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Abstract
TET enzymes oxidize 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), a process thought to be intermediary 
in an active DNA demethylation mechanism. Notably, 5hmC is highly abundant in the brain and in neuronal cells. Here, 
we interrogated the function of Tet3 in neural precursor cells (NPCs), using a stable and inducible knockdown system and 
an in vitro neural differentiation protocol. We show that Tet3 is upregulated during neural differentiation, whereas Tet1 is 
downregulated. Surprisingly, Tet3 knockdown led to a de-repression of pluripotency-associated genes such as Oct4, Nanog 
or Tcl1, with concomitant hypomethylation. Moreover, in Tet3 knockdown NPCs, we observed the appearance of OCT4-
positive cells forming cellular aggregates, suggesting de-differentiation of the cells. Notably, Tet3 KD led to a genome-scale 
loss of DNA methylation and hypermethylation of a smaller number of CpGs that are located at neurogenesis-related genes 
and at imprinting control regions (ICRs) of Peg10, Zrsr1 and Mcts2 imprinted genes. Overall, our results suggest that TET3 
is necessary to maintain silencing of pluripotency genes and consequently neural stem cell identity, possibly through regula-
tion of DNA methylation levels in neural precursor cells.
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Introduction

DNA methylation, or 5-methylcytosine (5mC), is an epige-
netic modification that consists of a methyl group added to 
the fifth position of cytosines, occurring more frequently in 
the context of CpG dinucleotides [1]. Albeit deemed as a 
very stable chemical modification, waves of global loss of 
DNA methylation occur during critical periods of develop-
ment such as in the zygote and in primordial germ cells [2]. 
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Additionally, loss of DNA methylation has been observed 
in post-mitotic cells, with activity-dependent demethylation 
occurring in mature neurons upon depolarization [3, 4]. This 
mechanism of active DNA demethylation remained elusive 
for a long time, but the finding that TET enzymes can con-
vert 5mC into 5-hydroxymethylcytosine (5hmC), and subse-
quently into 5-formylcytosine (5fC) and 5-carboxylcytosine 
(5caC) [5–8], shed light into this mechanism. Importantly, 
5hmC was shown to accumulate in the paternal pronucleus 
and in PGCs concomitantly with methylation loss [9–11] 
and to appear in an antagonistic way to 5mC in the genome 
of dentate granule neurons [12]. Three members—TET1, 
TET2 and TET3—compose the family of TET enzymes, 
which are  Fe2+ and 2-oxoglutarate-dependent dioxygenases. 
TET1 and TET3 contain a CXXC zinc finger domain at 
their amino-terminus that is known to bind CpG sequences, 
whereas TET2 partners with IDAX, an independent CXXC-
containing protein [13, 14]. 5hmC was first described in 
mouse embryonic stem (ES) cells and in Purkinje neurons 
[7, 8] and was later shown to be most abundant in the brain, 
namely at the cerebellum, cortex and hippocampus brain 
regions [15]. Moreover, TET enzymes were shown to be 
expressed in these brain regions, with Tet3 showing highest 
expression [15]. Additionally, in the embryonic mouse brain, 
5hmC levels were shown to increase during neuronal differ-
entiation, as the cells migrate from the ventricular zone to 
the cortical plate [16]. In neurons, 5hmC was associated with 
gene bodies of activated neuronal function-related genes and 
gain of 5hmC was concomitant with loss of the repressive 
histone mark H3K27me3 [16]. Notably, TET enzymes have 
also been implicated in brain processes and functions such 
as neurogenesis, cognition and memory [17–21].

Here, we addressed the functional role of TET3 enzyme 
in neural precursor cells (NPCs) using an in vitro differ-
entiation system, where highly proliferative ES cells are 
differentiated into a homogeneous population of NPCs that 
are PAX6-positive radial glial cells [22] and a stable and 
inducible RNAi knockdown system [23]. We observed that 
knockdown (KD) of Tet3 in NPCs resulted in upregulation of 
pluripotency genes and genome-wide loss of DNA methyla-
tion. Nevertheless, gain of methylation was also observed, 
particularly in genes involved in neural differentiation. Our 
data suggest that TET3 plays a role in maintaining both cel-
lular identity and DNA methylation levels in neural precur-
sor cells.

Results

Neural differentiation leads to Tet3 upregulation

To investigate the effects of the knockdown of TET3 enzyme 
in NPCs, we established a stable and inducible knockdown 

system in mouse ES cells containing shRNAs targeting Tet3 
(Fig. S1a) [23, 24] and a neural differentiation system that 
results in a homogeneous population of PAX6-positive radial 
glial-like neural precursor cells (Fig. 1a, S1b, c) [25]. In this 
differentiation protocol, ES cells are maintained in a highly 
proliferative state and then cultured in non-adherent condi-
tions forming cellular aggregates; addition of retinoic acid 
(RA) 4 days after cellular aggregates are formed results in 
upregulation of neural markers, such as Pax6, Nestin, Tubb3 
(B3-tubulin) and TrkB (Nrtk2) (Fig. 1b), with between 92 
and 96% of the differentiated cell staining positively for 
PAX6 (Fig. S1b, c). This indicates homogeneous differen-
tiation of ES cells into NPCs as described in the original 
protocol [22]. Positive staining of Beta 3-tubulin, which is 
one of the earliest markers of neuronal differentiation [26], 
was also observed (Fig. S1b). On the other hand, SOX2, 
which is a marker for neural stem cells that becomes inac-
tivated in NPCs [27, 28], was nearly undetected (Fig. S1b). 
During differentiation, there was also a marked decrease 
in the expression of pluripotency genes such as Oct4 and 
Nanog, as expected (Fig. 1b). Regarding epigenetic modi-
fiers, we observed increased levels of Tet3 and Dnmt3a dur-
ing differentiation, whilst levels of Tet1 decreased (Fig. 1b). 
Upregulation of Tet3 during neuronal differentiation has 
been previously observed [29, 30] and suggests a promi-
nent role for Tet3 in the neuronal lineage. We also confirmed 
the presence of TET3 protein in NPCs by immunostaining, 
showing a predominantly cytoplasmic distribution (Fig. 1c); 
this is consistent with a putative role for TET3 in oxidizing 
5mC to 5hmC in RNA molecules [31].

Knockdown of Tet3 in NPCs results in de‑repression 
of pluripotency genes

We performed stable and inducible knockdown of Tet3 in 
NPCs, using two independent shRNAs (Fig. 2a, b); Tet3 
knockdown was detected at both the mRNA and protein lev-
els (Fig. 2b and S2a). Interestingly, we observed a significant 
upregulation of pluripotency genes, namely Oct4, Nanog, 
Tcl1 and Esrrb, after Tet3 KD (Fig. 2b), using two independ-
ent shRNAs. To further elucidate the observed upregulation 
of pluripotency genes, we performed immunostaining for 
OCT4 and observed the presence of OCT4-positive cells that 
appeared as cellular aggregates (Fig. 2c), representing around 
14% of the total number of cells. Of note, OCT4-positive 
cells were not observed in NPCs treated with the Scrambled 
shRNA (Fig. S3); this suggests that Tet3 KD NPCs might have 
undergone a de-differentiation event due to downregulation 
of Tet3 expression. This is in line with a recent report show-
ing that Tet3 can promote a rapid and efficient conversion of 
fibroblasts into neurons, showing that Tet3 plays an important 
role in inducing and maintaining neural cell identity [32]. To 
better understand the nature of these ES cells like NPCs, we 
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performed flow cytometry using Propidium iodide staining 
in KD NPCs and observed that Tet3 KD NPCs still resemble 
control NPCs (Scrambled shRNA) more than ES cells, which 
show an extended S-phase comparing to NPCs (Fig. S2b). 
Additionally, we observed a significant increase in Dnmt1 
and decrease in Dnmt3a expression after Tet3 KD (Fig. 2b), 
pointing to a co-regulation between TET enzymes and DNA 
methyltransferases.

These results suggest that functional perturbation of 
Tet3 in NPCs leads to de-repression of pluripotency genes 
which might affect maintenance of the neural precursor cell 
identity.

Tet3 knockdown results in genome‑scale loss of DNA 
methylation

As the above-mentioned results pointed to a critical role 
for Tet3 in neural differentiation, we performed oxRRBS 

(oxidative Reduced Representation Bisulfite Sequencing) to 
analyse genome-wide changes in distribution of 5mC and 
5hmC after Tet3 knockdown. RRBS is a bisulfite-based pro-
tocol that enriches for CpG-rich parts of the genome, thereby 
reducing the amount of sequencing required, since it only 
covers 1% of the genome while capturing the majority of 
promoters and CpG islands [33]. To distinguish 5hmC from 
5mC and since conventional sodium bisulphite treatment 
does not discriminate between the two modifications [34], 
we first added potassium perruthenate  (KRuO4) that triggers 
selective chemical oxidation of 5hmC to 5-formylcytosine 
(5fC), before bisulphite treatment. 5fC is then further con-
verted to uracil after bisulphite treatment and subtraction 
of oxidative bisulphite readout from the bisulphite—only 
one allows determining the amount of 5hmC at a particu-
lar nucleotide—in a single-base resolution and quantitative 
manner [35, 36]. As the bisulphite signal is always expected 
to be larger than that of oxidative bisulphite, negative values 

a

b

c

Fig. 1  Tet3 is upregulated during neural differentiation. a Neural dif-
ferentiation protocol with representative images of key transition 
points—embryonic stem (ES) cells on feeders, ES cells on gelatin, 
cellular aggregates (CAs) and neural precursor cells (NPCs). Arrows 
show neurites forming between the cells; Scale bars—100 µm. b Rel-
ative expression of neural markers (Pax6, Nestin, Tubb3 and TrkB), 
pluripotency markers (Oct4, Nanog and Sox2) and epigenetic regula-

tors (Tet1, Tet2, Tet3 and Dnmt3a) in several stages of the neural dif-
ferentiation process—ES cells on gelatin (ES cells), CA after addi-
tion of Retinoic Acid (CA 8d), NPC after 5 days in culture (NPC 5d); 
n = 2 independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001; t 
tests. c Immunostaining of TET3 in differentiated NPCs. Scale bars—
100 µm and 25 µm
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are artefacts used to estimate the false discovery rate (FDR; 
see Methods). Notably, we could only detect 2,191 hydroxy-
methylated CpGs (out of ~ 0.5 M) at a high FDR of 45% (Fig. 
S4a), which is in contrast with the low FDR (~ 3%) that we 
previously obtained in ES cells [35]. This is likely due to the 
fact that 5hmC levels are low in NPCs comparing to mouse 
ES cells and hippocampus brain region (Fig. S4b, c) [30] and 
mostly present in intragenic regions [16], whereas oxRRBS 
mainly captures promoters and CpG islands [33].

Notwithstanding, we observed an unexpected global loss 
of 5mC after Tet3 KD (Fig. 3a, b). Loci showing loss of 
methylation covered the whole range of methylation levels, 
but particularly regions that had more than 40% of 5mC in 
control NPCs (Fig. 3b). We performed detection of differ-
entially methylated positions (DMPs; q value < 0.01; > 10% 
difference), which yielded a total of 88,437 hypomethylated 

CpGs that were enriched at genic regions when compared 
to the distribution of CpGs captured by RRBS (Fig. 3c). In 
contrast, very few hypo-DMPs were located in promoters 
and CpG islands, which can be explained by the fact that 
these are already frequently devoid of methylation [1, 37]. 
On the other hand, we detected only 588 hypermethylated 
CpGs, which were mainly located at CpG islands and genic 
regions (Fig. 3c).

To investigate whether the hypomethylation pattern 
seen in Tet3 knockdown NPCs resembles ES cells, we 
compared our NPC dataset to a previously published 
oxRRBS dataset on ES cells [35]. We first noted that 
many CpG islands in control NPCs displayed higher 5mC 
levels when compared to ES cells, whilst a group of CpG 
islands was highly methylated (> 70%) in both cell types 
(Fig. 3d). Upon Tet3 KD, 5mC levels did become closer 

a

b

c

Fig. 2  Knockdown of Tet3 in NPCs results in de-repression of pluri-
potency genes. a Phase-contrast images of NPCs after Tet3 knock-
down during 5  days in culture. Scrambled shRNA—control; Tet3-1 
and Tet3-2 shRNAs—shRNAs against Tet3. Scale bars—100 µm and 
50 µm in the insets. b mRNA transcript levels of epigenetic regula-
tors (Tet and Dnmt enzymes), pluripotency genes (Oct4, Nanog, Sox2, 
Rex1 and Tcl1) and neural markers [(stem cell markers—Pax6 and 

Nestin; mature differentiation markers—B3-tubulin (Tubb3) and Neu-
rotrophic tyrosine kinase, receptor, type 2 (TrkB or Ntrk2)] after Tet3 
knockdown. (*p < 0.05, **p < 0.01, ***p < 0.001; t test). Error bars 
represent SEM for three (Tet3-1 shRNA) and two (Tet3-2 shRNA) 
independent experiments. c Immunostaining of OCT4 in NPCs after 
Tet3 KD, using Tet3-2 shRNA, shows OCT4-positive cells forming 
aggregates that resemble ES cell colonies. Scale bar—50 µm
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to those seen in ES cells, but only for lowly methylated 
CpG islands. Importantly, Tet3 KD led to demethyla-
tion of highly methylated CpG islands, which does not 
match the ES cell profile (Fig. 3d). Were an ES cell sub-
population to be responsible for 5mC loss in Tet3 KD 
NPC population, this would have led to maintenance of 
5mC levels at highly methylated CpG islands. This pre-
diction was confirmed by simulating 5mC patterns for 
cell mixtures of ES cells and NPCs, where increasing the 
proportion of ES cells only decreases the methylation at 
low-methylation CpG islands, whereas high-methylation 
CpG islands remain largely unchanged (Fig. S4e). These 
results suggest that the DNA hypomethylation observed in 
Tet3 knockdown NPCs might reflect an epigenetic repro-
gramming event specific to the depletion of Tet3 in NPCs.

Tet3 knockdown alters DNA methylation 
at developmentally relevant gene promoters

To expand on these observations, we performed gene ontol-
ogy analysis of genes associated with promoters harbour-
ing groups of hypomethylated CpGs. For this purpose, dif-
ferentially methylated regions (DMRs) were defined has 
regions showing at least 3DMPs with differences in the 
same direction. Promoters were defined − 1 kb to + 0.5 kb 
from mRNA TSSs. Promoters associated with hypomethyl-
ated DMRs (Supplemental file “Hyper_Hypo_promoters.
xlsx”) were enriched for terms, such as development, dif-
ferentiation and neurogenesis (Fig. 4a), suggesting that the 
observed hypomethylation is a regulated process coupled to 
the differentiation process between ES cells and NPCs. Of 

Fig. 3  Tet3 knockdown results 
in genome-scale loss of DNA 
methylation. a Scatter plot of 
5mC levels at individual CpGs, 
showing a bulk shift in methyla-
tion after Tet3 KD, using Tet3-2 
shRNA. b To better visualize 
differences in 5mC levels, CpGs 
were grouped based on their  % 
5mC in control NPCs. The plot 
displays the distributions of 
5mC levels for control (blue) 
and Tet3 KD (red) within each 
group. Loss of methylation 
is observed across the whole 
range of methylation levels. c 
Genomic features associated 
with differentially methylated 
positions (DMPs) after Tet3 
KD, showing that hypo-DMPs 
are enriched at genic regions 
and depleted at promoters and 
CpG islands. d Comparison of 
our oxRRBS datasets with a 
published dataset for ES cells 
[35], displaying average 5mC 
levels per CpG island
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the genes involved in neurogenesis, Slit1, Bdnf, Nr2e1 (Tlx), 
Fgfr1, Runx1 and Wnt3 are striking examples of genes that 
have been described to be involved in the proliferation of 
neural precursor cells [38–43]. Expression analysis of Slit1 
showed a tendency for increased mRNA transcription (Fig. 
S5), consistent with its hypomethylated state.

Moreover, loss of methylation was also observed at Esrrb 
and Tcl1 early-pluripotency genes (Fig. 4b), which is in line 
with the observed upregulation of gene expression. Loss 
of methylation at Tcl1 was confirmed by standard bisulfite 
sequencing (Fig. 4c).

For DNA hypermethylation, we only detected six 
genes with three or more hypermethylated CpGs at their 
promoters (Supplemental file “Hyper_Hypo_promot-
ers.xlsx”). Notably, three of these genes are imprinted 
genes—Peg10, Zrsr1 and Mcts2. Interestingly, it has been 
shown previously that loss of function of Tet1 also leads 
to hypermethylation of imprinted genes, namely Peg10 

[44]. Expression analysis of these imprinted genes showed 
decreased expression in Tet3 KD NPCs (Fig. 4d). More 
recently, it was also shown that Tet3 regulates NSC main-
tenance through repression of Snrpn imprinted gene [45]. 
In accordance with this study, expression analysis of Snrpn 
in Tet3 KD NPCs showed increased transcription in one of 
the shRNAs (Fig. S5). To enable gene ontology analysis of 
hypermethylated sites, we changed our criteria to include 
promoters with a minimum of one hypermethylated CpG, 
yielding a total of 116 genes. Despite this low stringency, 
gene ontology analysis revealed significant associations 
with brain development, particularly with neuron dif-
ferentiation and neurogenesis (Fig. 4e). Amongst these 
genes, Wnt3a, Dlx2, Otx2 and Rac3 are examples of genes 
described to promote neuronal differentiation [46–49], 
suggesting that TET3 plays a role in neurogenesis by 
maintaining hypomethylation of neuronal genes.

Fig. 4  Tet3 knockdown alters DNA methylation of developmentally 
relevant gene promoters. a Gene Ontology analysis of genes that 
loose methylation (Hypo DMPs) shows an association with develop-
ment, differentiation and neurogenesis. b Genome browser snapshots 
of oxRRBS data at Esrrb and Tcl1 pluripotency genes, showing a 
reduction in 5mC levels after Tet3 KD. c Tcl1 bisulfite cloning analy-

sis; black circles—methylated CpGs; white circles—unmethylated 
CpGs. d Expression analysis of imprinted genes showing hypermeth-
ylation after Tet3 KD (*p < 0.05; ***p < 0.001; t test); n = 2 inde-
pendent experiments. e Gene Ontology analysis of genes that gain 
methylation (Hyper DMPs) shows an association with neural differ-
entiation processes
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Discussion

Several studies have previously addressed the role of TET1 
in the brain, showing that it regulates processes such as 
memory and cognition, as well as expression of neuronal 
activity-regulated genes and hippocampal neurogenesis 
[17–19]. However, the role of TET3 in the nervous sys-
tem remains largely unexplored. Here, we investigated the 
role of Tet3 in NPCs, using a stable and inducible RNAi 
knockdown system and an in vitro neural differentiation 
protocol. Surprisingly, we observed that the knockdown 
of Tet3 leads to de-repression of pluripotency genes and 
appearance of OCT4-positive aggregates of cells, sug-
gesting that a reprogramming event is taking place in 
these cells. Indeed, when we analysed 5mC changes, we 
observed a dramatic genome-wide loss of methylation in 
Tet3 KD NPCs. Hypomethylated CpGs were localized in 
genes involved in development, differentiation and neuro-
genesis. Loss of methylation was also observed in Tcl1 and 
Esrrb pluripotency-associated genes suggesting a connec-
tion between loss of methylation, de-repression of pluri-
potency genes and de-differentiation of NPCs. A recent 
report on genome-wide DNA methylation in NPCs has 
shown an extensive demethylation from E18.5 NPCs rela-
tive to E11.5 NPCs, whereas only 1.5% of the identified 
DMRs gained methylation, suggesting that the acquisi-
tion of multipotency in E18.5 NPCs is associated with 
a wide loss of DNA methylation [50]. Furthermore, in 
mouse ES cells, it has been shown that Tet2 knockdown 
results in both loss of 5hmC and 5mC at DMRs and pro-
moters, while only few DMRs show the expected loss of 
5hmC and gain of 5mC [51]. More recently, another study 
from the Rao lab reported that TET deficiency in diverse 
cell types resulted in localized increases in DNA meth-
ylation in active euchromatic regions, concurrently with 
unexpected losses of DNA methylation and reactivation of 
repeat elements [52].

Interestingly, we observed hypermethylation at three 
imprinted genes after Tet3 knockdown. It had previously 
been shown that Tet1 is necessary to induce 5mC oxida-
tion at imprinting control regions (ICRs) of H19/IGF2, 
PEG3 and SNRPN/SNURF imprinted genes, in a cell-
fusion-mediated pluripotency reprogramming model [53]. 
Another study has shown that heterozygous offspring of 
Tet1/Tet2 double knockout (DKO) mice show increased 
methylation levels across 94 ICRs, including Peg10, Zrsr1 
and Mcts2 [54].

A critical role for Tet3 in neural progenitor cell main-
tenance and terminal differentiation of neurons has been 
reported before [29]. As in our study, the authors observed 
an upregulation of Tet3 upon neural differentiation and 
that Tet3 KO in NPCs did not change expression of neural 

markers, such as Pax6 and Nestin. Here, we also observed 
that neural markers are not altered, but pluripotency mark-
ers are de-repressed in Tet3 KD NPCs, which suggests 
that the cells undergo de-differentiation upon downreg-
ulation of Tet3 expression. We also observed that Tet3 
KD NPCs undergo a genome-scale loss of methylation, 
which is in contrast to what would be expected consid-
ering this enzyme as a demethylating agent. Indeed, we 
also observed hypermethylation, but in a more restricted 
number of sites, which are preferentially located in neu-
ronal-related genes. The observed loss of methylation 
could potentially be caused by the concomitant decrease in 
Dnmt3a expression, which is a de novo methyltransferase 
playing a pivotal role in the nervous system [55, 56]. In 
fact, a functional interplay between TET1 and DNMT3A 
was shown in mouse embryonic stem cells [57]. Another 
interesting and perhaps more plausible explanation for 
the observed global demethylation might resides in the 
fact that TET enzymes might actually function as guides 
for de novo DNA methylation [58, 59]. In this context, 
it was reported that, in zygotes, Tet3 might have a func-
tion in targeting de novo methylation activities, whereby 
Tet3-driven hydroxylation is predominantly implicated in 
the protection of the newly acquired hypomethylated state 
from accumulating new DNA methylation [58].

Intriguingly, Hahn and collaborators reported that func-
tional perturbation of Tet2 and Tet3 in the embryonic cor-
tex led to defects in neuronal differentiation with abnormal 
accumulation of cell clusters along the radial axis in the 
intermediate and ventricular zones [16]. Clustered cells did 
not express neuronal marker B3-Tubulin and some of the 
cells showed expression of Nestin in their processes, sug-
gesting a defect in the progression of differentiation. This is 
in line with our observation that Tet3 KD NPCs form clus-
ters of cells that resemble ES-colonies and are OCT4-posi-
tive. Additionally, TET3 has been implicated in regulation of 
synaptic transmission [60, 61] and fear-extinction memory 
[21], which suggests a pivotal role in the nervous system.

In conclusion, our findings suggest that TET3 acts as a 
regulator of neural cell identity by maintaining DNA meth-
ylation levels in neural precursor cells.

Experimental procedures

Embryonic stem cell culture and neural 
differentiation

A2lox.cre mouse embryonic stem cells [23], were expanded 
on feeder cells (SNL767 feeder cell line, kindly provided by 
the Wellcome Trust Sanger Institute, UK) in complete ES 
medium–DMEM (4500 mg/L glucose; Gibco) supplemented 
with 110 mg/L sodium pyruvate (Gibco), 2 mM l-Glutamine 
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(Gibco), 15% fetal bovine serum (Gibco, ES-cell tested), 
1 × penicillin/streptomycin (Gibco), 0.1 mM MEM non-
essential amino acids (Gibco) and  103 U/ml LIF (ESGRO 
Millipore).

Neural differentiation of embryonic stem cells was per-
formed as previously described [25]. Briefly, A2lox.cre ES 
cells (passage 17) containing shRNAs for Tet3 were cultured 
on feeders for three passages and on 0.2% gelatine (Sigma) 
for another three passages. Subsequently, 4 ×  106 cells were 
plated onto bacterial non-adherent dishes (Greiner) for for-
mation of non-adherent cellular aggregates (CA) in CA 
medium (DMEM 4500 mg/L glucose supplemented with 
110 mg/L sodium pyruvate, 2 mM l-Glutamine, 10% fetal 
bovine serum, 1× penicillin/streptomycin and 0.1 mM MEM 
non-essential amino acids). CA medium was changed every 
other day and 5 μM of retinoic acid (RA; Sigma) was added 
from day 4 to day 8. CAs were then dissociated with freshly 
prepared Trypsin 0.05% (Sigma, powder) in 0.05% EDTA/
PBS and plated onto Poly-DL-Ornithine and laminin-coated 
plates in N2 medium [DMEM/F12/Glutamax medium sup-
plemented with 1x Penicillin–Streptomycin, 1× N2 supple-
ment (Gibco) and 50 µg/mL BSA (Sigma)]. After 2 days, the 
medium was changed to a complete medium (N2B27: Neu-
robasal medium (Gibco), supplemented with 1× GlutaMAX 
(Gibco), 1x Penicillin–Streptomycin, 1× N2 supplement, 1x 
N2B27 supplement (Gibco)).

Stable and inducible knockdown system

We used a stable and inducible knockdown system previ-
ously described by Iacovino and collaborators [23]. Briefly, 
shRNA-mir cassettes for Tet3 gene (sequences on supple-
mentary Table S1) were amplified from pSM2 retroviral vec-
tors containing the shRNAmir sequences (Open Biosystems) 
and cloned into the p2Lox vector using HindII and NotI 
restriction sites. The p2Lox derivatives were transfected into 
the A2lox.cre ES cells (derived from the E14 male cell line 
strain 129P2/OlaHsd) expressing Cre after addition of doxy-
cycline (0.5 μg/ml) to the medium 1 day before transfection. 
ES cells were transfected using Lipofectamine 2000 (Invit-
rogen) at a concentration of 5 ×  105 cells/ml. One day after 
transfection, selection medium containing geneticin (G418, 
Melford—300 μg/ml active concentration) was added to the 
cells during 10 days. After selection, ES cell clones contain-
ing the shRNAmir were expanded in ES complete medium 
and neural differentiation was performed as described above. 
For shRNA expression, doxycycline (2 μg/ml) was added to 
the medium during 5 days. An ES clone containing eGFP 
was used to control for positive induction after doxycycline 
addition. After these 5 days, the cells were trypsinized and 
the pellet was stored at − 80 °C until DNA/RNA/Protein 
extraction.

Quantitative reverse transcription PCR

RNA was extracted using the AllPrep DNA/RNA mini kit 
(Qiagen) and cDNA was synthesized from 200 ng of RNA 
using the qScript cDNA Supermix (Quanta Biosciences). 
cDNA was diluted 1:10 and used as template for quantita-
tive real-time PCR reactions using the 5x HOT FIREPol 
EvaGreen qPCR supermix (Solis Biodyne) and primers 
designed to specifically amplify each gene of interest (Sup-
plementary Table S2). Cycling reactions were performed 
in duplicate and cycle threshold (Ct) fluorescence data 
recorded on Applied Biosystems 7500 Fast Real-time PCR 
System. The relative abundance of each gene of interest 
was calculated on the basis of the Delta Delta Ct method 
[62], where results were normalized to two housekeeping 
genes (Atp5b and Hsp90ab1). Statistical analysis was per-
formed by multiple t tests using GraphPad Prism version 
6.0 for Mac (GraphPad Software, La Jolla, CA, USA).

Immunofluorescence microscopy and image 
analysis

Antibody staining of DNA methylation and hydroxym-
ethylation was performed as previously described [24], 
with few modifications. Briefly, neural precursor cells 
were plated on glass coverslips and fixed with 2% para-
formaldehyde for 30 min at room temperature (RT). Cells 
were permeabilised with phosphate-buffered saline (PBS) 
0.5% Triton X-100 and treated with 2 N HCl for 30 min at 
RT. The coverslips were washed in PBS 0.05% Tween-20 
(PBST) and blocked overnight in PBST with 1% bovine 
serum albumin (BSA) (BS). Cells were incubated with 
both primary antibodies rabbit anti-5hmC (1:500, Active 
Motif, 39792) and mouse anti-5mC (1:250, Eurogentec, 
BS-Mecy-0100) for 1 h at RT. For antibody staining of 
pluripotency and neuronal markers, cells were incubated 
with blocking buffer (BS) for 1 h at RT before incubation 
with primary antibodies overnight at 4 °C. Primary anti-
bodies were rabbit anti-PAX6 (1:250, Millipore, AB2237), 
mouse anti-NESTIN (1:200, Millipore MAB353), rabbit 
anti-OCT4 (1:750, Abcam, ab18976), rabbit anti-SOX2 
(1:1000, Abcam, ab97959), mouse anti-beta III tubu-
lin (1:100, Millipore, MAB1637) and rabbit anti-TET3 
(1:100, Abcam, 139805). After washing with BS for 1 h at 
RT, primary antibody staining was revealed with appropri-
ate Alexa-Fluor-conjugated secondary antibodies (1:500, 
Molecular Probes). For both procedures, the nuclei were 
counterstained with DAPI. After washing with PBST, cells 
were mounted with Immu-mount (Thermo Scientific). 
Images were acquired on an Olympus BX61 or Olympus 
FV1000 (Japan) confocal microscope and analysed using 
ImageJ  software®.
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Western blot for detection of TET3

Protein was extracted using the AllPrep DNA/RNA mini kit 
(Qiagen) and resuspended in 5% SDS. The protein concen-
tration of the supernatants was determined using BCA kit 
(Pierce). Total lysates of 14 μg of protein were denatured 
in NuPage LDS sample buffer and NuPage reducing rea-
gent by heating for 10 min at 95 °C. Proteins were sepa-
rated on NuPage 4–12% Bis–Tris gels using MOPS running 
buffer (Thermofisher). Wet transfer onto a nitrocelulose 
membrane (Amersham Biosciences) was performed using 
MOPS running buffer with 20% methanol. Membranes were 
blocked with 10% milk/1% BSA in Tris-buffered saline 
(TBS)/0.1%Tween (TBS-T) overnight at 4  °C. Primary 
antibodies mouse anti-TET3 (1:1000, Abcam, ab174862) 
and mouse anti-α-Tubulin (1:5000, Sigma-Aldrich, T6074) 
diluted in blocking buffer and incubated 2 h at RT. Mem-
branes were washed in TBS/T and incubated with the sec-
ondary antibody coupled to horseradish peroxidase (BioRad) 
1 h at RT. The bound antibodies were visualized by chemilu-
minescence using ImageQuant LAS4000 mini (GE Health-
care). Bands were analysed using ChemiDoc (Bio-Rad) and 
quantification was performed with ImageLab software (Bio-
Rad). α-Tubulin was used as loading control.

Dotblot and ELISA analysis of 5hmC

DNA was extracted using the AllPrep DNA/RNA mini kit 
(Qiagen). Genomic DNA (100 ng) was denatured at 99 °C 
for 5  min and spotted on nitrocellulose blotting mem-
branes (Amersham Hybond-N+). The membrane was UV-
crosslinked for 2 min and then blocked in 10% milk/1% 
BSA in PBST overnight at 4 °C. The membranes were then 
incubated with rabbit anti-5hmC (1:500, Active Motif, 
39769) for 1 h at RT. After washes with PBST (PBS 0.1% 
Tween-20), membranes were incubated with 1:10,000 dilu-
tion of HRP-conjugated anti-rabbit, washed with PBST and 
then treated with Amersham ECL (GE Healthcare). Dot 
blot intensities were analysed using ChemiDoc (Bio-Rad) 
and quantification was performed with ImageLab software 
(Bio-Rad).

The global level of 5-hmC was also assessed using Quest 
5-hmC DNA ELISA Kit (Zymo Research). The procedure 
was followed according to the manufacturer’s instructions, 
loading 100 ng of DNA per well.

Cell cycle analysis using flow cytometry 
for propidium iodide staining

For cell cycle analysis, NPCs were dissociated with 
Accutase (Sigma-Aldrich) for 10 min and re-suspended in 
70% ethanol and kept at − 20 °C for 24 h for fixation. After 
fixation, cells were washed in 1× PBS and incubated with 

PI staining solution—Propidium Iodide 20 μg/ml (eBiosci-
ence) in PBS/0.1% Triton-X 100 and RNase 0.25 mg/ml 
(Invitrogen)—for 1 h at room temperature in the dark. Cell 
staining was then analysed by flow cytometry in a BD LSRII 
flow cytometer (BD Biosciences; 20,000 events). Analysis 
of the cell cycle was performed with ModFit LT (Verity 
Software House).

Genome‑wide analysis of DNA methylation 
and hydroxymethylation by oxRRBS

Genomic DNA was isolated using the Qiagen AllPrep DNA/
RNA Mini kit (Qiagen) following manufacturers’ instruc-
tions. Oxidative Reduced Representation Bisulfite Sequenc-
ing (oxRRBS) was used for genome-wide analysis of DNA 
methylation and hydroxymethylation. This method relies 
on oxidation of DNA prior to bisulfite treatment to convert 
5-hydroxymethylcytosine (5hmC) into 5-formylcytosine 
(5fC) which in turn will be converted to uracil (thymine 
after PCR amplification) (Fig. 4). 5-methylcytosine (5mC) 
remains unchanged after oxidation and bisulfite treatment 
and unmethylated cytosines will be converted to uracil 
(thymine after PCR amplification). By subtracting the two 
libraries, it is then possible to infer 5mC and 5hmC levels at 
a single-base resolution and in a quantitative manner [35].

Briefly, 100 ng of DNA were digested with MspI restric-
tion enzyme and the reaction was cleaned up with AMPure 
XP beads (Agencourt). A library was then prepared with 
the NEBNext Ultra DNA library Prep for Illumina (NEB) 
for End repair, A-tailing and ligation of methylated adaptors 
(NEBNext, E7535), according to manufacturer’s’ instruc-
tions. Oxidation of the DNA was then carried out starting 
by purifying DNA in a Micro Bio-Spin column (BioRad), 
denaturing DNA with NaOH and adding 2 μL of Potas-
sium Perruthenate (KRuO4, Alfa Aeser) solution (15 mM 
in 0.05 M NaOH). The reaction was held on ice for 1 h, 
purified with Micro Bio-Spin column (BioRad) and sub-
jected to bisulfite treatment using the Qiagen Epitect kit, 
according to the manufacturer’s instructions for FFPE sam-
ples, except that the thermal cycle was run twice over. Final 
library amplification (18 cycles) was performed using Pfu 
Turbo Cx (Agilent) and adaptor-specific primers (barcoded 
TruSeq primers, Illumina), after which the libraries were 
purified using AMPure XP beads (Agencourt). To check for 
oxidation success, a spike-in control was added before oxi-
dation step and amplified and digested with TaqI restriction 
enzyme at the end of library amplification.

Sequencing and data processing

Sequencing (single-end, 75 bp reads) was performed on the 
Illumina NextSeq platform, high-throughput mode. Quality 
control of sequencing reads was performed with FASTQC 
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(Babraham Bioinformatics). Trimming of the reads to 
remove adaptors and low-quality bases was performed using 
Trim-Galore with –rrbs option (Babraham Bioinformatics). 
The alignment was performed using Bismark with bowtie2 
and methylation extraction with the options -s –compre-
hensive [63]. SeqMonk (Babraham Bioinformatics) and 
the R-package Methylkit [64] were used for downstream 
analysis.

DMPs were detected using the Methylkit [64]. We 
overlapped DMPs with genomic features. Promoters were 
defined − 1 kb to + 0.5 kb from mRNA TSSs (and dedu-
plicated if > 50% overlapped), CpG islands are from Illing-
worth et al. [65] and enhancers are from ChIA-PET data 
[66]. Gene ontology analyses were performed using the 
topGO R package, focusing on biological process terms.

All sequencing data are available under Gene Expression 
Omnibus (GEO) accession number GSE123110.

Gene‑specific methylation levels by standard 
bisulfite sequencing

Genomic DNA was isolated using the AllPrep DNA/
RNA Minikit (Qiagen) following manufacturers’ instruc-
tions. Five hundred nanograms of DNA were subjected to 
bisulfite treatment using the Epitect Bisulfite Kit (Qiagen). 
A CpG island on intron 1 of Tcl1 gene (chromosome position 
12:106,460,347–106,460,634, NCBI37 (mm9) mouse refer-
ence genome) was amplified using primers described in sup-
plementary table S2 and HostStar MasterMix (Qiagen) with 
the following cycling conditions: 95 °C for 15 min followed 
by 35 cycles of 95 °C for 1 min, 58 °C for 1 min and 72 °C 
for 1 min, with a final extension of 72 °C for 20 min. PCR 
products were then cloned using the TOPO TA Cloning kit 
for sequencing (Invitrogen) and NZYalpha competent cells 
(NZYtech). Ten clones for each sample were picked and 
plasmid DNA amplified using M13 primers. PCR products 
for each clone were sequenced using the BigDye Terminator 
v3.1 cycle sequencing kit (Applied Biosystems) in an ABI 
3500 Genetic Analyzer (Applied Biosystems). Only clones 
with more than 95% non-CpG cytosines converted were con-
sidered for the analysis, using BiQ Analyzer Software [67].
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