pound

Heterozy-
gous

PAD
domain
(Exon

13)

Chr1:
17727929 c.2080C>T p.Pro694Ser 8.05E-06 NA deleterious

(0)

probably_
damag-

ing
(1)

PAD
domain
(Exon

17)

Fa
m

ily
3

Chr1:
17727855 c.2006delC p.Thr669Lys

fsTer85
Frameshift

deletion NA NA NA NA Heterozygous

PAD
domain
(Exon

17)

PA
D

I6
(h

g3
8)

Fa
m

ily
9

Chr1:
17388820

N
M

_2
07

42
1.

3 c.902G>A p.Arg301Gln

Missense
mutations

NA NA deleterious
(0)

probably_
damag-

ing
(1)

Compound
Heterozy-

gous
(Mother)
Proband

not tested

Exon 8

SRS [28]

Chr1:
17394415 c.1298C>T p.Pro433Leu NA 2.63E-05 deleterious

(0)

probably_
damag-

ing
(1)

Exon 11
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Fa
m

ily
10

Chr1:
17394024 c.1124T>C p.Leu375Ser

Missense
mutations

NA NA deleterious
(0.01)

probably_
damaging

(0.915)

Compound
Heterozy-

gous
(Mother)

Exon 10
BWS–
MLID

Chr1:
17397091 c.1639G>A p.Asp547Asn NA 5.06E-04 tolerated

(1)
benign
(0.005)

Heterozygous
in Proband Exon 14

Fa
m

ily
11

Chr1:
17392197 c.1046A>G p.Asp349Gly Missense

mutation NA NA tolerated
(0.37)

probably_
damaging

(0.953)

Heterozygous
(Mother) Exon 9 SRS Germany

Fa
m

ily
12

Chr1:
17379985 c.433A>G p.Lys145Glu Missense

mutation NA 6.57E-06 deleterious
(0.02)

possibly_
damaging

(0.612)

Heterozygous
(Mother) Exon 4 SRS Germany

O
O

EP
(h

g3
8)

Fa
m

ily
13

Chr6:
73369684

N
M

_0
01

08
05

07
.2

c.109C>T p.Arg37Trp Missense
mutation NA 3.29E-05 deleterious

(0.04)
benign
(0.135)

Autosomal
recessive
(Homozy-

gous
Mother),

Heterozy-
gous

proband

Exon 1 TNDM

U
H

R
F1

(h
g3

8)

Fa
m

ily
14

Chr19:
4930782

N
M

_0
13

28
2.

4

c.514G>A p.Val172Met Missense
mutation NA NA deleterious

(0)

probably_
damaging

(0.952)

Heterozygous
(Mother and

Proband)
Exon 3 SRS
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Z
A

R
1

(h
g3

8)

Fa
m

ily
15

Chr4:
48492438

N
M

_1
75

61
9.

2

c.130G>T p.Glu44Cys Missense
mutation NA NA deleterious

(0.01)

possibly_
damaging

(0.748)

Heterozygous
(Mother and

Proband)
Exon 1

mild
macroglos-

sia, and
high birth

weight,
but no
other

features of
BWS

The letter E is substituted for “× 10ˆ”. Not Applicable (NA).
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DAPIN (Domain in Apoptosis and Interferon response) domain. Protein arginine
deiminase (PAD), Beckwith-Wiedemann syndrome (BWS), Silver-Russell Syndrome (SRS),
transient neonatal diabetes mellitus (TNDM), partial HM (PHM). Functional effects of the
detected variations were predicted from SIFT, PolyPhen and CADD Phred (CADD Phred
score column is provided in the supplementary Table S1). The Minor Allele Frequency
(MAF) of the potential causal variants was found on The Genome Aggregation Database
(gnomAD).

7. Conclusions

In this review, we discussed how clinical syndromes, and in particular, BiCHM, which
result from imprinting disturbances. Up to 50% of imprinting errors are caused by primary
epimutations that alter DNA modifications without altering the DNA sequence. Epimuta-
tions are usually the result of post-fertilization random errors in imprinting marks, and
thus, are not commonly inherited. Environmental factors, such as nutrition, physiologi-
cal disturbances, such as metabolic disorders, or exposures to agents, such as endocrine
disruptors may cause primary epimutations. In addition, there has been a long-standing
concerns that some procedures in assisted reproductive technologies (ART) could induce
epimutations. Other imprinting errors result from genetic changes, including chromosomal
rearrangements, mutations (in imprinted genes or epigenetic regulators) and uniparental
disomies. Here, we highlighted imprinting errors arising from mutations in epigenetic
regulators such as ZFP57, as well as from maternal effect mutations in genes that encode
proteins of the enigmatic SCMC. The outcomes of such mutations range from serious
compromise in developmental competence of the embryo, infertility, to MLID.

To improve molecular diagnosis and clinical management of these, and related, human
reproductive disorders, it will be important to improve our understanding of the causes
and origin of imprinting errors. This is particularly true for maternal-effect mutations in
genes that encode proteins of the SCMC, for which the mechanisms leading to imprinting
errors remain obscure. As we discussed in this review, the SCMC is involved in a multi-
tude of functions important in the oocyte and preimplantation embryo and mutations in
components of this complex cause serious imprinting errors. More studies are required
to disentangle the different functions of the SCMC in humans. Due to the difficulties
in accessing human material, SCMC knock-out mouse models could be informative to
investigate the underlying mechanisms, but it remains to be seen whether SCMC mutations
in the mouse induce DNA methylation defects akin to those in BiCHM or MLID. However,
these disorders demonstrate that major epigenetic defects can arise at crucial times of
methylation programming and reprogramming events due to defects in factors-the SCMC-
that themselves are not epigenetic regulators. This may reveal the importance of as yet
undiscovered cellular processes that ensure the activity, cofactor availability or sub-cellular
localization of the epigenetic machinery required for DNA methylation establishment or
maintenance events. This might also identify a new domain of vulnerability of epigenetic
control in the critical preimplantation period that could be sensitive to aspects of adverse
maternal physiology or ART procedures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12081214/s1, Table S1: Summary of familial and singleton variants within SCMC
genes causing early embryonic lethality, MLID, and BiCHM. The CADD Phred score is provided
in this table.
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