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SUMMARY
Planar cell polarity (PCP) organizes the orientation of cellular protrusions and migratory activity within the
tissue plane. PCP establishment involves the subcellular polarization of core PCP components. It has
been suggested that Wnt gradients could provide a global cue that coordinates local PCP with tissue
axes. Here, we dissect the role of Wnt ligands in the orientation of hairs of Drosophila wings, an established
system for the study of PCP. We found that PCP was normal in quintuple mutant wings that rely solely on the
membrane-tetheredWingless forWnt signaling, suggesting that aWnt gradient is not required.We then used
a nanobody-based approach to trapWntless in the endoplasmic reticulum, and hence prevent all Wnt secre-
tion, specifically during the period of PCP establishment. PCP was still established. We conclude that, even
thoughWnt ligands could contribute to PCP, they are not essential, and another global cue must exist for tis-
sue-wide polarization.
INTRODUCTION

Planar cell polarity (PCP) refers to the polarity that epithelial

cells acquire along the plane of the epithelium, orthogonal to

the apical-basal axis. In a wide range of metazoans, PCP con-

tributes to cell proliferation, cell fate decisions, body axis elonga-

tion, and morphogenesis, as well as to the orientation of cellular

protrusions, such as hairs (Goodrich and Strutt, 2011; Adler,

2012; Yang and Mlodzik, 2015; Butler and Wallingford, 2017;

Lawrence and Casal, 2013). Moreover, aberrant PCP has been

linked to diseases, such as polycystic kidney disease, deafness,

and cancer (Yates et al., 2010; Lu and Sipe, 2016; VanderVorst

et al., 2018). Understanding the molecular basis of PCP estab-

lishment and maintenance is, therefore, important from both a

fundamental and a biomedical perspective. Genetic analyses

have identified many conserved molecules that mediate PCP

from flies to humans. A number of these proteins make up the

so-called core PCP pathway. They include, for example, the

transmembrane proteins Frizzled (Fz1, FZD in vertebrates) and

Starry Night (Stan aka Flamingo, CELSR in vertebrates) and

the cytoplasmic protein Dishevelled (Dsh, DVL in vertebrates).

A second PCP pathway, named after two of its components

Fat (Ft) and Dachsous (Ds), has been identified in Drosophila

(Mahoney et al., 1991; Clark et al., 1995; Zeidler et al., 1999).

Its involvement in vertebrates is less well characterized than

in flies, and its relationship with the core pathway remains

controversial (Thomas and Strutt, 2012; Matis and Axelrod,
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2013). However, the finding that, in some tissues, this pathway

can drive PCP in the absence of the core pathway (Casal et al.,

2006) shows that cells can use multiple inputs to orient

themselves.

Core PCP relies on the complementary localization of compo-

nents at the distal and proximal sides of cells. These compo-

nents include transmembrane proteins, which mediate cell inter-

actions that coordinate polarity locally, and intracellular factors,

which stabilize the asymmetry within each cell (Vinson et al.,

1989; Klingensmith et al., 1994; Taylor et al., 1998; Wolff and Ru-

bin, 1998; Usui et al., 1999; Chae et al., 1999; Wallingford et al.,

2000; Feiguin et al., 2001; Strutt, 2001; Axelrod, 2001; Tree et al.,

2002; Jenny et al., 2003; Bastock et al., 2003; Jenny et al., 2005;

Devenport and Fuchs, 2008; Strutt et al., 2011). In addition, it is

thought that tissue-wide global cues provide an overall direction

to PCP relative to embryonic axes. One attractive possibility is

that this is achieved by morphogen gradients, although this

has not been directly demonstrated. Among the key compo-

nents of core PCP are Frizzled proteins, which are transmem-

brane proteins that bindWnts through their extracellular cysteine

rich domain (CRD) (Bhanot et al., 1996; Hsieh et al., 1999).

Indeed, Frizzled receptors are key mediators of canonical Wnt

signaling. Thus, it is conceivable that Frizzled proteins could

read and transduce a Wnt gradient into PCP. It has been

suggested, therefore, that a long-range Wnt gradient would

bias Frizzled activity and kickstart the molecular interactions

that stabilize the asymmetric distribution of other core PCP
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Figure 1. PCP Is Normal with Membrane-Tethered Wingless and the Absence of DWnt4

(A) A model of how a Wnt gradient may lead to a Fz ‘‘activity’’ gradient that directs the asymmetric localization of core PCP protein complexes, eventually

polarizing hair outgrowth in one direction. Note that PCP is initially radial toward the prospective wing margin, where Wg and Wnt4 are expressed. The PCP axis

subsequently reorient to the final proximal-distal pattern during morphogenesis (Aigouy et al., 2010). For simplicity, the Wnt gradient and PCP are shown aligned

with the proximal-distal axis throughout.

(legend continued on next page)
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components and themorphological implementation of PCP (Fig-

ure 1A) (Gubb and Garcı́a-Bellido, 1982; Adler et al., 1997; Strutt,

2001; Struhl et al., 2012; Fisher and Strutt, 2019). Although

attractive, this scenario remains a model since an endogenous

Fz activity gradient has not been formally demonstrated.

A number of studies have implicated Wnt ligands in PCP

establishment. In fish and frog embryos, mutation or knockdown

ofWnt5a or Wnt11 lead to a reduction in the PCP-dependent cell

movements that lead to axis elongation (Rauch et al., 1997; Hei-

senberg et al., 2000; Tada and Smith, 2000; Wallingford et al.,

2001; Andre et al., 2015). Likewise, in the mouse limb bud, the

deletion of Wnt5a interferes with the establishment of PCP in

chondrocytes along the proximal-distal axis, and thuswith tissue

elongation (Gao et al., 2011; Yang et al., 2017). Therefore, in

these instances, a Wnt ligand is required for PCP, although it is

not clear whether this role is instructive or permissive (Gao,

2012; Lawrence and Casal, 2013). In fish and frog embryos,

the PCP phenotypes caused by Wnt inhibition can be rescued

by the uniform expression of exogenous Wnts, suggesting that

a graded ligand distribution may not be required for PCP. Never-

theless, localized ectopic Wnt expression can orient PCP both in

Xenopus mesoderm and the mouse limb bud (Chu and Sokol,

2016; Minegishi et al., 2017). Therefore, in these systems, a

Wnt gradient can provide information for polarization, even

though it may not be required.

Because of a wealth of genetic tools and a long history of PCP

research,Drosophila is well suited to investigate the requirement

ofWnt gradients in PCP. InDrosophila, PCP is readily assayed by

measuring the orientation of hairs that decorate much of the

cuticle. For example, at the surface of developing wings, the

core PCP pathway orients actin protrusions, which serve as a

template for the formation of hairs during metamorphosis

(Wong and Adler, 1993). In the wild type, these protrusions point

distally but can be reoriented by the ectopic expression of Wing-

less or DWnt4 (Wu et al., 2013). Therefore, as in vertebrates, the

gain-of-function evidence suggests that a Wnt gradient is suffi-

cient to reorient hairs. Loss-of-function tests are difficult to

perform and interpret because of the requirement of Wingless

for wing specification and growth, which occur before PCP

establishment (Ng et al., 1996). Nevertheless, it has been

possible to interfere with Wingless and DWnt4 with a combina-

tion of hypomorphic alleles compatible with growth. Adult flies

were rarely recovered, but inmost pupal wings, the pre-hair actin

bundles were found to be partially misoriented (Wu et al., 2013).

This observation suggests that, in the developing wing, Wingless

and DWnt4 are needed redundantly for the establishment of

PCP, although it does not directly address whether these Wnts

must be graded. However, in another tissue, the adult abdomen,

the possibility thatWnts could provide an instructive cue that ori-
(B) A wild-type adult wing (B0) and a 28 h APF pupal wing with anti-Stan staining

asymmetric localization in each cell is depicted by magenta lines. Stan orientation

rectangle in the adult wing) was tabulated on a polar coordinate histogram, with

(C and D) Wing, pupal wing, and Stan orientation polar histogram for homozygous

lacking DWnt4 (D). Conversion to NRT-Wg was triggered by GAL4-driven Flp, w

Bosch et al., 2017). The p values were calculated with a two-sample Kolmogorov

conditions (C00 and D00) with that in the wild type (shown in B00).
(E) Wing from a hemizygous fz1P21 mutant fly.

(E’) Pupal wing and polar histogram of Stan orientations for the same genotype.
ents bristles has been ruled out (Lawrence et al., 2002; Casal

et al., 2006). Therefore, the requirement of Wnts, and/or the

instructive value of their graded distribution for PCP remains a

matter of debate both in flies and vertebrates.

The Drosophila genome encodes seven Wnts. Six of them

carry a palmitoleate moiety that is essential for engagement

with the Frizzled CRD and have a well-defined vertebrate ortho-

log (in parenthesis below): Wingless (Wnt1), DWnt2 (Wnt7),

DWnt4 (Wnt9), DWnt 5 (Wnt5), DWnt6 (Wnt6), and DWnt10

(Wnt10) (Nusse, 2020). Drosophila also encodes a non-

conserved WntD, which is not palmitoleoylated, and therefore,

is unlikely to bind the CRD of Fz (Wu and Nusse, 2002). We

took advantage of the recent developments in genome engineer-

ing to create a panel of alleles, some conditional, in all the genes

encoding Drosophila Wnts. With these genetic tools, we found

that PCP can be established in the absence of a diffusion-based

Wnt gradient. In further analysis, we show that the Frizzled-

dependent core PCP pathway does not need any Wnt ligand

to organize PCP in the developing wing. Therefore, in this

instance, another non-Wnt global cue must control the subcellu-

lar asymmetry of Fz and other core PCP components.

RESULTS

DWnt4 Is Not Required for PCP, Even in the Absence of
Diffusible Wingless
Larvae expressingmembrane-tethered (non-diffusible) Wingless

(NRT-Wg) from the endogenous locus can develop into flies with

apparently normal appendages, albeit with a delay and at a

reduced frequency (Alexandre et al., 2014). Wing hairs in these

animals appear to be normally oriented, suggesting that PCP

establishment does not require a Wingless gradient. To improve

viability and sample recovery, we took advantage of an allele,

here, referred to as wg[cNRT], which can be converted in a tis-

sue-specific manner from expressing wild-type Wg to express-

ing NRT-Wg. Allele conversion was induced with UAS-Flp and

rngal4, which is expressed specifically in wing primordia at the

second instar stage (St Pierre et al., 2002). The resulting pupal

wings, which presumably lack diffusible Wingless, were stained

for Stan (aka Fmi), an atypical cadherin that forms homophilic

bridges across the proximal-distal cell junctions, and thus,

serves as an early marker of PCP (Lu et al., 1999; Usui et al.,

1999). The distribution of Stan was indistinguishable from that

in wild-type pupae (Figures 1B and 1C), confirming that diffusible

Wingless is not necessary for PCP. It has been suggested that a

DWnt4 gradient could redundantly promote PCP in the

Drosophila wing (Wu et al., 2013). To probe this suggestion, we

generated a DWnt4 mutant (DWnt4[KO]) in the wg[cNRT] back-

ground (Figure S1A). The resulting flies were used to create
(B00). Here and in subsequent figures, the orientation and magnitude of Stan’s

data from the pupal wing region (corresponding to the region marked by a red

n denoting the number of cells (pooled from 4 pupal wings).

NRT-Wg larvae (no diffusible Wingless) (C) or for homozygous NRT-Wg larvae

hich has been shown to be efficient previously (Hadjieconomou et al., 2011;

-Smirnov test that compares the distribution of the Stan orientation in mutant

Scale bars are 50 mm unless specified otherwise.
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Figure 2. Deletion of DWnt2, DWnt4, DWnt6 and DWnt10 in a Membrane-Tethered Wingless Background Does Not Impair PCP

(A and B) Expression patterns of DWnts in third-instar wing discs and pupal wings reveal all the expressed DWnts.

(C) Wing derived from primordia expressing NRT-Wg instead of Wg, and lacking DWnt2, DWnt4, DWnt6, and DWnt10.

(D) Pupal wings and polar histogram of Stan orientations for the same genotype. The p value was calculated using the two-sample Kolmogorov-Smirnov test to

compare the distribution of Stan orientation of the mutant condition (D) to that of the wild type in Figure 1B00. Scale bars are 50 mm unless specified otherwise.
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NRT-Wg-expressing wing primordia lacking all DWnt4 proteins.

PCP, as determined by Stan localization, was still normal (Fig-

ure 1D). For comparison, significant polarity defects were seen

in fz1P21 mutants, as expected, since Fz1 is the only Frizzled re-

ceptor required for PCP in Drosophila (Figures 1E and E’). We

conclude that gradients of diffusible Wingless and DWnt4 are

dispensable for PCP, but we cannot exclude a possible neomor-

phic activity of NRT-Wg on Fz1 activity or a contribution of

other DWnts.

Multiple Wnts Are Expressed in the Developing Wing
To identify the Wnts that are expressed in wing primordia and

hence possibly involved in PCP in this tissue, we generated a

panel of reporter genes. CRISPR-Cas9 was used to insert DNA

fragments encoding nuclear-targeted GFP or GAL4 at the

endogenous translation initiation codon of DWnt2, DWnt4,

DWnt5, DWnt6, DWnt10, and WntD, thus allowing the transcrip-

tional activity to be readily assessed. DNA encoding an HA-tag

was also inserted in the coding region of DWnt10 to generate a

protein reporter (Figures S1B–S1D). Analysis of late third-instar

wing imaginal discs showed that DWnt4 and DWnt6 are

expressed, like Wingless, at the dorsal-ventral (DV) boundary

(Figure 2A). DWnt2 was similarly expressed but more broadly.

The expression of HA-DWnt10 was undetectable by anti-HA

immunofluorescence. However, a weak GFP signal was pro-

duced in DWnt10[GAL4] UAS-GFP wing primordia, indicating a

low-level expression (Figure S1E). The DWnt5 and WntD re-

porters remained silent in wing primordia (Figures 1B and S1F).
586 Developmental Cell 54, 583–592, September 14, 2020
Since these Wnts do not bind the Fz CRD (Wu and Nusse,

2002), we conclude that they are unlikely to contribute to the acti-

vation of the core Fz PCP pathway. In contrast, the genes ex-

pressed in imaginal discs (DWnt2, DWnt4, DWnt6, DWnt10,

and Wingless) continued to be expressed at pupal stages (Fig-

ures 1B and S1E), suggesting that any of them could play a

role in PCP beyond the period of patterning and growth.

PCP Establishment in the Absence of a Wnt Gradient
To test if any Wnt gradient contributes to PCP in the developing

wing, we sought to abrogate the activity of DWnt2, DWnt4,

DWnt6, and DWnt10 in the wg[cNRT] background. All these

genes, except for DWnt2, are located within 100 kb of each other

in the genome, excluding the possibility of recombining individual

mutants (Figure S2A). We opted, therefore, for iterative rounds of

CRISPR-Cas9-mediated gene targeting to generate multiple

DWntmutants in thewg[cNRT] background. First, we sequentially

introduced indels at DWnt6 and DWnt10 on a chromosome car-

rying wg[cNRT]. Then we generated a conditional DWnt4 allele

(DWnt4[cKO]) in the background of wg[cNRT], DWnt6[KO],and

DWnt10[KO] to generate a quadruple mutant chromosome

(DWnt4[cKO], wg[cNRT], DWnt6[KO], and DWnt10[KO]). A dele-

tion of the first exon of DWnt2, which is located elsewhere on

chromosome 2, was generated separately and introduced on

this chromosome by standard recombination to generate a quin-

tuple mutant chromosome (Figure S2B). Thus, with an rngal4-

driven Flp expression, we obtained a wing primordia expressing

NRT-Wg instead of Wg and lacking DWnt2, DWnt4, DWnt6, and
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DWnt10, effectively removing all diffusible Wnts. The resulting fly

wingswere smaller than thewild type (Figure 2C), as previously re-

ported for NRT-Wgwings (Alexandre et al., 2014) but, remarkably,

wing hair orientation and the distribution of Stan were normal (Fig-

ure 2D). This finding suggests that a Wnt diffusion gradient is not

necessary for the establishment and maintenance of the Fz-

dependent PCP.

PCP without Secreted Wnt
In light of the previous result, we wondered whether Wnts

(graded or otherwise) are at all required for the establishment

of PCP in Drosophila wings. Since Wingless is required for

wing specification and growth, complete and early removal of

all Wnts leads to the absence of wing primordia, precluding an

assessment of PCP. However, the core Fz PCP pathway is

thought to be required only from early pupal stages, after most

growth has taken place. Indeed, sensitive imaging techniques

have shown that PCP domains start aligning along the prox-

imal-distal axis from the late third-instar larval stage (Sagner

et al., 2012; Aigouy et al., 2010). Moreover, the PCP phenotype

of fzmutant could be rescued by the uniform Fz-GFP expression

up until 6 h after prepupa formation (APF) (Strutt and Strutt,

2002). Therefore, it appears that the roles of Wnt signaling in

growth and PCP can be temporally separated. We tested this

further with a conditional allele of dsh, which is required for

both activities (Figures S3A and S3B). Inactivation of this allele

(dsh[cKO]) with UAS-Flp and nubgal4, which is expressed specif-

ically in wing primordia at the late second instar stage (Zirin and

Mann, 2007) allowed sufficient growth to reveal the expected

PCP phenotype (Figures S3C–S3E). There is, therefore, a tempo-

ral window when the role of Wnt ligands in PCP can be assessed

independently of their role in growth.

All Wnts (except WntD) require the multi-pass transmembrane

protein Wntless, aka Evenness interrupted, (here, referred to as

Wls) for progression in the secretory pathway (B€anziger et al.,

2006; Bartscherer et al., 2006; Herr and Basler, 2012). The com-

plete loss of Wls effectively prevents the secretion of all Wnts,

and the experimental abrogation of Wls could, therefore, be

used to inhibit the activity of all Wnts at once. However, the

Wls protein activity is known to perdure (B€anziger et al., 2006;

Bartscherer et al., 2006), limiting the temporal resolution of a

conditional allele or an RNAi-mediated interference. To over-

come this limitation, we designed an approach to target the

Wls protein as well as the gene. Inhibition of Wls protein was

achieved by trapping it in the endoplasmic reticulum (ER),

thereby preventing its progression, and that of all Wnts, through

the secretory pathway. We first engineered the wls locus so that

it expressed a functional GFP fusion, with the GFP moiety on the

luminal side (wls[ExGFP]) (Figure S3F). We also created a trans-

gene for the Gal4-dependent expression of an anti-GFP nano-

body modified to be retained in the ER lumen (UAS-NanobodyK-

DEL) (Figure 3A). Homozygous wls[ExGFP] larvae expressing this

transgene under the control of vggal4, an early wing primordium

driver, gave rise to flies lacking wings (Figure 3B), the same

phenotype seen in wingless1 mutants, which lack the wing

enhancer of wg (Sharma and Chopra, 1976). Hence, trapping

Wls in the ER is an effective approach to inhibit Wnt secretion.

Having established the effectiveness of the Wls trapping

approach, we turned to the nubgal4 driver to activate UAS-Nano-
bodyKDEL after sufficient growth has taken place. This was com-

bined with a tissue-specific gene knockout technique involving

the expression of UAS-Cas9 in the presence of a transgene ex-

pressing a guide RNA targetingwls (Port and Bullock, 2016; Port

et al., 2020). Thus, in the wls[ExGFP] background, one Gal4

driver suffices to induce expression of Cas9 (for gene inactiva-

tion) and NanobodyKDEL (for sequestration of the protein prod-

uct). In the resulting imaginal discs, Wls-GFP was no longer

detectable at the cell surface (compare Figures 3C and 3E), con-

firming its trapping in the ER. Moreover, in the resulting pupal

wing, Wingless was retained within Wingless-producing cells

(compare Figures 3D and 3F), and therefore, unable to activate

signal transduction. Indeed, adult wings of this genotype lacked

margin tissue (Figure 3G), which is specified by canonical Wnt

signaling (Couso et al., 1994; Micchelli et al., 1997). Occasional

misoriented hairs were seen but only near areas of tissue defor-

mation caused by the lack of margin (Figure S3G). Remarkably,

hair orientation and Stan localization were normal in the central

region of the wing (Figures 3G and 3H), far away from any Wnt

sources at the margin, a strong indication that the global cue

to PCP was not impaired. Therefore, PCP can be established

in the absence of secreted Wnt ligands.

PCP without Signals from the Wing Margin
Our results show that Wnt ligands are not needed for the estab-

lishment of the core PCP pathway (Figure 4A). We next deter-

mined whether another signal originating from the prospective

wing margin could serve as a global cue. Partial deletion of the

margin, achieved with various mutant combinations has been

achieved previously and shown not to affect PCP (Gubb and

Garcı́a-Bellido, 1982). We took advantage of improved genetic

tools to ensure complete removal of the margin at a defined

developmental time (Figure 4B). A combination of Flp, LexA,

and Gal4-regulated transgenes were used to express Hid and

Reaper, two pro-apoptotic proteins (Goyal et al., 2000) specif-

ically in the prospective wing margin at the third instar stage

(See details in Figures 4C–4I). Staining with anti-Wingless

showed that most of the prospective margin was absent in

third-instar wing discs (Figures 4C and 4G). Moreover, the result-

ing wing completely lacked recognizable margin tissues

(compare Figures 1B0 and 4E). The wings were particularly small,

probably because of a lack of Wingless signaling during the

growth period (Figures 4E and 4F). Yet, PCP, as assayed by

Stan staining in the pupal wing was normal (Figure 4I), suggest-

ing that no signal emanating from the prospective margin is

required for PCP.

DISCUSSION

There has been an ongoing debate whether Wnt ligands play a

permissive or instructive role in PCP (Heisenberg et al., 2000; Ul-

rich et al., 2005; Witze et al., 2008; Gros et al., 2009; Gao et al.,

2011, 2018; Wu et al., 2013; Chu and Sokol, 2016; Minegishi

et al., 2017; Navajas Acedo et al., 2019). To assess the role of

Wnt gradients rigorously, we engineered Drosophila larvae so

that their wing primordia rely on a membrane-tethered Wingless

as their only source of Wnt. This ensured that any diffusion-

based Wnt gradient is eliminated, although, at the outset, a

gradient based on cytonemes could not be excluded
Developmental Cell 54, 583–592, September 14, 2020 587



Figure 3. Inactivation of all DWnts during the Mid-Third Instar Does Not Impair PCP

(A) Diagram showing how NanobodyKDEL is expected to prevent Wnt secretion.

(B) Expression of NanobodyKDEL specifically in wing primordia and from the onset of development (with vggal4) in homozygous wls[ExGFP] larvae phenocopies a

wingless mutant.

(C) Total and extracellular Wls[ExGFP] in a third-instar wls[ExGFP] wing disc. This recapitulates the pattern seen with wild-type Wls.

(D) anti-Wg staining in a wls[ExGFP] 18 h APF pupal wing showing the spread of Wingless, as indicated by the presence of internalized Wingless in cells flanking

the wing margin.

(E) Wing disc showing the relative absence of Wls within the pouch (compared with the wild type in C).

(F) anti-Wg staining in a 18 h APF pupal wing, showing the lack of internalized Wingless away from the wing margin, confirming the absence of release from

expressing cells (compare to D).

(G) Adult wing where all DWnts were inactivatedby driving the expression of NanobodyKDEL and Cas9 with the wing pouch driver nubgal4. This driver, which is

located on the second chromosome was used instead of the previously used rngal4 (third chromosome) to overcome constraints caused by the number of

transgenic alleles already present on the 3rd chromosome.

(H) Stan polarization in pupal wings of the same genotype as (G). The p value was calculated using the two-sample Kolmogorov-Smirnov test to compare the

distribution of Stan orientation of the mutant condition (H) to that of the wild type in Figure 1B00. Scale bars are 50 mm unless specified otherwise.
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Figure 4. Margin Ablation during Early Third Instar Does Not Impair PCP

(A) Schematic illustrating that inactivation of all Wnts (expressed in the blue shaded area) is compatible with normal PCP in the wing.

(B) Experimental set-up to test whether another signal originating from the margin is required for PCP.

(C and D) Wingless staining in a third-instar wing disc and pupal wing with the prospective margin ablated. Outline of the pupal wing is apparent from DAPI

staining (blue).

(E and F) Adult wing with margin ablated.

(G) Anti-Wg staining in the wild-type wing disc, as a control for (C). (H) Anti-Wg staining in the wild-type pupal wing, as a control for (D).

(I) Stan polarization in pupal wings withmargin ablated. The p value was calculated using the two-sample Kolmogorov-Smirnov test to compare the distribution of

Stan orientation of the mutant condition (I) to that of the wild type in Figure 1B00. Scale bars are 50 mm unless specified otherwise.
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(Stanganello and Scholpp, 2016). To our surprise, wings entirely

lacking diffusible Wnt had normal PCP, suggesting that a

gradient of the Wnt ligand is not needed for Fz-dependent

PCP, even if the localized ectopic Wnt can orient PCP both in

Drosophila wing primordia (Wu et al., 2013) and in vertebrate tis-

sues (Chu and Sokol, 2016; Minegishi et al., 2017). Therefore, we

suggest that, while Wnt ligands can orient PCP in gain-of-func-

tion experiments, a Wnt gradient is not necessary. It is possible

that ectopicWnt can hijack the core PCP pathway in a non-phys-

iological manner. Alternatively, a Wnt gradient could normally

contribute to PCP but in a redundant manner with another global

cue. Accordingly, in tissues where no such redundant system

exists, a Wnt gradient might be essential, as suggested for the

developingmouse limb (Gao et al., 2011). In any case, our results

suggest that the global alignment of PCP could be achieved

without a Wnt gradient.

Despite doubts about the instructive value of Wnt gradients in

PCP, it has been generally accepted that, in vertebrates, Wnts

are needed, at least in a permissive manner. Yet, as we have

shown, in the wing primordia of Drosophila, PCP is established

normally in the complete absence of secreted Wnt ligands (See
also Ewen-Campen et al., 2020). This conclusion is based on

two sets of experimental results. In one set, Wnt activity was

prevented by trapping Wls, and hence all Wnts, in the ER. The

effectiveness of this approach can be inferred from the observa-

tion that induction of trapping in early primordia completely pre-

vented wing development. Using this approach to trap all Wnts

at a later time, but before the period of PCP establishment, we

found that PCP can be established normally in the absence of

Wnt ligands. Occasional misoriented hairs were seen but only

at the edge of the wing. We attribute these minor defects to local

tissue deformation but cannot exclude the possibility they might

arise because of the absence of Wnt. Our demonstration of

global PCP establishment in the absence of Wnt is at odds

with the established roles of Wnt5a and Wnt11 in the vertebrate

mesoderm. Perhaps, these Wnt ligands have evolved a PCP role

that is not present in Drosophila. This could, for example, be

mediated by Ror2, a receptor tyrosine kinase that acts as a co-

receptor for Wnt5a to establish PCP in the mouse limb bud

(Gao et al., 2011). Our conclusion that Wnt ligands are dispens-

able for PCP in theDrosophilawing is further strengthened by our

observation that PCP is unaffected by complete ablation of the
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prospective margin, where all the relevant Wnts are produced.

The result of our margin ablation experiment also shows that

PCP can be established without another diffusible cue origi-

nating from the prospective margin.

IfWnts are not required for PCP, another global cuemust exist.

This cannot be from an entirely separate redundant system,

since the removal of Fz1 on its own leads to strong PCP pheno-

types. Therefore, any alternative global cue must feed into the

Fz-dependent core pathway. Potential candidates include the

ft/ds pathway and the mechanical forces associated with tissue

morphogenesis, as summarized in recent reviews (Butler and

Wallingford, 2017; Aw and Devenport, 2017). The coordination

of PCP proteins’ localization across an entire tissue is no mean

feat and redundancy could help ensure robustness. Thus, multi-

ple mechanisms would act together to establish PCP, with some

cues having more influence than others depending on the devel-

opmental time and tissue context. Although aWnt gradient could

be important in some conditions, our results highlight a situation

when Wnt secretion is entirely dispensable.
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Tissue Analyzer Aigouy et al., 2010 https://grr.gred-

clermont.fr/labmirouse/software/WebPA/

N/A

Polarity measurement MATLAB scripts Strutt et al., 2016 N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Jean-Paul

Vincent (jp.vincent@crick.ac.uk).

MATERIALS AVAILABILITY

Fly lines generated in this study are available upon request.

DATA AND CODE AVAILABILITY

This study did not generate new datasets or codes.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila Strains and Fly Genetics
Fly strains were raised on standard agar media at 25�C, unless stated otherwise. Strains used in this paper were summarized in the

Key Resources Table. DNA injection was performed by either BestGene or the Crick fly facility.

The Wnt reporter toolbox was generated for this study: nlsGFP reporters for DWnt2, DWnt4, DWnt6, and DWnt5; DWnt10[HA];

DWnt10[GAL4]; DWntD[GAL4]. Other fly lines generated in this study include: DWnt4[KO], wg[cNRT]; DWnt2[KO], DWnt4[cKO],

wg[cNRT], DWnt6-KO], DWnt10[KO]; fz1P21; UAS-NanobodyKDEL; wls[ExGFP]; dsh[cKO]; rnlexa. wlssgRNA and UAS-Cas9 were gifts

from Fillip Port (Port et al., 2020). UAS-FRT stop FRT-hid-2A-reaper, lexaop-Flp, and UAS-Flp5 were gifts from Iris Salecker. wggal4

used in this study was as described in (Alexandre et al., 2014).wg::GFPwas a gift fromSimon Bullock (Port et al., 2014). The following

stocks were obtained from the Bloomington Drosophila Stock Centre: rngal4; UAS-Flp; nubgal4; UAS-GFP.

Genotypes
Figure 1

(B) w1118

(C) wg[cNRT]; rngal4, UAS-Flp

(D) DWnt4[KO], wg[cNRT]; rngal4, UAS-Flp

(E) fz1P21

Figure 2

(A-B) wg::GFP

nls-GFP-DWnt (for DWnt2, DWnt4, DWnt5, and DWnt6)

DWnt10[HA]
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(C-D) DWnt2[KO], DWnt4[cKO], wg[cNRT], DWnt6[KO], DWnt10[KO]; rngal4, UAS-Flp, UAS-Flp5

Figure 3

(B) vggal4, UAS-NanobodyKDEL

(C-D) wls[ExGFP]

(E-H) wlssgRNA, nubgal4, UAS-Cas9; wls[ExGFP], UAS-NanobodyKDEL

Figure 4

(C-F, I) wggal4, UAS-FRT stop FRT-hid-2A-reaper; rnlexa, lexaop-Flp

(G-H) w1118

Figure S1

(E) DWnt10[GAL4]/+; UAS-GFP/+

(F) DWntD[GAL4]/UAS-GFP

Figure S3

(D-E) dsh[cKO]/Y; nubgal4, UAS-Flp

(G) wlssgRNA, nubgal4, UAS-Cas9; wls[ExGFP], UAS-NanobodyKDEL

METHOD DETAILS

Generation of DWnt4[KO] in wg[cNRT] Background
Thewg[cNRT] conditional allele (FRT wg FRT nrt-wg)was generated by replacing the endogenouswg locus with FRT wg FRT nrt-wg,

as described in (Alexandre et al., 2014). The DWnt4[KO], wg[cNRT] chromosome was generated via CRISPR-Cas9 and homologous

recombination mediated repair in the wg[cNRT] background. The first exon of DWnt4 was replaced with attP and pax-GFP, a selec-

tionmarker, using the pTVGFP targeting vector with 1.2kb 5’ and 1.5kb 3’ homology arms (Figure S1A). CRISPR target sites were cho-

sen in unconserved regions, one upstream of the 5’UTR (ATGAGCAAAATGCAATCTAT), one in the intronic region following exon 1

(AGCATTTGAGGACGGCAAAC). The resulting pTVGFP-DWnt4[KO] construct and the DWn4sgRNA donor vector were co-injected into

embryos from a cross of nanos-Cas9 line and wg[cNRT]. Successful transformants were identified by GFP expression in the eyes,

and subsequently, PCR verified.

Generation of DWnt2, DWnt4, DWnt6, and DWnt5 GFP Reporters
To generate the nls-GFP reporters of DWnt2, DWnt4, DWnt6 and DWnt5 expression, a nls-GFP-T2A targeting vector was built by

introducing an nls encoding sequence (CCTAAGAAGAAGCGGAAAGTA) and a T2A sequence (GAGGGCCGCGGCTCCCTGCT

GACCTGCGGCGACGTGGAGGAGAACCCCGGCCCC) upstream and downstream of GFP sequence, respectively in the

CHE929GFP-lox�mini-white-lox vector, which allows transformant selection with mini-white (Pinheiro et al., 2017). At least 1kb of 5’

and 3’ homology arms were cloned using the primers in Table S1.

Target sites were chosen using http://targetfinder.flycrispr.neuro.brown.edu/ website (Gratz et al., 2014) to avoid off-target sites.

sgRNAs were cloned in pCFD5: U6:3-t::gRNA vector (Port et al., 2014). For all the reporters, the sgRNA vector and the nls-GFP-T2A

targeting vector were injected into vas-Cas9 lines (Gratz et al., 2014) by Bestgene, and subsequently, PCR verified.

Generation of DWnt10[HA] and DWnt[GAL4] Lines
The DWnt10[HA] allele was generated via two rounds of modifications (Figure S1C). In the first step, the first exon of DWnt10 was

replaced with attP and pax-Cherry, using the pTVCherry targeting vector with 1kb 5’ and 1.5kb 3’ homology arms. Target sites

were chosen in unconserved regions, one upstream of the 5’UTR (TGCTTTAAATACAAGAATGC), one in the intronic region following

exon 1 (TGAGATAAGAAGATGTTCAG). The resulting pTVCherry-DWnt10[KO] attP and DWnt10sgRNA vectors were co-injected into

embryos from the nanos-Cas9 line. Successful candidates were identified by Cherry expression in the eyes and subsequently,

PCR verified. This created a null allele of DWnt10 (DWnt10[KO]attP). The attP site was then used for the reintegration of RIVwhite

(Baena-Lopez et al., 2013) modified as follows. A DNA fragment containing the 50UTR, CDS, and 30UTR of DWnt10 was synthesized

by GeneWiz, with the sequence of HA-tag inserted in an unconserved region in exon 6. This fragment was cloned into the RIVwhite

vector. The resulting RIVwhite-DWnt10-HA vector was then injected into the DWnt10[KO]attP line to generate DWnt10[HA] via

PhiC31-mediated integration.

DWnt10[GAL4] was generated using the same strategy as for DWnt10[HA], but instead of the RIVwhite integration vector, a RIVgal4

integration vector (Baena-Lopez et al., 2013) was inserted into the attP site of DWnt10[KO]attP (Figure S1D).

DWntD[GAL4] was generated via two rounds of modification (Figure S1D). First, exon 1 was replaced with attP and pax-Cherry,

using the pTVCherry targeting vector with 1.5kb 5’ and 1.5kb 3’ homology arms. DWntDsgRNA was designed to target sites in uncon-

served regions, one upstream of the 5’UTR (GCTATATAAGTGTGCTGACC), one downstream of the 3’UTR (GTTTTAGCTACA

GGTGGTTT). The pTVCherry-DWntD[KO]attP and DWntDsgRNA plasmids were co-injected into embryos from the nanos-Cas9 line to

generate the null allele DWntD[KO]attP (PCR verified). A RIVgal4 integration vector (Baena-Lopez et al., 2013) was then introduced

by PhiC31-mediated integration to generate DWntD[GAL4] (Figure S1D).
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Generation of Multiple DWnt Mutants in wg[cNRT] Background
First, a double knockout of DWnt6 and DWnt10 was sequentially generated on the wg[cNRT] chromosome by injecting sgRNAs tar-

geting the first exon of both genes inwg[cNRT] nos-Cas9 embryos. Details of the target sites and cloning strategies are described in

Figure S2B. Indels were screened by genomic DNA extraction and PCR sequencing of homozygous candidates.

Next, a conditional DWnt4 allele, DWnt4[cKO], was generated by CRISPR-Cas9 and homologous recombination-mediated

repair on the wg[cNRT], DWnt6[KO], DWnt10[KO] chromosome. DWnt4 was made conditional by replacing the 50UTR and exon 1

with the same sequence but flanked by FRT71 sites (Figure S2B). CRISPR target sites were chosen in unconserved regions, one up-

stream of the 5’UTR (ATGAGCAAAATGCAATCTAT), one in the intronic region following exon 1 (AGCATTTGAGGACGGCAAAC). The

rescuing pTVGFP-DWnt4[cKO] construct was made by first generating PCR fragments encoding the 50 arm and exon 1 of DWnt4.

They were then stitched together and inserted into pTVGFP upstream of the pax-GFP selection cassette by Gibson Assembly.

FRT71 sites were included in the primers so that they would be inserted between the 5’arm and the rescuing exon 1 and also

immediately after the rescuing exon 1. The 3’ arm was then amplified by PCR and inserted after the pax-GFP selection cassette.

The resulting pTVGFP-DWnt4[cKO] plasmid was co-injected with DWn4sgRNA into embryos from a cross of nanos-Cas9 line and

the wg[cNRT], DWnt6[KO], DWnt10[KO] line. Successful candidates were identified by pax-GFP expression and subsequently,

PCR verified.

A DWnt2[KO] was generated separately by replacing the first exon with attP and pax-Cherry, using the pTVCherry targeting vector

with 1.5kb 5’ and 1.5kb 3’ homology arms (Figure S2B). CRISPR target sites were chosen in the unconserved regions, one upstream

of the 50UTR (AGTAGTAGTACTACTTGATC), one in the intronic region following exon 1 (AAATCAAAATACCTTCATCG). The resulting

pTVCherry-DWnt2[KO] attP plasmid was co-injected with DWnt2sgRNA into nanos-Cas9 embryos. Successful candidates were identi-

fied by pax-Cherry expression and subsequently, PCR verified.

The DWnt2[KO] generated was then recombined with DWnt4[cKO], wg[cNRT], DWnt6[KO], DWnt10[KO]. Successful recombina-

tion was screened by the presence of pax-GFP (from DWnt4[cKO]), and extra bright pax-Cherry signal in the eye, as both the DWnt2

[KO] and wg[cNRT] alleles harbor the pax-Cherry marker. The recombinant was subsequently verified via PCR.

Generation of dsh[cKO]

The dsh[cKO] allele was generated in two steps (Figure S3B). First, pTVCherrywith a 2kb 5’arm and 1kb 3’arm was used to replace the

coding region with an attP site and pax-Cherry to generate dsh[KO]attP. CRISPR target sites were chosen in the 5’UTR and just after

the stop codon (TTCCCGTGGATTTCCGCAGT, CGCAGTCGGCGCAGCTAAAA, CTACAATACGTAATTAAATA, and TACGGA

TACGTCCTGATCGT). The resulting pTVCherry-dsh[KO] attP plasmid was co-injected with dshsgRNA into nanos-Cas9 embryos. Suc-

cessful candidates were identified by pax-Cherry expression and subsequently, PCR verified. This created a null allele of dsh

(dsh[KO]attP). The attP site was then used for the reintegration of dsh-GFP flanked by FRT sites using RIV10dsh-GFP.

RIV10dsh-GFP was generated by first cloning dsh from genomic DNA into pBS-KS. The pBS-KSdsh vector was then opened using a

unique SnaBI site just prior to the stop codon of dsh. GFP was amplified via PCR from pEGFP-N1 (Clontech) and inserted into the

linearized pBS-KSdsh vector using Gibson Assembly to generate pBS-KSdsh-GFP. Dsh contains a ‘YVL’ PDZ motif at the carboxy-ter-

minus that has been suggested to be essential for function (Lee et al., 2015). This ‘YVL’ motif was hence duplicated and inserted after

the GFP coding sequence. The dsh-GFP sequence was then subcloned from the pBS-KSdsh-GFP vector into RIV10attB-paxGFP via the

NheI and AgeI restriction sites to generate RIV10dsh-GFP. The RIV10dsh-GFP vector was then injected into the dsh[KO]attP line to

generate the dsh[cKO] line via PhiC31-mediated integration.

Generation of UAS-NanobodyKDEL

UAS-NanobodyKDEL was generated by PCR amplifying the coding region of the VHH4 nanobody from pHT201 (gift from Dr. Peter

Thorpe, Queen Mary University of London), and subcloning it into pUAST. The sequence encoding KDEL was contained within

the reverse primer used for amplification of the nanobody, such that the KDEL was located at the C-terminal end of the nanobody

just prior to the stop codon. pUAST-NanobodyKDEL was then randomly integrated via P-element insertion and one line on the third

chromosome was recovered.

Generation of wls[ExGFP]

The wls[ExGFP] line was generated by two rounds of injection (Figure S3F). First, using the accelerated ‘Ends out’ homologous

recombination method described in (Baena-Lopez et al., 2013), a region comprising the three exons of wls (from 20bp upstream

of the initiation codon till 49bp after the stop codon) was replaced by an attP site and pax-Cherry, using the pTVCherry integration

vector, to generate wls[KO]attP. In a second step, a DNA fragment encoding wls[ExGFP] was generated starting with Lit28-EVI2XHA,

which was generated as follows. DNA encoding Evi2XHA was synthesized by Genewiz, such that two HA tags flanked by Gly/Ala

linker were inserted between amino acid 506(D) and 507(N). The native 5’UTR and the 3’UTR of wls were subsequently added to

generate an evi2XHA cDNA. The resulting Lit28-EVI2XHA was digested with AatII. This allowed the HA tags to be replaced with

GFP (amplified with primers including the AatII sites from pEGFP-N1 (Clontech)). DNA encoding Wls[ExGFP] was then sub-cloned

from Lit28 into RIVCherry, which was subsequently injected into the wls[KO]attP to generate the wls[ExGFP] line via PhiC31-mediated

integration.
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Generation of rnlexa

Rn-LexA was generated using RMCE (Venken et al., 2011), to insert pBS-KS-attB2-SA-T2A-LexA::GADfluw-Hsp70 into a rn MIMIC

line (Bloomington, #44158). pBS-KS-attB2-SA-T2A-LexA::GADfluw-Hsp70 was a gift from Benjamin White (Addgene plasmid #

78304). (Diao et al., 2015)

Immunostaining and Image Acquisition
The primary antibodies used were: mouse anti-Stan (1:10, pre-adsorbed, DSHB Flamingo #74), rat anti-Shg (1:50, pre-adsorbed,

DSHB DCAD2); mouse anti-Wg (1:500, DSHB 4D4), rabbit anti-GFP (1:500, Abcam ab6556). Secondary antibodies (Alexa Fluor

488, 555, 647) were used at 1:200.

Larval wing discs and pupal wings were dissected and fixed in PBS 4% formaldehyde for 20min (larval discs) or 1 h (pupal wings).

Dissected tissues were then washed in 0.1% PBT three times and then incubated in a blocking solution (0.1% BSA) for 1hr. Samples

were incubated in primary antibodies overnight at 4
�
C, and then washed in PBT three times. Secondary antibodies in a blocking so-

lution were then added and incubated for 2 h at room temperature. Samples were then washed three times in PBT, and thenmounted

in Vectashield with DAPI. All immunofluorescence images were acquired from a Leica SP5 confocal microscope. Adult wings images

were obtained from a wide field microscope (Zeiss Axiovert 200M).

QUANTIFICATION AND STATISTICAL ANALYSIS

Polarity Measurement
Z-stacks of the acquired images of each wing were projected using a MATLAB script, modified from (Heller et al., 2016), which

allowed the projection of the apical regions of epithelial tissues into 2D images, based on the anti-shg immunofluorescent staining.

Membrane masks were generated using Tissue Analyzer (Aigouy et al., 2010). To determine the asymmetric localization of Stan of

individual cells, a MATLAB script was used (Strutt et al., 2016), based on Stan staining intensity in the pupal wing. This script also

generated PCP nematics for each individual cell, which takes into account the orientation and magnitude of the Stan polarization.

This nematic order was visualized as magenta lines superimposed onto the original anti-Stan immunofluorescence image. Polar his-

togramswere generated inMATLAB to visualize the orientation of Stan, such that 0o was oriented as pointing distally in the pupal and

adult wings.

Statistical Analysis
The two sample Kolmogorov-Smirnov test was used as a statistical test to compare the difference in the distributions of the cellular

polarity of cells from two independent samples that contain non-independent data, such as the case in PCP analyses when

comparing wild type versus mutant conditions.
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