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Abstract

Background: Hypoxia is pervasive in cancer and other diseases. Cells sense and adapt
to hypoxia by activating hypoxia-inducible transcription factors (HIFs), but it is still an
outstanding question why cell types differ in their transcriptional response to hypoxia.

Results: We report that HIFs fail to bind CpG dinucleotides that are methylated in their
consensus binding sequence, both in in vitro biochemical binding assays and in vivo
studies of differentially methylated isogenic cell lines. Based on in silico structural
modeling, we show that 5-methylcytosine indeed causes steric hindrance in the HIF
binding pocket. A model wherein cell-type-specific methylation landscapes, as laid
down by the differential expression and binding of other transcription factors under
normoxia, control cell-type-specific hypoxia responses is observed. We also discover
ectopic HIF binding sites in repeat regions which are normally methylated. Genetic and
pharmacological DNA demethylation, but also cancer-associated DNA
hypomethylation, expose these binding sites, inducing HIF-dependent expression of
cryptic transcripts. In line with such cryptic transcripts being more prone to cause
double-stranded RNA and viral mimicry, we observe low DNA methylation and high
cryptic transcript expression in tumors with high immune checkpoint expression, but
not in tumors with low immune checkpoint expression, where they would compromise
tumor immunotolerance. In a low-immunogenic tumor model, DNA demethylation
upregulates cryptic transcript expression in a HIF-dependent manner, causing immune
activation and reducing tumor growth.

Conclusions: Our data elucidate the mechanism underlying cell-type-specific responses to
hypoxia and suggest DNA methylation and hypoxia to underlie tumor immunotolerance.

Keywords: DNA methylation, Hypoxia, HIF, Cryptic transcripts, Immunotherapy, Cancer,
Transcription factor binding
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Background
DNA methylation is central to establishing and maintaining tissue-specific gene expres-

sion, and an important contributing factor to oncogenesis. We recently demonstrated

that pervasive and ablating conditions of tumor hypoxia drive DNA methylation of

tumor suppressor genes by reducing the activity of TET DNA demethylases [1]. An

outstanding question is, however, if and how DNA methylation in turn also influences

the response of tumors to (acute) hypoxia. Indeed, recent evidence suggests that, con-

trary to traditional concepts, DNA methylation generally does not directly impede tran-

scription factor (TF) binding, but rather acts indirectly by synergizing with other

epigenetic marks [2].

The hypoxia response is canonically executed by HIFs, which are heterodimeric TF

complexes composed of an O2-labile α-subunit (HIF1α, HIF2α or HIF3α) and a stable β-

subunit (HIF1β). The constitutively expressed HIFα subunits are directly targeted for pro-

teasomal degradation under normal oxygen tension (normoxia), but stabilized under

limiting oxygen conditions (hypoxia), when they translocate to the nucleus to induce ex-

pression of hypoxia-responsive genes. This induction of hypoxia-responsive genes occurs

rapidly, often within minutes following hypoxia [3]. In tumors, hypoxia is widespread and

leads to transcriptional activation of numerous cancer hallmark genes involved in cell sur-

vival, angiogenesis, and invasion [4]. Interestingly, the impact of hypoxia differs among

cell types. For instance, endothelial cells proliferate and migrate towards hypoxic regions,

macrophages become immunosuppressive and CD8+ T cell activation is enhanced under

hypoxia [5–8]. Also, tumors affecting different organs exhibit divergent phenotypic

responses to hypoxia [6]. In line with this, concordance between HIF binding sites

in MCF7 breast and 786-O renal cell carcinoma cell lines is only 40–60% [9]. This

divergence is particularly intriguing because HIFα paralogues are often expressed at

similar levels in different cell types, and because the consensus DNA sequence that

binds HIF complexes, i.e., the hypoxia response element (HRE) RCGTG, does not

differ between HIFα paralogues or cell types. Thus, although the concept that

genes induced by hypoxia differ dramatically between cancer and cell types is well-

established [3, 10–12], the reason for these divergent responses and expression

programs is poorly understood.

One possibility is that the underlying cell-type-specific patterns of chromatin de-

termine which HIF target genes are accessible and hence become expressed follow-

ing acute hypoxia. Interestingly, HIFs are recruited to genes that are already

expressed in normoxic cells [12], suggesting that perhaps DNA methylation could

determine accessibility of the HIF complex to the RCGTG core sequence. HIF

binding to the erythropoietin promoter was indeed suggested to be sensitive to

DNA methylation [13], but this observation relied on gel shift binding assays,

which are known to poorly reflect the authentic setting in cells. Indeed, the bind-

ing of the transcriptional repressor CTCF also appeared to be methylation-sensitive

in gel shift binding assays [14], but analyses of its binding preference in living cells

mostly failed to reveal methylation sensitivity [15]. We therefore set out to investi-

gate whether DNA methylation directly repels HIF binding in living cells, and

whether cell-type-specific DNA methylation patterns established under normoxic

conditions determine genome-wide HIF binding profiles, defining the response to

hypoxia.
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Results
DNA methylation of HRE sites anti-correlates with HIF binding

To investigate the role of DNA methylation in HIF binding, we stabilized HIFs in MCF7

breast cancer cells by culturing them under acute hypoxia (0.5% O2 for 16 h; Additional file 1:

Fig. S1a and S2, and “Methods”), conditions that are insufficient to drive hypoxia-induced

hypermethylation [1]. We next performed chromatin-immunoprecipitation coupled to

high-throughput sequencing (ChIP-seq) for HIF1β, which is the obligate dimerization part-

ner of HIF1α, HIF2α, and HIF3α. Model-based analysis for ChIP-seq (MACS) [16] revealed

7153 HIF1β binding peaks (Fig. 1a, Table S1). These were high-quality, bona fide HIF bind-

ing regions: they were 4.6-fold enriched for the HRE motif (RCGTG), enriched near genes

involved in the hypoxia response, > 90% overlapping with peaks identified in another HIF1β

ChIP-seq dataset on MCF7 cells and reproducibly detected in independent repeats (Add-

itional file 1: Fig. S1b-d).

To assess methylation in these 7153 HIF1β binding peaks, we performed target

enrichment-based bisulfite sequencing (BS-seq) on DNA extracted from normoxic MCF7

cells, in which HIF is inactive, obtaining > 40× coverage for ~ 86% of the HIF1β binding

peaks identified by ChIP-seq. The methylation level at these peaks was invariably low

(4.95 ± 0.15%) compared to average CpG methylation levels detected in the genome

(61.6 ± 0.07%, Wilcoxon test P < 2.2− 16, Fig. 1b). Results were confirmed using another

whole-genome BS-seq dataset (Fig. 1a) [18]. Also when quantifying methylation across all

RCGTG motifs, including those located outside of HIF1β binding peaks, the inverse cor-

relation between DNA methylation and HIF binding was confirmed (Fig. 1c). As BS-seq

does not discriminate between 5-methyl (5mC) and 5-hydroxymethylcytosine [19], we

confirmed by DNA immunoprecipitation with an antibody recognizing only 5mC (5mC-

DIP-seq) that HIF1β binding peaks were six fold depleted in 5mC-DIP-seq reads (Fig. 1a).

Moreover, methylation analysis of normoxic HIF1B-knockout MCF7 cells [20] revealed

identical methylation patterns (Additional file 1: Fig. S1e-g), indicating that the unmethy-

lated state of HIF1β binding sites is not due to baseline activities of HIF1β under nor-

moxia. Importantly, identical results were obtained for murine embryonic stem cells

(mESCs): the loci corresponding to the 4794 HIF1β binding sites identified in wild-type

ESCs were unmethylated in normoxia, and this both in wild-type and Hif1b-knockout

ESCs [21] (Additional file 1: Fig. S1h-j). Since cells were intentionally exposed only briefly

to hypoxia (16 h), which fails to induce pronounced DNA methylation changes [1], these

data suggest that regions to which HIF1β binds upon hypoxia are devoid of DNA methy-

lation under normoxic conditions.

Cell-type-specific DNA methylation of HREs determines HIF binding

Different cell types respond differently to hypoxia. To assess whether cell-type-specific

DNA methylation could underlie this phenomenon, we profiled DNA methylation and

HIF1β binding in 2 additional cell lines (RCC4 and SK-MEL-28). A total of 20,613 HIF1β

binding peak positions were detected across these cell lines (Additional file 3). For each

cell line, HIF1β binding was annotated as “present” if the peak area showed > 4-fold en-

richment over the local read depth, and as “absent” if it showed < 2.5-fold enrichment;

intermediate enrichment was annotated as unclassified (Additional file 3). When compar-

ing cell lines using these criteria, HIF1β binding was shared by all 3 cell lines at 6152 sites,
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Fig. 1 (See legend on next page.)
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and unique for an individual cell line at 7140 sites (437, 1193, and 5510 unique sites, re-

spectively for RCC4, MCF7, and SK-MEL-28) (Fig. 1d, Additional file 1: Fig. S1k-l). Cru-

cially, when assessing DNA methylation both under normoxia and under acute hypoxia,

HIF1β binding peaks unique to individual cell lines were unmethylated in cells where the

binding site was active, while active HIF1β binding peaks shared between all cell lines

were unmethylated in all cell lines (Fig. 1e, f, Additional file 1: Fig. S1m-n). This strict cor-

relation suggests that DNA methylation underlies the cell-type-specific response to hyp-

oxia. Differences in DNA methylation and concomitant HIF binding also appeared

functional, as transcriptome profiling under normoxic and hypoxic conditions revealed

that genes with a flanking HIF1β binding peak unique to one cell line were more fre-

quently increased in expression under hypoxia in that cell line (Fig. 1g).

DNA methylation determines HIF binding independently of other chromatin marks

To analyze whether other epigenetic modifications similarly correlate with HIF binding,

we analyzed public ENCODE data for MCF7 cells [22] (no data are available for RCC4

and SK-MEL-28). Particularly, we investigated marks of heterochromatin (H3K9me3,

H3K27me3), active promoters (H3K4me3, H3K9ac, H3K14ac), active enhancers

(H3K4me1, H3K27ac), open chromatin (FAIRE), and active transcription (RNA Pol-II).

Although some histone marks were enriched in a subset of HIF1β binding peaks, none

were consistently found at all active HIF1β binding peaks, especially when looking out-

side of CpG islands (Additional file 1: Fig. S3a). The previously reported co-occupancy

with RNA polymerase II or open chromatin was also not consistently found at all active

(See figure on previous page.)
Fig. 1 Methylation at HIF1β binding sites. a Heatmaps of HIF1β binding and DNA methylation for 7153
regions (identified using a stringent threshold of P < 10− 15 in MACS) surrounding the HIF1β ChIP-seq peak
summit (± 5 kb). Heatmaps depict reads per kb per million reads (RPKM) of HIF1β ChIP-seq and of 5mC
DNA IP-seq (mDIP), and % DNA methylation as estimated by SeqCapEpi BS-seq or whole-genome BS-seq
(respectively, SeqCapEpi and WGBS). HIF1β binding was assessed after 16 h of 0.5% O2 (hypoxia) and DNA
methylation under 21% O2 (normoxia). b Violin plots of the methylation level inside and outside HIF1β
binding peaks, as estimated by SeqCapEpi BS-seq. c Sequencing read depth of HIF1β ChIP and its input, at
all RCGTG sequences in MCF7 cells, stratified for methylation at the CG in the core RCGTG sequence. Shown
are boxplots for all RCGTG’s in the human genome for which > 10× coverage was obtained after SeqCapEpi
BS-seq, with dark red dots denoting averages. See Additional file 1: Fig. S5 for additional QC of ChIP-seq
data and Additional file 2 for more details about HIF1β binding peak locations. d Venn diagram of 20,613
shared and unique HIF1β binding sites detected across 3 cell lines. Only stringent binding sites (P < 10− 15)
are shown. Binding sites showing intermediate levels of HIF1β ChIP-seq enrichment in 1 or 2 cell lines are
unclassified and not shown here (n = 445, 2812 and 887 peaks, detected in SK-MEL-28, RCC4, and MCF7
respectively). e Heatmaps of HIF1β binding (red) and DNA methylation as estimated using SeqCapEpi BS-
seq (blue) at regions flanking the HIF1β ChIP-seq peak summit (± 5 kb). (top) HIF1β binding peaks shared
between the 3 cell lines. (bottom) HIF1β binding peaks unique to each cell line. Heatmaps depict RPKM of
HIF1β ChIP-seq and % DNA methylation. HIF1β binding was assessed after 16 h of 0.5% O2 (hypoxia) and
DNA methylation under 21% O2 (normoxia) or after 16 h of 0.5% O2 (hypoxia). f Quantification of the
methylation level at HIF1β binding peak summits ± 100 bps, for peaks that are shared between or unique
to one of the 3 cell lines grown under 21% O2 (normoxia, top) or after 16 h of 0.5% O2 (hypoxia, bottom). g
Enrichment of gene expression (observed/expected) upon hypoxia per cell line, for genes associated with
HIF1β binding sites (within 50 kb) that are shared between or unique to one of the three cell lines, as
labeled on the X-axis. h Fraction of HIF1β peaks overlapping with the binding peaks of individual
transcription factors [17], or with any of the 11 transcription factors profiled in MCF7 cells (“combined”). i
Overlap between HIF1β binding peaks and other transcription factor binding sites detected in MCF7 cells.
Shown are fractions of HIF1β binding peaks shared between (gray) or unique for a cell line (colored). j
mRNA expression level of transcription factors in each cell line, as determined using RNA-seq. Transcription
factors expressed in all three cell lines are highlighted as “shared TFs” with a light gray box
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HIF1β binding peaks [12]. This was confirmed in linear regression analyses assessing

how each mark individually predicts HIF1β binding in MCF7 cells. DNA methylation

(R2 = 0.43) outperformed all other marks, with marks of active chromatin such as RNA

polymerase II occupancy, H3K4me3, open chromatin, and H3K27ac showing poor cor-

relations (R2 resp. 0.11, 0.11, 0.04 and 0.04). When combining all marks in one model,

the total R2 was 0.47, with DNA methylation contributing to 67.5% of the predictive

power (partial R2 = 0.32). In line with this, omitting DNA methylation from the model

reduced the total R2 by more than half, to 0.21 (Additional file 1: Fig. S3b).

We also assessed whether more general differences in chromatin states (using

ChromHMM [23]) underlie differential HIF binding. This revealed that while shared

HIF1β binding sites were more frequent in promoters, sites unique to MCF7 were more

frequent in enhancers, and sites inactive in MCF7 (but unique to RCC4 or SK-MEL-28)

more frequent in MCF7-repressed chromatin (Additional file 1: Fig. S3c). In line with en-

richment at open chromatin, HIF1β binding thus appears exclusive to active enhancers

and promoters while depleted in areas of repressed chromatin. Finally, NOMe-seq data

from MCF7 cells revealed that, while open chromatin regions were generally unmethy-

lated, a significant fraction of open chromatin (7–19%) in fact showed methylation (Add-

itional file 1: Fig. S3d), providing a potential rationale for the relatively small contribution

of open chromatin to predict HIF1β binding. Combined, these data show that in nor-

moxia poised HIF binding sites are located in unmethylated regions that consist mostly of

active, open chromatin but are not consistently marked by other epigenetic modifications.

Other TFs determine the methylation landscape to guide HIF binding

Interestingly, many of the HIF1β binding peaks overlapped with binding sites for other

TFs. Specifically, out of the 7153 HIF1β binding peaks detected in MCF7 cells, 5903

overlapped with the binding site of at least one TF (83%), out of a set of 11 TFs for

which genome-wide binding site data were available in MCF7 cells [17] (Fig. 1h). This

could indicate that these TFs, being already active under normoxic conditions, drive de-

methylation of HIF1β binding regions [24], thus setting the stage for HIF binding upon

hypoxia. To further support this notion, we assessed whether these 11 TFs also bind at

HIF1β binding peaks identified in RCC4 and SK-MEL-28 cells. Interestingly, TFs

expressed by the 3 cell lines (e.g., CTCF or STAG1) co-localize in their binding with

the shared HIF1β binding peaks. In contrast, TFs only expressed in MCF7 cells (e.g.,

ESR1 or GATA3) overlap in their binding sites only with MCF7-specific HIF1β binding

peaks. Finally, binding of these 11 TFs in MCF7 did not overlap with HIF1β binding

peaks unique to RCC4 or SK-MEL-28 (Fig. 1i, j). These data were replicated in an inde-

pendent cell line (Additional file 1: Fig. S3e-g). Differential expression and binding of

TFs between different cells is thus likely to shape the DNA methylation landscape and

determine subsequent HIF binding.

DNA methylation does not determine differential binding of HIF1α and HIF2α

Comparison of our 7153 HIF1β peaks to previously published HIF1α and HIF2α ChIP-

seq data in MCF7 cells revealed that the methylation status of HIF1β binding peaks

was independent of the HIFα binding partner, as HIF1α- and HIF2α-bound DNA

showed similar methylation levels (Additional file 1: Fig. S3h). Remarkably, there were
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differences in the chromatin profiles of HIF1α- and HIF2α-bound regions: HIF1α bind-

ing sites showed 1.37-fold higher average levels of the promoter mark H3K4me3,

whereas levels of the enhancer mark H3K4me1 were 0.75-fold lower at HIF1α binding

sites than at HIF2α sites (Additional file 1: Fig. S3i). Similarly, chromHMM analysis

showed enrichment of HIF1α at promoters and depletion at enhancers relative to

HIF2α (Additional file 1: Fig. S3j). Moreover, other TFs similarly differed in occupancy

between HIF1α- and HIF2α-specific sites: HIF2α was enriched at MCF7-specific TF

binding sites (which mostly correspond to cell-type-specific enhancers), and TFs shared

between MCF7, RCC4, and SK-MEL-28 showed no enrichment of binding between

HIF1α and HIF2α target sites (Additional file 1: Fig. S3f,k). In conclusion, the binding

preferences of HIF1α and HIF2α differ, with HIF1α being somewhat more promoter-

enriched and HIF2α being more enhancer-enriched, but these preferences are not de-

termined by differences in DNA methylation at their binding sites.

DNA methylation directly repels HIF binding in cells

To more firmly establish a causal link between DNA methylation and HIF binding, we

excluded several confounders. Firstly, since our chromatin state analysis revealed that

HIF preferentially binds active enhancers and promoters, which are known to carry low

levels of methylation [24], we performed HIF1β ChIP-bisulfite sequencing (HIF1β

ChIP-BS-seq). MCF7 cells were exposed to hypoxia; HIF1β-bound DNA was immuno-

precipitated and bisulfite-converted prior to sequencing to uncover its methylation pat-

tern. This revealed that, while methylation levels of input DNA (not

immunoprecipitated, bisulfite-converted DNA) were mostly low but with some sites

displaying intermediate to high methylation levels, HIF1β-bound DNA was invariably

very low in methylation and this at all sites (Fig. 2a, Additional file 1: Fig. S4a).

Secondly, since TFs can drive demethylation of their binding sites both passively and ac-

tively, we excluded the possibility that DNA fragments bound by HIF would undergo

DNA demethylation upon HIF binding. Indeed, HIF1β has previously been shown to ac-

tively recruit DNA demethylases [26]. However, HIF1β ChIP-BS-seq in hypoxic ESCs de-

ficient for all DNA demethylases (Tet1, Tet2, and Tet3) showed results identical to those

observed in wild-type MCF7 cells: HIF1β-bound DNA was unmethylated compared to in-

put DNA subjected to whole-genome BS-seq (Fig. 2b, Additional file 1: Fig. S4b).

Additionally, other (unknown) confounders related to the binding location of HIF, such

as chromatin environment or sequence context, may contribute to preferential HIF bind-

ing to unmethylated DNA. To exclude this possibility, we generated isogenic murine ES

cell lines in which a human HIF1β binding site-encoding DNA fragment was inserted that

was either in vitro methylated or not (Fig. 2c). Following recombination, the difference in

methylation state between both fragments was maintained (Additional file 1: Fig. S4c-d).

HIF1β ChIP-qPCR revealed that methylation was sufficient to induce a 12.4-fold reduc-

tion in HIF1β binding in these isogenic cell lines (Fig. 2d).

Finally, to directly assess methylation sensitivity of HIF binding to unchromatinized

DNA, we employed microscale thermophoresis and tested the binding of recombinant

co-purified HIF1α-HIF1β and HIF2α-HIF1β heterodimers to double-stranded DNA oli-

gonucleotides containing a methylated or unmethylated RCGTG motif. Importantly,

HIF1α- and HIF2α-containing heterodimers both showed a 15-fold higher affinity (KD)
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for an unmethylated than methylated RCGTG motif, thus confirming that methylation

directly repels binding of HIF1α-HIF1β and HIF2α-HIF1β heterodimers (Fig. 2e, f). In-

deed, leveraging the crystal structure of the HIF1α-HIF1β and the HIF2α-HIF1β com-

plexes bound to DNA [25], revealed that both cytosines in the CpG dinucleotide of the

HIF binding sequence are snuggly accommodated via van der Waals interactions with

the guanidine groups of Arg102 in HIF1β and Arg27 in HIF1α or HIF2α, respectively

(Fig. 2g) [25]. Methylation of any of the two cytosines either on the top or bottom

strand would in a static model drastically violate the minimum 3.1 Å length of van der

Fig. 2 DNA methylation directly repels HIF1β binding. a, b Boxplot (left) and scatter plot (right) of
methylation levels of HIF1β-bound immunoprecipitated DNA fragments obtained by ChIP-BS-seq (ChIP-BS)
compared to input by SeqCapEpi BS-seq (SeqCapEpi) in MCF7 cells (a), or of HIF1β-bound
immunoprecipitated DNA fragments obtained by ChIP-BS compared to input by whole-genome BS-seq
(WGBS) in mouse Tet-triple-knockout (Tet-TKO) ESCs (b). The red dotted line in the scatter plot indicates the
theoretical value of equal methylation in immunoprecipitated and input DNA. P values by t-test. c, d
Recombination-mediated cassette exchange. c A human HIF binding site (chr16: 30,065,212-30,065,711 on
hg38) was cloned between 2 L1 Lox sites and in vitro methylated (blue) or not (red) prior to co-transfection
with a CRE recombinase-encoding plasmid into mESCs transformed to contain an L1 Lox-flanked thymidine
kinase (TK). d Following successful cassette exchange, these ESCs were incubated in hypoxia (0.5% O2 for
16 h) and probed using HIF1β ChIP-qPCR for HIF binding at the differentially methylated cassette. Shown is
the fold enrichment over background (n = 3 independent ChIP pairs; *P < 0.05 by t-test). e, f Microscale
thermophoresis-based assessment of sensitivity of HIF1α-HIF1β (e) and HIF2α-HIF1β (f) heteroduplexes to
methylation at HIF binding sites in physiological buffer (PBS). RCGTG sequences in the double-stranded
DNA oligonucleotides were either absent (gray), methylated (blue), or unmethylated (red) at the CpG site.
Calculated KD values are shown under each graph. g Excerpt from the crystal structure of HIF2α-HIF1β in
complex with a DNA duplex containing the core HIF binding sequence 5′-ACGTG-3′ (PDB code 4ZPK) [25].
h Modeling of methylation of CpG cytosines in ACGTG reveals severe steric hindrance. The two views show
hard-sphere models of methylated cytosines modeled at position 5 (including bonding hydrogen atoms)
and how they severely violate the van der Waals envelopes (2.5 Å width) of Arg27 in HIF2α (left) and
Arg102 in HIF1β (right)
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Waals radii and would be poised to cause severe steric clashes with these two function-

ally important arginine residues in HIF1α or HIF2α (Fig. 2h).

DNA demethylation enables ectopic HIF binding

Next, we investigated which parts of the genome are protected from HIF binding by

DNA methylation. For this, we compared HIF1β binding in hypoxic wild-type murine

ESCs versus ESCs deficient for DNA methyltransferases (Dnmt-TKOs), which lack

DNA methylation [27], using HIF1β ChIP-seq (n = 4 replicates for each; for data quality

assessment see Additional file 1: Fig. S5). This revealed a marked increase in the num-

ber of HIF1β binding peaks, from 7875 in wild-type to 9806 in Dnmt-TKO ESCs

(Fig. 3a). Whole-genome BS-seq further revealed that, while shared binding peaks were

unmethylated in both cell lines, Dnmt-TKO-specific HIF1β binding peaks had high

methylation levels in wild-type ESCs (Fig. 3b).

All shared binding peaks were associated with a similar enrichment of the RCGTG

motif (Fig. 3c), as well as with genes that were induced upon hypoxia (Fig. 3d). How-

ever, Dnmt-TKO-specific sites were more often distal to annotated transcription start

sites (TSS) or regions of open chromatin, and more frequently in repressed chromatin

regions of wild-type ESCs (Fig. 3e–g). Gene ontology analysis moreover failed to iden-

tify enrichment of hypoxia-related processes for Dnmt-TKO-specific binding peaks, in

contrast to shared peaks (Fig. 3h). Thus, the majority of these Dnmt-TKO-specific

binding peaks represents ectopic binding events.

DNA methylation represses hypoxia-induced expression of retrotransposons

Indeed, a substantial fraction of novel Dnmt-TKO-specific HIF1β binding peaks were

found in repetitive genomic regions. Particularly, repeat class analysis revealed a 1.65-

fold increase in binding peaks near retrotransposons (2737 of 7875 (34.8%) shared

peaks versus 1106 of 1931 (57.3%) Dnmt-TKO-specific peaks; Additional file 1: Fig.

S6a). Although HIF1β binding events were frequently observed at LINEs and SINEs,

only binding at long terminal repeats (LTRs) was enriched over a randomization of

HIF1β binding site positions, and this both for all binding events and those distal to

TSS (Fig. 3i). The bulk of this increase was ascribable to binding at the 5′-end of en-

dogenous retrovirus K (ERVK) LTR sequences (Fig. 3j), with 344 of 1106 (31%) novel

repeat-binding peaks being at ERVKs versus only 3% of randomly shuffled HIF1β bind-

ing sites. These were mostly at solitary LTRs (Additional file 1: Fig. S6b-e). Given that

ChIP-seq analyses rely on uniquely mapping reads, which are inherently depleted at re-

peat regions, this enrichment is likely to represent an underestimate.

We then assessed whether a similar phenomenon is at play in cancer cell lines, and

pharmacologically demethylated MCF7 cells using a non-cytotoxic [28] dose of 5-aza-

2′-deoxycytidine (aza, 1 μM), necessary and sufficient for strongly reducing DNA

methylation (Additional file 1: Fig. S6f). HIF1β ChIP-seq revealed that aza exposed

1236 new HIF1β binding peaks. These were all methylated in untreated MCF7 cells

and showed a 2.5-fold reduced methylation in aza-treated cells (Fig. 4a-b). While HIF1β

binding peaks in retrotransposons were already present in vehicle-treated MCF7 cells,

novel aza-specific HIF1β binding peaks were 1.7-fold enriched for retrotransposons

(9.7% versus 16.4%, respectively; Additional file 1: Fig. S6g). Again, these novel HIF1β
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Fig. 3 (See legend on next page.)
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binding peaks were often distal to TSSs, and binding at LTRs was enriched over a

randomization of HIF1β binding site positions (Fig. 4c). Notably, different retrotranspo-

sons were affected in human MCF7 cells compared to murine ESCs due to the evolution-

arily divergent repeat content of these genomes. An analysis of the distribution of HIF1β

binding peaks at retrotransposons, however, revealed that HIF1β binding sites were often

at the 5′-end of retrotransposon sequences and that patterns of binding were conserved

between mouse and human genomes (Fig. 3j versus Fig. 4d), suggesting that HIF binding

on retrotransposons is not random but functional, inducing their expression.

To confirm the latter, we applied RNA-seq to assess changes in retrotransposon expres-

sion after 24 h of hypoxia with or without aza. Repeat expression was analyzed using dif-

ferent bioinformatics pipelines. First, we used RepEnrich [29], which combines repeat-

associated reads, also those that are non-uniquely mapping, to assess repeat expression

for each of the 779 retrotransposon subfamilies annotated in the human genome (these

are each member of one of the 25 families that constitute the LTR, LINE, and SINE retro-

transposon classes). We found that, already under hypoxia alone, 251 of all LTR (44%), 51

of all LINE (32%), and 5 of all SINE (10%) subfamilies were upregulated, while only 16

LTR, 7 LINE, and no SINE subfamilies were downregulated (5% FDR; Additional file 1:

Fig. S6h-i). Next, we used SQuIRE, which assigns reads (including non-uniquely mapping

reads) to a specific repeat locus based on an expectation-maximization algorithm [30].

With SQuIRE, 72% (n = 2781) of all differentially expressed repeat loci exhibited increased

expression under hypoxia (P < 10− 16; Additional file 1: Fig. S6j).

Induction of cryptic transcripts by hypoxia

Hypoxia-induced transcripts were, however, often not matching the annotated repeat

locus, but extending well beyond their annotated end, with some transcripts encom-

passing multiple repeat elements. Also, we noticed that for many transcripts, HIF1β

binding did not occur in the retrotransposon promoter, while some other transcripts

did even not contain a retrotransposon-associated sequence. Similar transcripts were

also induced by aza. We therefore refer to these as “cryptic transcripts” (Additional file

1: Fig. S7a). To more accurately quantify them, we developed a novel analysis pipeline,

(See figure on previous page.)
Fig. 3 DNA demethylation uncovers new HIF1β binding sites. a Heatmaps of HIF1β binding (RPKM) and
DNA methylation as determined using WGBS at regions flanking the summit of HIF1β binding peaks (± 5
kb) either shared with WT or TKO-specific ESCs. b % methylation at shared and TKO-specific HIF1β binding
sites in WT ESCs. See Additional file 1: Fig. S5 for scatter plots illustrating the correlations between HIF1β
ChIP-seq replicates in Dnmt-WT versus Dnmt-TKO ESCs. c Cumulative frequency of distance to the nearest
RCGTG motif for shared, TKO-specific, and randomized HIF1β binding peaks. d Observed/expected
frequency of upregulated genes associated with shared and TKO-specific HIF1β binding peaks in WT and
Dnmt-TKO ESCs exposed to 24 h of hypoxia (0.5% O2). e Distance of shared and TKO-specific HIF1β binding
peaks in ESCs to the nearest TSS. A bimodal peak was detected indicating proximal and distal binding
events. f Functional genome annotation using ChromHMM of shared and TKO-specific HIF1β binding peaks
in ESCs. g Distance of shared and TKO-specific HIF1β binding peaks to open chromatin regions in ESCs. A
bimodal peak was detected indicating proximal and distal binding events. h Ontology analysis of genes
associated with shared and TKO-specific HIF1β binding peaks in ESCs. i HIF1β binding sites in LINEs, LTRs,
and SINEs after 10,000 random permutations and as observed by HIF1β ChIP-seq (actual HIF1β binding) for
all HIF1β sites (top panel) and only for distal HIF1β sites (bottom panel). *** P < 0.001 by Fisher’s exact test. j
Distribution of HIF1β binding peaks detected in murine Dnmt-TKO ESCs for the retrotransposon families,
color-coded by retrotransposon class (green: LTR; violet: LINE; yellow: SINE)
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Fig. 4 (See legend on next page.)
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CRyptic Elements’ Differential Expression by de Novo Transcriptome Reconstruction

(CREDENToR). CREDENToR first performs a de novo transcriptome assembly to de-

fine cryptic transcripts and then assigns uniquely mapping reads to them to quantify

their expression. The cryptic transcripts detected by CREDENToR are poorly con-

served, often unspliced transcripts, shorter than lincRNAs but expressed at similar

levels (see “Methods” and Additional file 1: Fig. S7b-g for benchmarking).

CREDENToR identified that out of 1389 differentially expressed cryptic transcripts

(1% FDR), 67% were upregulated by hypoxia (Additional file 1: Fig. S6k). As expected,

focusing on HIF-bound cryptic transcripts revealed an even stronger enrichment, with

82% and 91% (respectively, at 1% and 0.001% FDR) differentially expressed transcripts

being upregulated following hypoxia (Fig. 4e). HIF binding was enriched at the pro-

moter of hypoxia-induced cryptic transcripts, but far less in those induced by aza (Add-

itional file 1: Fig. S6l). Interestingly, significant fractions of cryptic transcripts contained

palindromic repeats, or overlapped with other transcripts in the reverse orientation,

and could thus produce double-stranded (ds) RNA. HIF-bound cryptic transcripts were

twice as likely to generate such dsRNAs (Fig. 4f). Together, this suggests HIF binding

to leverage cryptic TSS structures within and outside the repeat genome to express

dsRNA-generating cryptic transcripts.

Cryptic transcript expression was indeed dependent on HIF, as non-HIF-bound cryp-

tic transcripts failed to show induction following hypoxia (Fig. 4g). To confirm this, we

assessed expression in HIF1B-knockout MCF7 cells. Here, hypoxia failed to upregulate

cryptic transcripts, according to both CREDENToR and RepEnrich (Fig. 4g, Additional

file 1: Fig. S6m). As expected, aza-induced overexpression was retained, while hypoxia

in HIF1B-knockout MCF7 cells failed to increase the effect of aza. Pharmacological ac-

tivation of HIF using dimethyloxalylglycine (DMOG), a broad-spectrum inhibitor of 2-

oxoglutarate-dependent hydroxylases [31], affected cryptic transcripts similar to

(See figure on previous page.)
Fig. 4 DNA methylation represses hypoxia-induced cryptic transcript activation (a) Heatmaps of HIF1β
binding (RPKM) and DNA methylation as determined using SeqCapEpi BS-seq at regions flanking the
summit of HIF1β binding peaks (± 5 kb). Shown are HIF1β binding peaks that are shared between vehicle-
treated and aza-treated MCF7 cells, or that are specific to aza-treated cells. In total, 12,782 HIF1β binding
peak positions were detected across vehicle- and aza-treated MCF7 using a P < 10− 15 threshold. b Violin
plots of methylation detected by SeqCapEpi BS-seq at HIF1β binding peaks that are shared between
vehicle-treated and aza-treated MCF7 cells, or that are specific to aza-treated MCF7 cells. c HIF1β binding
sites in LINEs, LTRs, and SINEs after 10,000 random permutations and as observed by HIF1β ChIP-seq (actual
HIF1β binding) for HIF1β binding peaks that are shared between vehicle- and aza-treated MCF7 cells, or
specific to aza-treated MCF7 cells for all HIF1β sites (top panel) and only for distal HIF1β sites (bottom panel).
d Distribution of HIF1β binding peaks detected in aza-treated MCF7 cells at retrotransposon families, color-
coded by retrotransposon class (green: LTR; violet: LINE; yellow: SINE). e Volcano plots showing differential
expression of HIF-bound cryptic transcripts, as determined by CREDENToR in MCF7 cells exposed to vehicle
(DMSO) or 5-aza-2′-deoxycytidine (aza; 1 μM) for 4 days, hypoxia (0.5% oxygen, 1 day) or normoxia.
Significantly upregulated and downregulated transcripts are highlighted in red and blue, respectively. The
associated numbers refer to how many transcripts are up- or downregulated at a 1% FDR and a 0.001%
FDR, as indicated by the horizontal line. f dsRNA formation potential of all cryptic transcripts (gray) and of
HIF-bound cryptic transcripts (red). Shown are the fraction of all RNAs for which transcription overlaps with
a transcript expressed from the complementary strand (“sense-antisense”), and RNAs containing the same
retrotransposon repeat element in sense and antisense orientation (“palindromic”). P values from the chi-
square test. g, h Expression of HIF-bound (g) and non-HIF-bound (h) cryptic transcripts relative to vehicle-
treated controls (vehicle normoxia) in MCF7 cells wild-type (WT) (g upper panels and h) or knockout (KO) (g
bottom panels) for HIF1B. Shown are expression changes as assessed using CREDENToR (g left panels and h)
and RepEnrich (g right panels), with error bars indicating geometric mean ± s.e.m. n.s. not significant, ***P <
0.001 by t-test
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hypoxia (Additional file 1: Fig. S6m-o). Combined, these data indicate that hypoxia trig-

gers HIF binding to unmethylated repeat regions, inducing HIF-dependent expression

of cryptic transcripts, most of which are associated with retrotransposons.

Hypoxia and repeat transcript expression affect tumor immunotolerance

Expression of repeat transcripts has been linked to tumor foreignness [32], interferon

(IFN) response [33–35], and enhanced cytolytic activity [36], all critical determinants of

response to checkpoint immunotherapy. Similar to our own data, such transcripts were

shown to increase dsRNA formation. This triggers IFN responses through viral mim-

icry. Cryptic transcripts induced by HIF could thus contribute to an immune-activated

microenvironment.

To study this in more detail, we reanalyzed expression and DNA methylation data from

The Cancer Genome Atlas (TCGA). We classified 5193 tumors from 14 tumor types as

hypoxic or normoxic using an established hypoxia metagene expression signature [37].

We remapped all RNA-seq reads to determine expression of retrotransposon subfamilies

using RepEnrich, and also performed de novo transcript assembly to identify on average

11,654 non-overlapping cryptic transcripts per tumor type using CREDENToR (Add-

itional file 1: Fig. S8a). While TCGA tumors were not exposed to DNA demethylating

agents, they did show variation in DNA methylation at TSS of cryptic transcripts. Indeed,

although CpGs in cryptic transcript promoters showed mostly high methylation levels

(median = 80.7%), there was considerable variability (9.2% standard deviation), and one in

10 tumors displayed median levels below 67.3%. Remarkably, and in line with our in vitro

data, there was a significant interaction between hypoxia and DNA methylation in deter-

mining cryptic transcript expression (P = 0.0109), with expression being increased in hyp-

oxic tumors having lower methylation at cryptic transcripts (Fig. 5a). At least 1279 cryptic

transcripts showed increased expression of 10-fold or higher (FDR < 0.01, Additional file

1: Fig. S8b). A reanalysis of combined single-cell methylome-and-transcriptome sequen-

cing data from colorectal cancer cells [39] moreover confirmed that cryptic transcript ex-

pression and promoter methylation are inversely correlated, and this more strongly in

hypoxic than normoxic cancer cells (P = 0.032 in a general linear model), suggesting that

the observed interactions are cancer cell-intrinsic (Additional file 4).

In TCGA, this interaction was only detected in tumor types known to respond to im-

munotherapy [38] (P = 0.0031 in n = 2505 responsive tumors versus P = 0.69 in n = 2681

non-responsive tumors; see “Methods” for a detailed description of the generalized lin-

ear model; Fig. 5b, c). As expected, responsive tumor types exhibited an increased

tumor mutation burden (TMB), elevated immune checkpoint expression, more CD8+ T

cells, and increased cytolytic activity (Additional file 1: Fig. S8c) [40]. Importantly, re-

sponsive types also had on average lower methylation at cryptic transcripts and higher

cryptic transcript expression than non-responsive types (P < 10− 16 for both compari-

sons, Fig. 5d). Single-cell RNA-seq analyses (both from 5′ and 3′ end) highlighted that

cancer cells show the highest level of cryptic transcript expression compared to stromal

cells, indicating they represent the main source of cryptic transcripts expression (Add-

itional file 1: Fig. S8d). In line with our in vitro findings, DNA hypomethylation thus

underlies cryptic transcript expression in hypoxic tumors, an effect that was particularly

striking in immunotherapy-responsive tumors.
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Overall, these observations support a model wherein hypoxia-induced cryptic tran-

scripts are tolerated in high-immunogenic tumors, as these are characterized by high im-

mune checkpoint expression, but not in low-immunogenic tumors where their expression

would compromise tumor immunotolerance. This suggests that low-immunogenic tu-

mors may need to maintain high DNA methylation levels in cryptic transcripts to down-

regulate their expression and avoid the induction of tumor immunogenicity.

Aza compromises tumor immunotolerance in mice via HIF

To confirm that in low-immunogenic tumors DNA methylation prohibits cryptic tran-

script expression, we identified 59 such retrotransposons that correlate in expression

with cytolytic activity in immunotherapy-responsive tumor types within TCGA. Re-

markably, all of these were upregulated in vitro, by hypoxia alone or hypoxia in com-

bination with aza (P < 0.05, Fig. 5e), suggesting that hypoxia and DNA demethylation

can indeed enhance tumor immunogenicity. To confirm this experimentally, we

screened several mouse tumor models for their immunogenicity. The orthotopic 4T1

Fig. 5 Cryptic transcript expression in tumors. a–c Cryptic transcript expression in tumors characterized by
TCGA. Shown is cryptic transcript expression in tumors with high or low methylation of cryptic transcript
promoter regions (blue or red; > or ≤ the median methylation level of each tumor type), and in normoxic
or hypoxic (light or dark color) tumors. Data are shown for a all tumor types combined, b stratified into
those that are responding or non-responding to immunotherapy following the classification described by
Turajlik and colleagues [38], and c for each tumor type separately. P values by t-test, red values indicating
inverse correlations. d DNA methylation levels at cryptic transcript promoters (left) and cryptic transcript
expression (right) in tumors profiled in TCGA, stratified into tumor types that are responsive (n = 2280) or
non-responsive (n = 2214) to checkpoint immunotherapy. ***P < 0.001 by t-test. e Heatmap showing the
expression (Z-score, blue to red) of the 59 cryptic transcripts associated with cytolytic activity in tumors
responsive to immunotherapy from TCGA. The boxplot on the right depicts the log fold change in
expression of the same 59 cryptic transcripts in hypoxic versus normoxic MCF7 cells (24 h, 0.5% O2), and of
MCF7 cells after 4-day exposure to aza versus vehicle-treated hypoxic MCF7 cells (P < 0.05 for all cryptic
transcripts, either for hypoxia versus vehicle, or for hypoxia plus aza versus aza alone). At the bottom,
cytolytic activity of each TCGA sample is depicted. LUAD; lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; HNSC, head and neck squamous cell carcinoma; BLCA, bladder urothelial carcinoma; CESC,
cervical squamous cell carcinoma and endocervical adenocarcinoma; SKCM, skin cutaneous melanoma
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breast cancer model was identified as low-immunogenic. Indeed, 4T1 tumors exhibited

a low TMB, cytolytic activity, number of CD8+ T cells and expression of immune

checkpoints (Pd1, Pdl1) compared to other models (Additional file 1: Fig. S9a). In line

with 4T1 grafts being low-immunogenic tumors, anti-PD1 treatment failed to affect

their growth (− 8%, P = 0.397), while significantly reducing growth of high-

immunogenic tumors, as described previously [41, 42] (Additional file 1: Fig. S9b). Im-

portantly, also the expression of cryptic transcripts was lower in 4T1 than in high-

immunogenic tumor models (Additional file 1: Fig. S9c).

Next, we verified in low-immunogenic 4T1 cells whether DNA demethylation upre-

gulates cryptic transcripts in a HIF-dependent manner. In vitro, we observed that, simi-

lar to MCF7 cells, both hypoxia and aza independently increased cryptic transcript

expression, both using CREDENToR and RepEnrich (Fig. 6a; Additional file 1: Fig.

S9d). Likewise, aza increased cryptic transcript expression in vivo (Fig. 6b). To confirm

that this upregulation was at least partially hypoxia-mediated, we investigated whether

tumor hypoxia enhances aza-induced cryptic transcript expression. We compared aza-

treated 4T1 tumor-bearing mice injected either with control or anti-VEGFR-2 antibody

(DC101). While vehicle-treated 4T1 tumors were hypoxic in ~ 40% of the tumor,

DC101 further reduced blood vessel density (− 35%; P < 0.05) and increased hypoxic

tumor areas (68%; P < 0.05; Fig. 6c, d). Importantly, this was associated with an increase

in cryptic transcripts (+ 9%; P = 2.6 × 10− 16; Fig. 6e).

We then explored whether this increase also compromised immunotolerance. As im-

munogenicity of cryptic transcripts is mediated via dsRNA formation, we first confirmed

in vitro by immunostaining the increase in dsRNA after both hypoxia and aza in 4T1 cells

(Fig. 6f). In vivo, aza reduced growth of 4T1 tumors (− 32%; P = 3.0 × 10− 3; Fig. 6g), but

did not reduce cell proliferation marker expression (Additional file 1: Fig. S9e). In con-

trast, immune activation was enhanced in tumors treated with aza, as activated T cell and

natural killer cell signatures were upregulated and myeloid-derived suppressor cell signa-

tures downregulated (Fig. 6h). Immunofluorescence of CD8+ T cells confirmed these

changes: while T cell infiltration was unaffected, the number of activated, granzyme B-

positive T cells increased 2.1-fold (P < 0.05; Additional file 1: Fig. S9f).

To verify HIF-dependence of these immunogenic effects, we generated polyclonal

4T1 cells deficient for HIF1β by CRISPR-Cas9 (4T1Hif1b-KO; Additional file 1: Fig. S9g)

and compared these cells to scramble-control 4T1 cells (4T1Hif1b-scr), while treating

with aza or vehicle. In vitro, loss of HIF1β abrogated hypoxia-induced dsRNA forma-

tion and HIF1β-bound cryptic transcript expression both in vehicle and aza-treated

cells (Additional file 1: Fig. S9d and h), similar to what we observed in MCF7 cells. Also

in vivo, 4T1Hif1b-KO showed reduced cryptic transcript expression compared to

4T1Hif1b-scr grafts, effects that were limited to HIF-bound cryptic transcripts as expected

(Fig. 6i; Additional file 1: Fig. S9i). Of note, 4T1Hif1b-KO tumors grew much more slowly

than 4T1Hif1b-scr tumors, presumably because HIF1β also has direct effects on cell pro-

liferation, thus rendering it challenging to disentangle effects on immunogenicity.

Nevertheless, aza induced a similar and significant upregulation of cancer testis antigen

expression in both cell lines (Additional file 1: Fig. S2), suggesting similar treatment ef-

ficacy. Interestingly, while 4T1Hif1b-scr grafts also showed a significantly reduced size

when comparing aza to vehicle (46% reduction; P = 3.3 × 10− 6), 4T1Hif1b-KO failed to

show as strong a reduction (only 22%; P = 7.0 × 10− 4, or 1.8-fold less than the scramble
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Fig. 6 Aza treatment increases tumor immunogenicity HIF-dependently. a Expression in 4T1 cells of cryptic
transcripts (CREDENToR, left) or retrotransposon subfamilies (RepEnrich, right) bound by HIF1β in hypoxic 4T1 cells,
following exposure to vehicle (DMSO) or 5-aza-2′-deoxycytidine (aza; 1 μM) for 4 days, hypoxia (0.5% oxygen, 1 day)
or normoxia. Difference in the distribution of expression is expressed as fold change of counts per million over
control 4T1 cells. Error bars indicate geometric mean ± s.e.m. b Expression of cryptic transcripts (CREDENToR, left)
or retrotransposon subfamilies (RepEnrich, right) bound by HIF1β in 4T1 cells in vehicle- and aza-treated 4T1
tumors (n= 6 per treatment condition). Difference in the distribution of expression is expressed as fold change of
counts per million over control 4T1 tumors. Error bars indicate geometric mean ± s.e.m. c, d Quantification of the
number of blood vessels (CD31 staining; c) and percentage of hypoxia (pimonidazole staining; d) in 4T1 tumors
from mice injected with DC101 or control IgG (with at least 4 mice per treatment condition, see “Methods”). e
Expression of cryptic transcripts and retrotransposon subfamilies (bound by HIF1β in 4T1 cells) as determined by
CREDENToR (left) and RepEnrich (right) in control antibody- and DC101-treated 4T1 tumors (n= 6 per treatment
condition). Difference in the distribution of expression is expressed as fold change of counts per million over
control 4T1 tumors. Error bars indicate geometric mean ± s.e.m. f (left) Signal intensity of dsRNA staining in 4T1
cells treated with aza or PBS and incubated in hypoxia or normoxia for 24 h. (right) Immunofluorescence of dsRNA
using a dsRNA antibody (clone J2, green) in 4T1 cells treated with aza or vehicle (PBS), and by a 24-h incubation in
hypoxic (0.5% O2) or normoxic conditions (scale 40 μm). A representative image is shown for each condition. g
Barplot showing the tumor weight of vehicle- and aza-treated 4T1 tumors (n= 6 per treatment condition). ***P<
0.001 by paired t-test. h Association between aza treatment and immune cell infiltration estimates in 4T1 tumors
from mice treated with either aza or PBS, as calculated by GSVA on PanCancer immune metagenes [43] and
visualized by their T value (at least 6 mice per treatment condition were sequenced). Red bars indicate significant
associations (P< 0.05). i Expression of cryptic transcripts (CREDENToR, top) and retrotransposon subfamilies
(RepEnrich, bottom) bound by HIF1β in 4T1 cells in 4T1 tumors WT or KO for Hif1b implanted in mice treated with
vehicle or aza (see “Methods,” at least 6 tumors per treatment condition were sequenced). Difference in the
distribution of expression is expressed as fold change of counts per million over Hif1b-WT vehicle-treated 4T1
tumors. Error bars indicate geometric mean ± s.e.m. j Growth of tumors generated by grafting mice orthotopically
with 4T1 cells wild-type (4T1Hif1b-scr) or KO for Hif1b (4T1Hif1b-KO). Mice were treated with aza or vehicle (PBS) on the
days indicated with an arrow (see “Methods”). Data represent mean and s.e.m. from independent experiments
each with at least n= 6 mice per group. *P< 0.05 by t-test. A genotype-by-treatment interaction as assessed by
ANOVA was P< 0.001. k Quantification of CD8+ and granzyme b (Gzmb)+ cells, depicted as percentage of CD8+

cells, from 4T1 cells WT for Hif1b (4T1Hif1b-scr) or KO for Hif1b (4T1Hif1b-KO) and treated with aza or vehicle (PBS) (n= 6
per group; see “Methods”). *P< 0.05 by t-test
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effect; P = 0.021; Fig. 6j). The differential effect of aza in 4T1Hif1b-KO versus 4T1Hif1b-scr

grafts was also highly significant in an interaction analysis (P < 0.0001). Moreover, while

the number of activated T cells increased in 4T1Hif1b-scr grafts following aza, 4T1Hif1b-KO

grafts failed to show such increase (Fig. 6k). This differential effect of aza, depending on

the Hif1b background, was similarly significant in an interaction analysis (P = 6.3 × 10− 3).

Together, these data provide a mechanistic link between HIF1β binding, DNA methyla-

tion, and immune activation, highlighting the potential of DNA methylation inhibitors to

activate the immune system and render immune-cold tumors immune-hot.

Discussion
Here, we show that DNA methylation directly repels binding of HIF transcription fac-

tors and that cell-type-specific DNA methylation patterns established under normoxic

conditions underlie the differential hypoxic response between cell types. Furthermore,

ectopic HIF binding sites in repeat elements are normally masked by DNA methylation

but become accessible to HIF upon DNA demethylation, leading to expression of cryp-

tic transcripts which enhance tumor immunogenicity.

Our findings are important for a number of reasons. Firstly, an instructive role of

DNA methylation in gene expression regulation, as originally proposed by Holliday and

Pugh and by Riggs [44, 45], has remained controversial. Indeed, in many instances it is

unclear whether DNA methylation changes are a direct or indirect cause, or rather a

consequence of TF binding or gene expression [2]. Our findings in murine and human

both differentiated and undifferentiated cells align well with a recent study showing

methylation dependence of NRF1 binding in mESCs. By demonstrating that DNA

methylation directly repels HIF binding, we thus highlight the importance of DNA

methylation profiling, especially in poorly oxygenated tissues. Since tumor hypoxia has

long been associated with increased malignancy, poor prognosis, and resistance to

radio- and chemotherapy [6], DNA methylation could especially provide insights in the

processes underlying therapeutic resistance. For instance, Vanharanta and colleagues

recently showed an association between DNA methylation near CYTIP and the survival

of disseminating cancer cells [46]. Combined with our observations that DNA methyla-

tion directly repels HIF binding, this suggests remethylation of the CYTIP promoter as

a viable avenue for decreasing cancer dissemination.

Secondly, it has been challenging to identify a guiding principle as to why specific

genes are induced upon hypoxia in one, but not the other cell type [10]. Our findings

suggest that cell-type-specific TF binding under normoxia causes differences in DNA

methylation, which subsequently determine HIF binding under hypoxia and predict the

cell-type-specific hypoxia response. We note that we did not model chronic but only

acute hypoxia in vitro, conditions that do not directly alter DNA methylation and that

are thus distinct from the prolonged, chronic hypoxia we previously described to be es-

sential to cause DNA hypermethylation at promoters and enhancers by TET inhibition

[1]. Importantly, we also confirmed earlier observations that HIF1β binding peaks are

characterized by an active, open chromatin structure [12]. This additional requirement

for functional HIF1β binding peaks probably explains why each of the RCGTG consen-

sus sequences in the genome cannot serve as an equal HIF binding substrate in normal

cells, or upon genetic or pharmacological demethylation. Similar observations were

made for other TFs, such as CTCF, for which binding was similarly limited to sites
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containing a permissive chromatin structure [15, 24]. Importantly, binding specificities

for HIF1α versus HIF2α are independent of DNA methylation, but appear to be influ-

enced by chromatin context. This is in line with the identical structure of DNA binding

domains of HIF1α and HIF2α; swapping DNA binding domains between both proteins

has no influence on their binding profile [47]. Instead, the transactivation domain ap-

pears to endow specificity, suggesting that accessory chromatin binding partners govern

the differential binding of HIF1α and HIF2α [47].

Thirdly, several publications by now reported how 5-aza-2′-deoxycytidine initiates

cryptic TSSs in the repeat genome, leading to expression of cryptic transcripts [33, 48].

Our data add to these findings by demonstrating that cryptic transcript expression is at

least partly HIF-dependent, while more importantly, hypoxia alone is also capable of in-

ducing their expression. Based on single-cell analyses, we observed this effect to be can-

cer cell-autonomous, consistent with cancer cells being hypomethylated. Our findings

reinforce a growing body of evidence that highlights how during evolution transposable

elements have copied and amplified regulatory regions throughout the genome [17,

49–53]. Most likely, transposable elements hijacked the transcriptional apparatus of

their host to support their germline propagation [54]. In doing so, they copied the asso-

ciated TF binding site and seeded it at the site of insertion. Transposable elements hav-

ing binding sites for TFs that are active in the germline, are more likely to hijack these

and transpose. Accordingly, HIF is activated in early development, when DNA methyla-

tion levels are also low [53, 55]; ancestral cooption of HIF binding sites by cryptic tran-

scripts to increase their expression is thus plausible. In line with specific TFs

preferentially acting on particular retrotransposon subfamilies, we observe enrichment

of HIF binding and activation at LTRs, particularly at the LTR of ERVKs.

Finally, we uncover an intriguing opportunity for cancer immunotherapy. Chiapinelli

et al. already demonstrated that aza-induced cryptic transcripts are highly immuno-

genic and can sensitize tumors to checkpoint immunotherapy [33], while Sheng et al.

showed that also histone demethylase LSD1-ablation increases cryptic transcripts,

thereby enabling checkpoint blockade [56]. The mechanism underlying immunogenicity

likely depends on the formation of dsRNA, which via a viral mimicry-mediated process

activates the immune system [35, 48, 56]. In addition, some of these transcripts contain

open-reading frames, which could translate into abnormal proteins that can be anti-

genic [48]. Importantly, hypoxia is endemic to most solid tumors, and therefore could

have a more widespread impact than aza. Indeed, in hypoxic tumors with high check-

point expression, DNA methylation at TSS of cryptic transcripts was reduced and con-

sequently, cryptic transcript expression increased. Since tumors with high checkpoint

expression often respond to checkpoint immunotherapy, and as cryptic transcripts

could sensitize tumors to checkpoint blockade [33, 35], this suggests hypoxia-induced

cryptic transcripts to play an important role in mediating the therapeutic effects exerted

by checkpoint inhibitors. In contrast, immune-cold tumors characterized by low im-

mune checkpoint expression were much less tolerant to cryptic transcript expression,

showing high methylation at retrotransposon promoters. In light of our findings that

methylation directly repels HIF binding, this suggests DNA methylation to block

hypoxia-induced cryptic transcript expression in immune-cold tumors to maintain

immunotolerance. Pharmacological demethylation of immune-cold 4T1 tumors indeed

increased cryptic transcription, enhanced immunogenicity, and reduced tumor growth
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in a HIF-dependent manner. By showing that low-immunogenic, hypoxic tumors can

be rendered immunogenic through DNA methylation inhibitors, we thus highlight a

novel treatment strategy for tumors otherwise refractory to immunotherapies.

Methods
Materials

All materials were molecular biology grade. Unless noted otherwise, all were from

Sigma (Diegem, Belgium).

Cell lines

MCF7, RCC4, SK-MEL-28, A549, 4T1, MC38, and CT26 cell lines were obtained from

the American Type Culture Collection, and their identity was not further authenticated.

None of these cell lines are listed in the database of commonly misidentified cell lines

maintained by ICLAC. MCF7 HIF1B-knockout cells were previously described [20].

MCF7, RCC4, A549, MC38, and 4T1 cells were cultured at 37 °C in Dulbecco’s modi-

fied Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS), 5 mL of 100 U/mL

Penicillin-Streptomycin (Pen-Strep, Life Technologies), and 5 mL of L-glutamine 200

mM. SK-MEL-28 and CT26 cell lines were cultured at 37 °C in Roswell Park Memorial

Institute 1640 Medium (RPMI) with 10% FBS 1% Pen-Strep and 1% L-glutamine.

Murine embryonic stem cells (mESCs) that were triple-knockout for Dnmt1, Dnmt3a,

and Dnmt3b (Dnmt-TKO) and triple-knockout for Tet1, Tet2, and Tet3 (Tet-TKO) and

their appropriate wild-type (WT) control mESCs were obtained from Dr. Masaki

Okano and Dr. Guoliang Xu respectively [57, 58]. mESCs that were knockout for Hif1b

(Hif1b-KO) and their WT control mESCs were previously described [21]. Dnmt-TKO,

Tet-TKO, Tet-WT, Hif1b-WT, and Hif1b-KO mESCs were cultured feeder-free in

fibroblast-conditioned medium (DMEM with 4500 mg /L glucose, 2 mM L-glutamine, 1

mM sodium pyruvate, 15% FBS, 1% Pen-Strep, 0.1 mM of non-essential amino acids,

0.1 mM β-mercaptoethanol) on 0.1% gelatine-coated plates. mESCs from the 159 back-

ground used for the recombinase-mediated cassette exchange reaction were kindly pro-

vided by Prof. Dirk Schubeler (Friedrich Miescher Institute for Biomedical Research,

Basel, Switzerland) and grown in ESC medium (DMEM with 4500mg /L glucose, 2 mM

L-glutamine, 1 mM sodium pyruvate, 15% FBS, 1% Pen-Strep, 0.1 mM of non-essential

amino acids, 0.1 mM β-mercaptoethanol, 103 U LIF ESGRO (Millipore)) containing

25 μg/mL hygromycin (50 μl of 5 mg/mL stock per 10 mL medium) for at least 10 days.

4T1 cells that were knockout for Hif1b (Hif1b-KO) and their WT control cells were

cultured at 37 °C in DMEM with 10% FBS, 5 mL of 100 U/mL Pen-Strep, 10 μg/mL of

blasticidin (ant-bl-05, Invivogen), puromycin (P9620, Sigma-Aldrich) 1.5 μg/mL

medium, and 5mL of L-glutamine 200 mM.

All cell cultures were confirmed to be mycoplasma-free every month.

Cell line treatment conditions

Cell cultures were grown under atmospheric (21%) oxygen concentrations in the pres-

ence of 5% CO2, or rendered hypoxic by incubating them under 0.5% oxygen (5% CO2

and 94.5% N2). For ChIP-seq experiments, hypoxia was induced during 16 h, whereas

24 h of exposure were used when assessing effects of hypoxia on gene or protein
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expression level. Where indicated, cells were pre-treated with 5-aza-2′-deoxycytidine (aza,

1 μM) for 3 days by adding the required volume to fresh culture medium. Equal volumes

of the carrier (DMSO) were used as control. This was followed by another day of exposure

to aza in hypoxia or normoxia, bringing the total aza exposure time for experiments to 4

days. Then, 2 mM of DMOG (dimethyloxalylglycine, Sigma) was added to culture

medium for 24 h where indicated. Cytotoxicity was tested using sulforhodamine B assays

as described [59]. Cells were always plated at a density tailored to reach 80–95% conflu-

ence at the end of the treatment. Fresh medium was added to the cells just prior to hyp-

oxia. To prove that the extent to which cells were exposed to hypoxia was similar across

experiments, we assessed that induction of hypoxia marker genes (BNIP3, EGLN, ALDOA,

CA9) but not HIF1A occurred in each experiment (Additional file 1: Fig. S2). For experi-

ments involving exposure to aza, we assessed the expression of cancer testis antigens as a

positive control (Additional file 1: Fig. S2).

LC-ESI-MS/MS of DNA to measure 5mC

DNA was extracted and processed for LC-ESI-MS/MS to determine 5mC concentra-

tions exactly as described previously [1].

Western blot

To assess HIF1α protein stabilization, proteins were extracted from cultured cells as follows:

cells were placed on ice, washed twice with ice-cold PBS, and lysed in protein extraction

buffer (50mM Tris-HCl, 150mM NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1%

SDS, and 1× protease inhibitor cocktail (Roche)). Protein concentrations were determined

using a bicinchoninic acid protein assay (BCA, Thermo Scientific) following the manufac-

turer’s protocol. An estimated 60 μg of protein was loaded per well on a NuPAGE Novex

3–8% Tris-Acetate Protein gel (Life Technologies), separated by electrophoresis and blotted

on polyvinylidene fluoride membranes. Membranes were activated with methanol and

washed with Tris-buffered saline (TBS; 50mM Tris-HCl, 150mM NaCl) with 0.1% Tween

20, and incubated with rabbit α-tubulin (2144S, Cell Signaling), rabbit β-actin (4967, Cell

Signaling), rabbit HIF-1β/ARNT (D28F3) XP® (5537, Cell Signaling) at 1:1000 dilution, and

rabbit HIF-1α (C-Term) Polyclonal Antibody (Cayman Chemical Item 10006421) 1:3000.

Incubation with the secondary antibodies and detection were performed according to rou-

tine laboratory practices. Western blotting was done on 3 independent biological replicates.

Analysis of HIF1β target genes using ChIP-seq

20–25 × 106 cells were incubated in hypoxic conditions for 16 h. Cultured cells were

subsequently immediately fixed by adding 1% formaldehyde (16% formaldehyde (w/v),

methanol-free, Thermo Scientific) directly in the medium and incubating for 8 min on

a flat-bed shaker at room temperature (RT). Fixed cells were incubated with 150 mM

of glycine for 5 min to revert the cross-links, washed twice with ice-cold PBS 0.5%

Triton-X100, scraped, and collected by centrifugation (1000×g, 5 min at 4 °C). The pel-

let was resuspended in 1400 μL of RIPA buffer (50 mM Tris-HCl pH 8, 150mM NaCl,

2 mM EDTA pH 8, 1% Triton-X100, 0.5% Sodium deoxycholate, 1% SDS, 1% protease

inhibitor) and transferred to a new Eppendorf tube. The lysate was homogenized by

passing through an insulin syringe and incubated on ice for 10min. The chromatin was
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sonicated for 3min by using a Branson 250 Digital Sonifier with 0.7 s “On” and 1.3 s “Off”

pulses at 40% power amplitude, yielding predominantly fragment sizes between 100 and

500 bps. The sample was kept ice-cold at all times during the sonication. Next, samples

were centrifuged (10min at 16,000 ×G at 4 °C) and supernatant transferred in a new

Eppendorf tube. Protein concentration was assessed using a BCA. A total of 50 μL of

sheared chromatin was used as “input,” and 1.4 μg of primary ARNT/HIF1β monoclonal

antibody (NB100C124, Novus) per 1mg of protein was added to the remainder of the

chromatin and incubated overnight at 4 °C in a rotator. Next, Pierce Protein A/G Mag-

netic Beads (Life Technologies) were added to the samples in a volume that is 4× the vol-

ume of the primary antibody and incubated at 4 °C for at least 5 h. A/G Magnetic Beads

were collected and washed 5 times with washing buffer (50mM Tris-HCl, 200mM LiCl,

2 mM EDTA, pH 8, 1% Triton, 0.5% sodium deoxycholate, 0.1% SDS, 1% protease inhibi-

tor), and twice with TE buffer. The A/G magnetic beads were resuspended in 50 μL of TE

buffer, and 1.5 μL of RNAse A (200 units, NEB, Ipswich, MA, USA) was added to the A/G

beads samples and to the input, incubated for 30min at 37 °C. After addition of 1.5 μL of

Proteinase K (200 units, NEB) and overnight incubation at 65 °C on a stirrer, the beads

were removed from the solution using a magnet and DNA was purified using 1.8× volume

of Agencourt AMPure XP (Beckman Coulter) according to the manufacturer’s instruc-

tions. DNA was eluted in 20 μL of TE buffer. The input DNA was quantified on Nano-

Drop. Next, 1 μg of the input and all the immunoprecipitated DNA was converted into

sequencing libraries using the NEBNext DNA library prep master mix set (NEB) following

manufacturer’s instructions.

A single end of these libraries was sequenced for 50 bases on a HiSeq, either HiSeq2500

or HiSeq4000 (Illumina), mapped using Bowtie and extended for the average insert size

(250 bases). ChIP peaks were called by Model-based Analysis for ChIP-Seq (MACS) [16],

with standard settings and using read counts from an input sample as baseline.

HIF1β binding peak positions in the human cell lines MCF7 (both vehicle- and aza-

treated), RCC4, A549, and SK-MEL-28 were defined by using the stringent threshold

P < 10− 15. A threshold equal to P < 10− 10 was used to define HIF1β binding peaks in

murine cell lines (4T1, Dnmt-WT, and Dnmt-TKO ESCs).

To compare HIF1β binding peaks between human cell lines (MCF7, RCC4, A549, and

SK-MEL-28), HIF1β binding peaks were called as present if the average coverage at the

200 bps centered on the summit was > 4-fold bigger than the local background, and as ab-

sent if it was < 2.5-fold smaller than the local background, with local background being

defined as the read depth across regions 1.5–5 kb up- and downstream of the peak. Inter-

mediate coverage was annotated as unclassified. To compare HIF1β binding peaks be-

tween murine Dnmt-WT and Dnmt-TKO ESCs, the HIF1β binding peak was called as

present if the average coverage at the 200 bps centered on the summit was > 4-fold bigger

than the background, and as absent if it was < 4-fold smaller than the background. To

compare efficiency between experiments, scatter plots of read counts at peak regions of

HIF1β binding regions were generated per cell line in a pairwise fashion.

Annotation of genomic features

Human sequences were mapped to genome build hg19 and murine sequences to gen-

ome build mm10. Putative HIF binding sites were detected genome-wide by screening
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the whole genome for RCGTG motifs using the regular expression search tool dreg

(www.bioinformatics.nl/cgi-bin/emboss/help/dreg). The frequency per bp of RCGTG mo-

tifs inside HIF1β binding peaks and in the rest of the genome was calculated, and enrich-

ment of RCGTG motifs at HIF1β binding peaks quantified by overlapping RCGTG

positions in the genome with the HIF1β binding peak positions as defined by MACS.

The distances of HIF1β peaks to the nearest RCGTG motif (cumulative frequency),

TSS, and open chromatin (frequency) were calculated by overlapping each genomic fea-

ture with HIF1β peak positions using BedTools in R. Protein-coding genes were anno-

tated as per Ensembl version 92. Promoter regions were annotated as being 2 kb

upstream or 500 bp downstream of the start site of each gene. Chromatin state annota-

tion of MCF7 and mESCs was as described [23, 60]. HIF1β binding peaks were anno-

tated with these features and overlapped with the repeat genome using BedTools. To

assess enrichment of HIF binding at repeats, HIF1β binding peaks were 10,000 times ei-

ther randomly distributed throughout the genome, or randomly distributed while

matching the distal binding peak distribution. Next, the frequency of repeat binding in

a random distribution was compared to that in the observed distribution. Peaks ran-

domly assigned to poorly mapping regions were discarded.

Genome distribution of 5mC: BS-seq, SeqCapEpi BS-seq and mDIP-seq

BS-seq, SeqCapEpi BS-seq, and mDIP-seq were performed as described previously [1].

To quantify DNA methylation inside HIF1β binding peaks, SeqCapEpi probes with >

40× coverage were overlapped with HIF1β binding peaks as defined by MACS. Methy-

lation levels at the probes overlapping and non-overlapping (rest of the genome) HIF1β

binding peaks were calculated using Seqmonk.

ChIP-BS-seq was done as ChIP-seq, except that methylated adaptors (NEB) were li-

gated, and DNA libraries were bisulfite-converted using the EZ DNA Methylation-

Lightning™ kit (Zymo) prior to library amplification using HiFi Uracil+ (KAPA). Reads

were mapped using Bismark as described [1].

RNA-seq

To assess the impact of HIF binding at gene promoters on their expression, strand-

specific RNA-seq was performed in human cell lines and murine Dnmt-WT and

Dnmt-TKO ESCs. Briefly, total RNA was extracted using TRIzol (Invitrogen), and

remaining DNA contaminants in 17–20 μg of RNA were removed using Turbo DNase

(Ambion) according to the manufacturer’s instructions. RNA was repurified using the

RNeasy Mini Kit (Qiagen). For total RNA-seq, ribosomal RNA present was depleted

from 5 μg of total RNA using the RiboMinus Eukaryote System (Life technologies).

cDNA synthesis was performed using the SuperScript® III Reverse Transcriptase kit

(Invitrogen). Three micrograms of random Primers (Invitrogen), 8 μL of 5× first-strand

buffer, and 10 μL of RNA mix were incubated at 94 °C for 3 min and then at 4 °C for 1

min. Next, 2 μL of 10 mM dNTP Mix (Invitrogen), 4 μL of 0.1M DTT, 2 μL of SUPER-

ase• In™ RNase Inhibitor 20 U/μL (Ambion), 2 μL of SuperScript™ III RT (200 units/μL),

and 8 μL of Actinomycin D (1 μg/μL) were added, and the mix was incubated 5 min at

25 °C, 60 min at 50 °C, and 15 min at 70 °C to heat-inactivate the reaction. The cDNA

was purified using 80 μL (2× volume) of Agencourt AMPure XP and eluted in 50 μL of
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the following mix: 5 μL of 10× NEBuffer 2, 1.5 μL of 10 mM dNTP mix (10 mM dATP,

dCTP, dGTP, dUTP, Sigma), 0.1 μL of RNaseH (10 U/μL, Ambion), 2.5 μL of DNA

Polymerase I Klenov (10 U/μL, NEB), and water until 50 μL. The eluted cDNA was in-

cubated for 30 min at 16 °C, purified by Agencourt AMPure XP, and eluted in 30 μL of

dA-Tailing mix (2 μL of Klenow Fragment, 3 μL of 10× NEBNext dA-Tailing Reaction

Buffer, and 25 μL of water). After 30 min incubation at 37 °C, the DNA was purified by

Agencourt AMPure XP, eluted in TE buffer, and quantified on NanoDrop. Subsequent

library preparation was done using the DNA library prep master mix set, and sequen-

cing was performed as described for ChIP-seq.

mRNA capture and stranded library preparation of RNA from MCF7 cells, mouse cell

lines, and tumors for the purpose of retrotransposon and cryptic transcript expression

analysis was performed using the KAPA Stranded mRNA-Seq Kit according to the pro-

vided protocol (Illumina). For expression analysis of coding genes, RNA-seq reads were

mapped to the human or murine genome reference (hg19 or mm10) using Tophat2.

Gene read numbers were counted using HTSeq and normalized to the sum of the

mapped expression counts. Gene expression was presented as transcript per million

(TPM), 0.01 offset. Differential gene expression was tested using edgeR.

Expression of cancer testis antigens was annotated according to all entries listed in

the CTDatabase (www.cta.lncc.br/modelo.php). Cytolytic activity was quantified as the

log average (geometric mean in TPM) of the RNA expression of 2 key cytolytic en-

zymes: granzyme A (GZMA) and perforin 1 (PRF1).

RepEnrich analyses

RNA-seq data were expressed in TPM with an offset of 0.01. Expression read counts of

retrotransposons are calculated using the RepEnrich tool (https://github.com/neretti-

lab/RepEnrich) and normalized to the total mappable read depth. The repeat genome

of the human reference genome hg19 was downloaded from the RepEnrich website.

Human retrotransposon classes (LINE, SINE, LTR) contain 16 families and 779 sub-

families. The repeat genome of the mouse genome mm10 was built using the Repeat-

Masker track from the UCSC genome browser. Mouse retrotransposon classes (LINE,

SINE, LTR) contain 24 families and 906 subfamilies.

CREDENToR analysis

The overall strategy of CREDENToR is to perform de novo assembly of all reads and

based on this define all cryptic transcripts. CREDENToR will consider transcripts

encompassing more than one repeat element as one cryptic transcript and quantify

gene expression for each of them. To achieve this, fastq files of RNA-seq data were first

aligned to the human (build GRCh38) or the murine genome (build mm10) using

STAR (version 2.5) with a tolerance of two mismatches. Transcriptomes were subse-

quently assembled using StringTie [61] (version 1.3.4d), under guidance of the tran-

script annotation tool Ensembl 92. All de novo assembled transcription annotations

from the same set of tumor samples (i.e., MCF7 or 4T1 cell lines, or each of the 14

tumor types downloaded from TCGA) were merged using “StringTie --merge”. HTSeq-

counts [62] (version 0.11.2) were used to count the read numbers of known and novel

genes. Noncoding transcripts (transcripts not overlapping annotated coding genes) in
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the merged transcription annotations were assigned as cryptic transcripts when any of their

exons overlapped with a retrotransposon repeat annotation (LTR, LINE, or SINE, based on

RepeatMasker annotation from UCSC). If a transcript overlapped with > 1 annotated repeat,

the retrotransposon with the highest overlap was assigned to this cryptic transcript.

For the analysis of MCF7 data, the assembled annotations from all experimental condi-

tions involving MCF7 cells assessed in vitro were merged before read counting. For the

analysis of 4T1 data, the assembled annotations from in vitro and in vivo samples were

merged together. Cryptic transcripts were considered to be HIF-associated if a HIF bind-

ing summit was detected within the transcript promoter (i.e., 2000 bp upstream and 500

bp downstream of the transcription start site). Per set of experiments (24 samples), we

further required that the read number per cryptic transcript exceeds 10 in at least 1 sam-

ple and that the reads per kb per million reads (RPKM) exceed 1 in at least one sample.

For these cryptic transcripts, DESeq (version 1.30.0) was used to test the differences be-

tween each pair of conditions. For the TCGA data, we merged assembled transcription

annotations for each tumor type separately. Cryptic transcripts were calculated using the

total cryptic transcript read count divided by the total coding gene read count. In volcano

plots, individual cryptic transcripts were plotted, but in violin plots, where we compare ef-

fects to the cryptic transcripts obtained by RepEnrich, we summed cryptic transcript

counts into retrotransposon subfamilies, log-transferred counts-per-million (normalized

to total read counts), and considered those as expression values. Violin plots invariably

show > 95% of data points. P values were corrected for multiple testing following Benja-

mini and Hochberg correction. The CREDENToR pipeline has been made available on

GitHub (https://github.com/Jieyi-DiLaKULeuven/CREDENToR).

Gene ontology analysis

Genes were associated to ontologies as annotated in BioMART (Ensembl GRCh37 re-

lease 84), and enrichment of ontologies was analyzed using TopGo (version 1.0) in R

[63], using the classic algorithm, contrasting to all protein-coding genes.

Structural modeling of DNA methylation

The crystal structure of HIF2α:HIF1β in complex with DNA containing the RCGTG

core sequence 5′-ACGTG-3′ ([25], PDB code 4ZPK) was used as a template for intro-

ducing and analyzing the structural consequences of methyl groups at position 5 of the

cytosines using the programs PyMOL (Schrodinger, LLC) and Chimera [64].

Microscale thermophoresis (MST) binding assay

MST measurements were performed in triplicate using the NanoTemper Monolith

NT.115 instrument. The two protein complexes (HIF1α-HIF1β and HIF2α-HIF1β) were

purified as described earlier [25]. They were both labeled using Monolith NT Protein

labeling kit RED-NHS (Nano Temper technologies). Oligonucleotides were from IDT.

In brief, 25 nM of each labeled protein was mixed in 16 serial dilutions of 1:1 with dif-

ferent DNA concentrations starting from a concentration of 25 μM. The experiment

was carried out in 20 mM phosphate buffer, 75 mM NaCl, 5 mM DTT, 0.05% Tween-

20, and pH 7.4. Samples were incubated for 20 min on ice prior to loading 5 μL of each

sample into the standard treated capillaries. MST measurements were carried out at
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25 °C at 20% LED power and medium MST power. Data was normalized to % fraction

bound, and the values for the equilibrium dissociation constant (KD) were calculated by

fitting the curves in GraphPad Prism 7.

Generation of mESCs containing a methylated or unmethylated HIF binding region

A DNA fragment (human chr16:30,065,212-30,065,711) containing five CGTG motives

was selected based on high HIF1β ChIP-enrichment in MCF7, RCC4, and SK-MEL-28

cells. Oligonucleotides were designed to amplify the target region (AGGTGCAATT

GTTCCTCCGCCTCCCTTAC and AAGGGCAATTGCCGAGCTTTTTCCTTTACGA)

and used for PCR amplification of the target region using the Q5® Hot Start High-Fidelity

2× Master Mix (NEB), followed by evaluation of the PCR products by gel electrophoresis

and purification with the Qiaquick PCR purification kit (28104, Qiagen). These PCR

primers were evaluated for specificity in human (MCF7, RCC4, SK-MEL-28) but not in

mouse genomic DNA, while MfeI restriction sites were added to the ends of the primer

pairs. The purified amplicon was digested with MfeI and cloned into the L1-poly-L1 plas-

mid (provided by Prof. Dirk Schubeler, Friedrich Miescher Institute for Biomedical Re-

search, Basel, Switzerland), containing a multiple cloning site flanked by two inverted L1

Lox sites. Correct insertion and sequence identity were verified by Sanger sequencing.

This plasmid was in vitro methylated using M.SssI (NEB) according to the manufacturer’s

instructions and purified using isopropanol precipitation. Successful and complete in vitro

methylation was confirmed by bisulfite-conversion (EZ DNA Methylation-Lightning Kit,

D5031, Laborimpex), PCR amplification using the MegaMix Gold 2× Mastermix (Micro-

zone), and Sanger sequencing. Ten micrograms of pIC-CRE plasmid and 25 μg of

(un)methylated plasmid were electroporated in murine ES 159 cells containing an L1-

flanked thymidine kinase expression cassette (provided by Prof. Dirk Schubeler, Friedrich

Miescher Institute for Biomedical Research, Basel, Switzerland). After electroporation,

cells were plated and maintained in nonselective ES medium for 1 day and, from the sec-

ond day onwards, cultured in ES medium containing 10 μM ganciclovir. After 10 to 12

days, individual clones of the surviving cells were picked and transferred to ES medium in

96-well plates, then gradually expanded and, following DNA extraction, assessed for oc-

currence of successful insertion events using PCR (using the following oligonucleotides:

AGGTGCAATTGTTCCTCCGCCTCCCTTAC and AAGGGCAATTGCCGAGCT

TTTTCCTTTACGA) and gel electrophoresis.

To verify maintenance of the methylation levels of the cloned HIF binding site, gen-

omic DNA was extracted from a positive clone. Then, 500 ng of DNA was bisulfite-

converted using the EZ DNA Methylation-Lightning Kit (D5031, Laborimpex) and

amplified using the MegaMix Gold 2× Mastermix and validated primer pairs for the

target locus (Forward: GTTTGGGTTAGTGATAGGGTGT, Reverse: AAACCCTCCC

TTCTACTCCTTTCC). Per sample, PCR product sizes were verified by gel electro-

phoresis, and amplicons converted into sequencing libraries using the NEBNext DNA

library prep master mix set (E6040L, Bioke). These were next sequenced to a depth ex-

ceeding 500×, and mapped and analyzed as described higher.

Positive colonies were expanded into 10-cm dishes and subjected to ChIP as de-

scribed above. qPCR was performed with the SYBR GreenER™ qPCR SuperMix Univer-

sal (11762500, Life Technologies) on a Quantstudio 12K (Applied Biosystems), by using
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specific primers for the cloned locus (oligonucleotides TCGTTTCCGACTTTTCCATC

and CAGCCAGAATGTTGGCAAT) and an independent murine genomic region for

background quantification (oligonucleotides CACTTGCTGAATAATTGGGTGT and

CTGTTGTCCAGTTTTCTTCACG). Enrichment was calculated as fold enrichment

over background.

TCGA samples and data analysis

From the TCGA server, we selected 5193 tumors from 14 tumor types: 413 bladder

urothelial carcinoma (BLCA), 664 breast cancer (BRCA), 303 cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC), 201 colon adenocarcinoma

(COAD), 497 head and neck squamous cell carcinoma (HNSC), 269 kidney renal papil-

lary cell carcinoma (KIRP), 372 liver hepatocellular carcinoma (LIHC), 460 lung adeno-

carcinoma (LUAD), 368 lung squamous cell carcinoma (LUSC), 175 pancreatic

adenocarcinoma (PAAD), 498 prostate adenocarcinoma (PRAD), 465 skin cutaneous

melanoma (SKCM), 338 stomach adenocarcinoma (STAD), and 171 uterine corpus

endometrial carcinoma (UCEC) for which RNA data were available. The corresponding

RNA-seq read counts were downloaded. DNA methylation data from Infinium Human-

Methylation450 BeadChip arrays available were downloaded for the same samples.

Tumor types were classified as responsive or non-responsive to checkpoint immuno-

therapy following the classification described by Turajlik and colleagues [38], with three

notable exceptions. Firstly, kidney renal papillary cell carcinoma (KIRP) was classified

as non-responsive as no study has yet demonstrated responsiveness of this tumor type.

Secondly, clear cell kidney carcinoma (KIRC) tumors were not analyzed, as the HIF-

constitutive activation in these tumors (due to VHL-loss) precludes their classification

into a hypoxic and normoxic subset. Finally, also microsatellite-instable COAD tumors

were discarded from all analyses, as these tend to show constitutive hypermethylation,

precluding their stratification in high and low methylation subgroups [65]. Importantly,

the tumor types that we define as responsive will still contain tumors that fail to re-

spond, whereas the non-responsive tumor types will also contain a minority of tumors

that do respond to immunotherapy. For instance, a subset of triple-negative breast tu-

mors responds to checkpoint immunotherapy. Likewise, there is evidence that a small

subset of LIHC tumors also responds and that microsatellite-instable tumors also occur

in UCEC tumors. Cryptic transcription loads were calculated using the total cryptic

transcript read count divided by the total coding gene read count.

For the methylation stratification, the beta values of HM450K methylation microarray

data were downloaded from TCGA. Probes overlapping the cryptic transcript promoter

(i.e., 2000 bp upstream and 500 bp downstream of the transcription start site) were

regarded as cryptic transcription-associated probes. For each tumor, its promoter

methylation level was calculated as the mean beta value of all cryptic transcription-

associated probes. All tumors were then classified into high and low methylation

groups based on the median value of methylation levels.

To identify which of these tumor samples were hypoxic or normoxic, we performed

unsupervised hierarchical clustering based on a modification of the Ward error sum of

squares hierarchical clustering method (Ward.D of the clusth function in R’s stats pack-

age) on normalized log-transformed RNA-seq read counts for 15 genes that make up
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the hypoxia metagene signature (ALDOA, MIF, TUBB6, P4HA1, SLC2A1, PGAM1,

ENO1, LDHA, CDKN3, TPI1, NDRG1, VEGFA, ACOT7, CDKN3, and ADM) [37]. In

each case, the top 2 subclusters identified were annotated as normoxic and hypoxic.

To test the interaction between hypoxia and DNA methylation, we assessed read

counts for cryptic transcripts in two negative-binominal generalized linear models with

both oxygenation (hypoxic and normoxic; encoded as 0 and 1) and methylation (low

and high methylation; encoded as 0 or 1), with or without an interaction term. Both

models were compared to each other using DESeq. A positive interaction coefficient

represents a cooperative enhancement of cryptic transcript expression in low-

methylation, hypoxic tumors. To further enrich for tumors that are prone to respond

to checkpoint immunotherapy, we stratified all tumor types into high PDL1 mRNA ex-

pressing and low PDL1 mRNA expressing tumors, and into tumors with a high or low

tumor mutation burden (TMB). Stratification was done on the third decile in both

cases. TMB was estimated based on the number of substitutions identified by TCGA in

each tumor sample. All substitutions were considered, except for those also present in

non-malignant samples (i.e., exclusion of germline variants) or those clustering within

and across different samples (and therefore most likely representing sequencing or

mapping errors).

Single-cell analysis

We used CREDENToR to map cryptic transcript expression in each individual cell

from a public single-cell RNA-seq dataset [66]. The cryptic transcript annotation was

obtained from the CREDENToR analysis of lung TCGA tumors (LUAD and LUSC).

CellRanger (version 1.1.0) was used as the mapping tool. The annotation of each indi-

vidual cell is as previously defined in Lambrechts et al. [66].

To study the effect of hypoxia and DNA methylation on cryptic transcript expression,

we used a public single-cell dataset GSE97693 [39]. Single-cell RNA-seq reads were

downloaded and mapped using STAR (version 2.5). Cancer cells for which the number

of uniquely mapped reads exceeded 30% were stratified into hypoxic cells and nor-

moxic cells as described higher. The cryptic transcript annotation was obtained from

COAD tumors in TCGA. We selected 458 cryptic transcripts expressed in at least 20%

of cells. Methylation was defined as the number of methylated CpGs over the total

number of CpGs in a region 2 kb downstream and 500 bp upstream of the cryptic tran-

script transcription start site.

4T1 Hif1b-knockout

Four gRNAs targeting two different exons in the Hif1b locus of the mouse genome and

one non-targeting gRNA (scramble) were designed with the appropriate restriction sites

for the receiver plasmid using the online Crispor tool (http://crispor.tefor.net). Oligonu-

cleotides corresponding to gRNAs were synthesized by IDT, and forward and reverse oli-

gonucleotides were annealed in the CutSmart buffer (B7240S, NEB) before cloning into

the LentiGuide-Puro plasmid (Plasmid 52963, Addgene). Positive colonies were screened

by PCR and validated by Sanger sequencing. LentiGuide-Puro plasmids containing GFP

were used as positive control to evaluate the transfection and transduction efficacy.
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A transformation mix containing viral particles, TE, CaCl2, H2O, and LentiGuide-

Puro plasmid was added to HEK 293T cells when reaching 70% confluency. Four

plasmids containing the different gRNAs for Hif1b and one plasmid containing the

scramble gRNA were used, together with plasmids containing GFP as positive con-

trol. Medium was renewed after 14–16 h, and transfection efficiency was evaluated

based on GFP expression. After 36 h, supernatant containing the concentrated virus

was collected by ultracentrifugation. Virus was dissolved in clean PBS and stored

at − 150 °C.

4T1 cells were transduced with a lentiviral vector expressing a doxycycline-inducible

Cas9 nuclease (Cat # CAS11229, Dharmacon) for a tight regulation of the Cas9 expres-

sion and gene editing. An infection rate of 30% was used to ensure that the majority of

transduced cells harbor a single copy of the vector. These 4T1 cells were always kept in

selection medium containing 10 μg/mL of blasticidin (ant-bl-05, Invivogen). When

reaching 70% confluency, cells were transduced with one titer of virus. After 24 h, the

virus was removed and transduction efficacy evaluated based on GFP expression. After

48 h, puromycin (P9620, Sigma-Aldrich) 1.5 μg/mL medium was added to the medium.

Cells were kept in the presence of blasticidin and puromycin for the remaining experi-

mental procedures. After 3–5 days, Cas9 expression was induced by adding doxorubicin

(D2975000, Sigma-Aldrich) 0.5 μg/mL medium for 3 days. Cells were kept 1 day with-

out doxorubicin before injection in the mice or further experimental procedures. 4T1

cells transduced with the four gRNAs targeting Hif1b were expanded, and proteins

were extracted to test the efficacy of the knockout by Western blot. The most efficient

gRNA was used to perform the further experiments (F: CACCGTGAAATAGAACGG

CGGCGA and R: AAACTCGCCGCCGTTCTATTTCAC; non-targeting F: CACCGC

ACTACCAGAGCTAACTCAG and non-targeting R: AAACCTGAGTTAGCTCTG

GTAGTGC). Stability of knockout in these polyclonal 4T1 cells after 2 weeks was con-

firmed by Western blot.

Mouse tumor model

All the experimental procedures were approved by the Institutional Animal Care and

Research Advisory Committee of the KU Leuven. 1 × 106 4T1 cells, 4T1 Hif1b-knock-

out, or wild-type 4T1 cells (scramble) were injected orthotopically in the mammary

gland of 10 weeks old Balb/c mice, and 1 × 106 CT26 or MC38 cells were injected sub-

cutaneously in 10 weeks old Balb/c or C57BL/6J mice respectively. When the tumor

was palpable (starting volume 100mm3), the mice were injected intraperitoneally with

0.8 mg/kg of 5-aza-2′-deoxycytidine (aza) or PBS, 40 mg/kg DC101 antibody (BE0089,

InVivoMab) or IgG (BE0060, InVivoMab), or 10 mg/kg anti-PD1 antibody (BE0146,

InVivoMab) or IgG (BE0089, InVivoMab) according to the following schedules: DC101

three times per week; anti-PD1 every other day, starting when the tumor size was

around 200 mm3; aza was administered in 2 cycles with 2 days rest in between until the

control tumors reached the endpoint. Tumor volumes were monitored every 2 to 3 days

by a caliper, and mice were culled before tumor volumes exceeded 2000 mm3. When

over 20% of mice were culled, the experiment was terminated (all arms). In vivo experi-

ments in 4T1, CT26, and MC38 treated with aza or anti-PD1 antibody were performed

three times, with at least 6 mice per treatment group in each experiment.
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Neo-epitope burden

To assess neo-epitope burden, we mapped RNA sequencing data of isogenic 4T1, B16,

and CT26 tumor models, removed duplicate reads from individual samples, and

merged per tumor model all samples into a single file. In this file, variants were called

according to GATK best practices, using GATK3.4. Briefly, reads were split into exon

segments and sequences overhanging the non-exonic regions were hard-clipped using

split’n’trim. Next, local indel realignment and base recalibration was performed,

followed by variant calling with GATK’s HaplotypeCaller. After quality filtering for

minimal Fisher strand values (30) and minimal read depth (10-fold), we removed SNPs

reported in the Sanger Mouse project (rsIDdbSNPv137). Remaining variants were an-

notated by Annovar (version 2.17.0), and only variants in coding regions were retained.

Finally, the neo-epitope burden was expressed as the number of non-SNP variants in

coding sequences, normalized to the number of coding sequences that were expressed,

the latter being defined as having a minimal read depth of 10.

Immunofluorescence analysis of tumor sections

Different protocols were applied depending on the epitope of interest: hypoxia (pimoni-

dazole) staining was combined with blood vessel (CD31) staining, and cytotoxic T cell

activity (granzyme B) with T cell infiltration (CD8a) staining. General (CD45) and cyto-

toxic (CD8a) T cell infiltration stainings were performed separately. Tumors were har-

vested, fixed in formaldehyde, and embedded in paraffin using standard procedures.

Slides were deparafinated and rehydrated in 2 xylene baths (5 min), followed by 5 times

3 min in EtOH baths at decreasing concentrations (100%, 96%, 70%, 50%, and water)

and a 3min Tris-buffered saline (TBS; 50 mM Tris, 150 mM NaCl, pH 7.6) bath. Anti-

gen retrieval was done using AgR (DAKO) at 100 °C for 20 min, followed by cooling for

20 min. Slides were washed in TBS for 5 min, and endogenous peroxidase activity was

quenched using H2O2 (0.3% in MeOH), followed by three 5-min washes in TBS. Slides

were blocked using pre-immune goat serum (X0907, Dako) or pre-immune rabbit

serum (for pimonidazole, X090210, Dako) 20% in TNB. Binding of primary antibodies

FITC-conjugated mouse anti-pimonidazole (HP2-100, Hydroxyprobe), rabbit anti-

Gzmb (ab4059, Abcam), and rat anti-CD45 (553,076, BD Biosciences) all 1:100 in TNB

was allowed to proceed overnight. Slides were washed 3 times in TNT (0.5% Triton-

X100 in TBS) for 5 min, after which secondary antibodies peroxidase-conjugated rabbit

anti-FITC (PA1-26804, Pierce), Alexa Fluor 488-conjugated goat anti-rabbit (A-11034,

Thermo Fisher), and biotinylated goat anti-rat (559286, BD biosciences) all 1:100 in

TNB with 10% pre-immune goat serum were allowed to bind for 1 h. Slides were

washed 3 times for 5 min in TNT, after which signal amplification was done by 30 min

incubation with peroxidase-conjugated streptavidin 1:100 in TNB (for all besides pimo-

nidazole) accompanied by nuclear staining with Hoechst (H3570, Thermo Fisher) 1:500

in TNB only for the single (CD45 or CD8a) stainings, washing (3 times 5min in TNT),

and 8min incubation using fluorescein tyramide (for pimonidazole NEL701A001KT,

Perkin Elmer) or Cy3 (NEL704A001KT, Perkin Elmer) 1:50 in amplification diluent.

Slides stained for pimonidazole and Gzmb required co-staining for CD31 and CD8a

respectively and were subjected to a second indirect staining for the latter epitopes.

After 5 min of TNT and 5min of TBS, slides were quenched again for peroxidase
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activity using H2O2 and blocked using pre-immune goat or rabbit (CD31) serum, prior

to a second overnight round of primary antibody binding: rat anti-CD31 (557355, BD

Biosciences) or rat anti-CD8a (14-0808-82, Thermo Fisher) 1:100 in TNB. The next

day, 3 times 5 min washes with TNT were followed by a 1 h incubation with biotinyl-

ated goat anti-rat (559286, BD biosciences) 1:100 in TNB, again 3 times 5 min washes

with TNT, a 30-min incubation with peroxidase-conjugated streptavidine 1:100 in TNB

accompanied by nuclear staining with Hoechst (H3570, Thermo Fisher) 1:500 in TNB,

3 times 5 min washes with TNT and signal amplification for 8 min using Cy3

(NEL704A001KT, Perkin Elmer) 1:50 in amplification diluent. Finally, slides were

washed 3 times for 5 min with TNT and mounted with Prolong Gold (P36930, Life

Technologies).

For immunofluorescence analysis on 4T1 wild-type tumors, slides were imaged on an

infraMouse Leica DM5500 microscope. Four sections from different treatment groups

were stained per slide while 6 pictures from different tumor areas were used for pro-

cessing with ImageJ. More specifically, nuclei were identified using the Hoechst signal,

and signal intensities for fluorescein (pimonidazole), Alexa Fluor 488 (Gzmb), and Cy3

(CD45, CD8a and CD31) were used to detect Gzmb+, CD45+, and/or CD8a+ cells. Ana-

lyses were exclusively performed on slide regions showing a regular density and shape

of nuclei, in order to avoid inclusion of acellular or necrotic areas. Gzmb+ CD8a+ cells

were counted directly, allowing the precise quantification of the number of active cyto-

toxic T cells per tumor. The number of CD45+ cells was used to normalize the number

of CD8a+ cells, as such calculating the number of infiltrating cytotoxic T cells com-

pared to the total immune infiltration. CD31-positive regions were quantified manually

using ImageJ. The pimonidazole signal was used together with the Hoechst signal to

quantify the percentage of hypoxia per tumor area in each picture and stratify tumors

as hypoxic (pimo-high) or normoxic (pimo-low).

For immunohistofluorescence on 4T1 Hif1b-knockout or Hif1b-scramble grafts, tu-

mors were harvested and snap frozen in liquid nitrogen before temporary storage at −

80 °C. Thawed tumors were embedded in paraffin and sectioned using standard proce-

dures (5 μm of thickness). In a Leica Autostainer (30 min), slides were deparafinated

and rehydrated in 2 xylene baths for 5 min, followed by 5 min in ethanol baths at de-

creasing concentrations (100%, 96%, 70%, 50%, and water). Slides were fixed in 10%

neutral buffered formalin for 10 min and rinsed twice in double-distilled water. Antigen

retrieval proceeded in AR6 buffer (AR600, PerkinElmer) at 100 °C for 23 min in a pres-

sure cooker, followed by cooling in double-distilled water for 20 min. Slides were

washed in TBST (TBS with 0.5% Tween 20) for 3 min and blocked using blocking buf-

fer (pre-immune goat serum (X0907, Dako) 10%, 1% BSA (126575, Millipore) in TBS))

for 30 min. The primary antibody (rabbit anti-Gzmb) 1:1000 in dilution buffer (1% BSA

in TBS) was applied for 30 min at RT, followed by 3 washes of 2 min in TBST at RT.

Slides were next incubated with the secondary antibody (EnVision™+/HRP goat anti-

rabbit (K4003, Dako)) for 10 min at RT and washed 3 times for 2 min in TBST at RT.

The OPAL 570 fluorophore (fp1488, PerkinElmer) 10% in amplification diluent

(FP1498, PerkinElmer) was applied for 10 min at RT followed by 3 washes of 2 min in

TBST at RT. Slides were stripped by heating in AR6 buffer just below the boiling point

and cooled down in double-distilled water, followed by rinsing in TBST. These steps

were repeated starting from blocking for the second staining with primary antibody rat
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anti-CD8a 1:300, secondary antibody goat anti-rat (MP-7444, Vector) and opal 690

(fp1497, PerkinElmer), and the third staining with rat anti-CD45 1:1000, secondary

antibody goat anti-rat, and Opal 520 (fp1487, PerkinElmer). After the third staining,

slides were incubated with spectral DAPI (fp1490, PerkinElmer) 10% in TBST for 5 min

at RT, washed for 2 min in TBST at RT, and mounted with ProLong Diamond Antifade

Mountant (P36961 Invitrogen). Images were acquired on a Zeiss Axio Scan.Z1 using a

× 20 objective and ZEN 2 software (Zeiss) with exposure times between 10 and 50 ms.

Image processing was done using QuPath (version 0.1.2). Specifically, following visual

inspection of the staining results, cells were first automatically detected using the DAPI

channel (cell size constrained between 5 and 400 μm2). Next, a cell classifier was gener-

ated using QuPath. Specifically, for 1 slide out of all slides, 5 sets of cells were selected:

one set that was positive for CD45, one set that was negative for CD45, and three sets

of CD45+ cells positive for CD8, Gzmb and CD8, or Gzmb alone. Using these 5 sets of

cells, a random trees classifier was generated. Cell classification was visually verified to

have occurred correctly. Next, in each tumor section, a representative region was se-

lected, containing at least 1000 cells. On these cells, the random trees classifier was

subsequently applied. This process was reiterated for all other tumor sections stained

for the same set of markers. The resulting cell identities were then exported and proc-

essed in R. For each tumor, average cell frequencies were generated, which were sum-

marized using boxplots.

Immunofluorescence analysis of 4T1 cells

For the dsRNA staining on 4T1 cells, 12.000 cells were seeded on gelatin-coated glass

slips in 12-well plates on day 0. After attaching for 6 h, cells were treated with aza or

control (DMSO) for 3 days, with renewal of the medium after 48 h. After 72 h, the

medium was refreshed and cells were incubated in hypoxia or normoxia for 16 h. After

washing 3 times with PBS, cells were fixed in 1ml of ice-cold methanol for 15 min at −

20 °C. Cells were washed 3 times with PBS and blocked for 1 h with blocking buffer

(0.1% triton X-100 with 5% goat serum in PBS). Primary antibody (1:50 dilution in

blocking buffer; clone J2, Scicons) was applied overnight at 4 °C. Cells were washed 3

times for 10 min with washing buffer (0.1% triton X-100 in PBS) and secondary anti-

body (1:500 in secondary antibody buffer (0.1% triton X-100 with 2% goat serum in

PBS)). Goat anti-mouse IgG coupled to Alexa 488, Life Technologies) was applied for

1 h in the dark. Cells were washed 3 times for 10 min with washing buffer and mounted

with DAPI stain on cover glasses. Slides were imaged on an infraMouse Leica

DM5500 microscope. Three slides from different treatment groups were stained in

triplicate (biological replicates), while 3 pictures from different slides were used for

processing with ImageJ. More specifically, nuclei were identified using the DAPI

signal, and nucleated cells were further selected based on particle size. Signal in-

tensities for Alexa Fluor 488 in the selected cells were used to detect dsRNA+ cells.

Analyses were exclusively performed on slide regions showing a regular density

and shape of nuclei, in order to avoid inclusion of acellular or necrotic areas.

Mean dsRNA expression was calculated per experiment, normalized to the back-

ground signal (secondary antibody only), and expressed as mean pixel intensity

relative to the control group (normoxia + DMSO).
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