Life Sciences Research for Lifelong Health


The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services.

Individual publications are linked to the website of the journal - subscriptions may be required to view the full text. The database also includes Open Access publications, which can be identified by the icons found on search results.

Open Access symbolWe are working to provide Open Access to as many publications as possible. 'Green' Open Access publications are marked by the pink 'Download' icon. Click on the icon to access a pre-print PDF version of the publication. ​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.

Title / Authors / Details Open Access Download

Homeostasis-altering molecular processes as mechanisms of inflammasome activation.
Liston A, Masters SL

The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.

+ View Abstract

Nature reviews. Immunology, 17, 1474-1741, 208-214, 2017

PMID: 28163301

Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming.
Milagre I, Stubbs TM, King MR, Spindel J, Santos F, Krueger F, Bachman M, Segonds-Pichon A, Balasubramanian S, Andrews SR, Dean W, Reik W

Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.

+ View Abstract

Cell reports, 18, 2211-1247, 1079-1089, 2017

PMID: 28147265

Open Access

DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids.
Canovas S, Ivanova E, Romar R, García-Martínez S, Soriano-Úbeda C, García-Vázquez FA, Saadeh H, Andrews S, Kelsey G, Coy P

The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability to. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT.

+ View Abstract

eLife, 6, 2050-084X, , 2017

PMID: 28134613

Open Access

Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication.
Farquhar MJ, Humphreys IS, Rudge SA, Wilson GK, Bhattacharya B, Ciaccia M, Hu K, Zhang Q, Mailly L, Reynolds GM, Aschcroft M, Balfe P, Baumert TF, Roessler S, Wakelam MJ, McKeating JA

Chronic hepatitis C is a global health problem with an estimated 170 million HCV infected individuals at risk of progressive liver disease and hepatocellular carcinoma (HCC). Autotaxin (ATX) is a phospholipase with diverse roles in physiological and pathological processes including inflammation and oncogenesis. Clinical studies have reported increased ATX expression in chronic hepatitis C, however, the pathways regulating ATX and its role in the viral life cycle are not well understood.

+ View Abstract

Journal of hepatology, , 1600-0641, , 2017

PMID: 28126468

Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice.
van Nieuwenhuijze A, Dooley J, Humblet-Baron S, Sreenivasan J, Koenders M, Schlenner SM, Linterman M, Liston A

MicroRNA (miR) are short non-coding RNA sequences of 19-24 nucleotides that regulate gene expression by binding to mRNA target sequences. The miR-29 family of miR (miR-29a, b-1, b-2 and c) is a key player in T-cell differentiation and effector function, with deficiency causing thymic involution and a more inflammatory T-cell profile. However, the relative roles of different miR-29 family members in these processes have not been dissected. We studied the immunological role of the individual members of the miR-29 family using mice deficient for miR-29a/b-1 or miR-29b-2/c in homeostasis and during collagen-induced arthritis. We found a definitive hierarchy of immunological function, with the strong phenotype of miR-29a-deficiency in thymic involution and T-cell activation being reduced or absent in miR-29c-deficient mice. Strikingly, despite elevating the Th1 and Th17 responses, loss of miR-29a conferred near-complete protection from collagen-induced arthritis (CIA), with profound defects in B-cell proliferation and antibody production. Our results identify the hierarchical structure of the miR-29 family in T-cell biology, and identify miR-29a in B cells as a potential therapeutic target in arthritis.

+ View Abstract

Cellular and molecular life sciences : CMLS, , 1420-9071, , 2017

PMID: 28124096

Beta-Cell Fragility As a Common Underlying Risk Factor in Type 1 and Type 2 Diabetes.
Liston A, Todd JA, Lagou V

Type 1 and type 2 diabetes are distinct clinical entities primarily driven by autoimmunity and metabolic dysfunction, respectively. However, there is a growing appreciation that they may share an etiopathological factor, namely the role of variation in beta-cell sensitivity to stress factors. Increased sensitivity increases the risk of beta-cell death or insulin secretion dysfunction. The beta-cell fragility model proposes that this variation contributes to the risk of developing either type 1 or type 2 diabetes, in the presence of immunological and/or metabolic stress factors. Therapeutics that increase the resistance of beta cells to these factors and decreasing fragility may constitute a new class of anti-diabetogenics, with potential use across both diseases.

+ View Abstract

Trends in molecular medicine, 23, 1471-499X, 181-194, 2017

PMID: 28117227

Irf4 Expression in Thymic Epithelium Is Critical for Thymic Regulatory T Cell Homeostasis.
Haljasorg U, Dooley J, Laan M, Kisand K, Bichele R, Liston A, Peterson P

The thymus is a primary lymphoid organ required for the induction and maintenance of central tolerance. The main function of the thymus is to generate an immunocompetent set of T cells not reactive to self. During negative selection in the thymus, thymocytes with autoreactive potential are either deleted or differentiated into regulatory T cells (Tregs). The molecular basis by which the thymus allows high-efficiency Treg induction remains largely unknown. In this study, we report that IFN regulatory factor 4 (Irf4) is highly expressed in murine thymic epithelium and is required to prime thymic epithelial cells (TEC) for effective Treg induction. TEC-specific Irf4 deficiency resulted in a significantly reduced thymic Treg compartment and increased susceptibility to mononuclear infiltrations in the salivary gland. We propose that Irf4 is imperative for thymic Treg homeostasis because it regulates TEC-specific expression of several chemokines and costimulatory molecules indicated in thymocyte development and Treg induction.

+ View Abstract

Journal of immunology (Baltimore, Md. : 1950), 198, 1550-6606, 1952-1960, 2017

PMID: 28108558

Open Access

RNA-binding proteins mind the GAPs.
Turner M, Monzón-Casanova E

Nature immunology, 18, 1529-2916, 146-148, 2017

PMID: 28102216

Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells.
Goverse G, Molenaar R, Macia L, Tan J, Erkelens MN, Konijn T, Knippenberg M, Cook EC, Hanekamp D, Veldhoen M, Hartog A, Roeselers G, Mackay CR, Mebius RE

The gastrointestinal tract is continuously exposed to many environmental factors that influence intestinal epithelial cells and the underlying mucosal immune system. In this article, we demonstrate that dietary fiber and short chain fatty acids (SCFAs) induced the expression of the vitamin A-converting enzyme RALDH1 in intestinal epithelial cells in vivo and in vitro, respectively. Furthermore, our data showed that the expression levels of RALDH1 in small intestinal epithelial cells correlated with the activity of vitamin A-converting enzymes in mesenteric lymph node dendritic cells, along with increased numbers of intestinal regulatory T cells and a higher production of luminal IgA. Moreover, we show that the consumption of dietary fiber can alter the composition of SCFA-producing microbiota and SCFA production in the small intestines. In conclusion, our data illustrate that dietary adjustments affect small intestinal epithelial cells and can be used to modulate the mucosal immune system.

+ View Abstract

Journal of immunology (Baltimore, Md. : 1950), , 1550-6606, , 2017

PMID: 28100682

A novel kindred with inherited STAT2 deficiency and severe viral illness.
Moens L, Van Eyck L, Jochmans D, Mitera T, Frans G, Bossuyt X, Matthys P, Neyts J, Ciancanelli M, Zhang SY, Gijsbers R, Casanova JL, Boisson-Dupuis S, Meyts I, Liston A

The Journal of allergy and clinical immunology, 139, 1097-6825, 1995-1997.e9, 2017

PMID: 28087227

DNA methylation is dispensable for changes in global chromatin architecture but required for chromocentre formation in early stem cell differentiation.
Hassan-Zadeh V, Rugg-Gunn P, Bazett-Jones DP

Epiblast stem cells (EpiSCs), which are pluripotent cells isolated from early post-implantation mouse embryos (E5.5), show both similarities and differences compared to mouse embryonic stem cells (mESCs), isolated earlier from the inner cell mass (ICM) of the E3.5 embryo. Previously, we have observed that while chromatin is very dispersed in E3.5 ICM, compact chromatin domains and chromocentres appear in E5.5 epiblasts after embryo implantation. Given that the observed chromatin re-organization in E5.5 epiblasts coincides with an increase in DNA methylation, in this study, we aimed to examine the role of DNA methylation in chromatin re-organization during the in vitro conversion of ESCs to EpiSCs. The requirement for DNA methylation was determined by converting both wild-type and DNA methylation-deficient ESCs to EpiSCs, followed by structural analysis with electron spectroscopic imaging (ESI). We show that the chromatin re-organization which occurs in vivo can be re-capitulated in vitro during the ESC to EpiSC conversion. Indeed, after 7 days in EpiSC media, compact chromatin domains begin to appear throughout the nuclear volume, creating a chromatin organization similar to E5 epiblasts and embryo-derived EpiSCs. Our data demonstrate that DNA methylation is dispensable for this global chromatin re-organization but required for the compaction of pericentromeric chromatin into chromocentres.

+ View Abstract

Chromosoma, , 1432-0886, , 2017

PMID: 28084535

Derivation and Culture of Epiblast Stem Cell (EpiSC) Lines.
Rugg-Gunn P

This protocol describes the derivation and culture of epiblast stem cells (EpiSCs) from early postimplantation epiblasts. EpiSCs can be maintained in an undifferentiated state and retain the ability to generate tissues from all three germ layers in vitro and to form teratomas in vivo. However, they seem unable to form chimeras. Whether this is due to differences in developmental status or a cellular incompatibility (e.g., cell adhesion) between EpiSCs and the host inner cell mass (ICM) is currently unclear. Other differences between mouse embryonic stem (ES) cells and EpiSCs also exist, including gene expression profiles and different growth factor requirements for self-renewal. Thus, EpiSCs provide an important in vitro model for studying the establishment and maintenance of pluripotency in postimplantation epiblast tissues.

+ View Abstract

Cold Spring Harbor protocols, 2017, 1559-6095, pdb.prot093971, 2017

PMID: 28049783

Derivation and Culture of Extra-Embryonic Endoderm Stem Cell Lines.
Rugg-Gunn P

Whereas embryonic stem (ES) cells are isolated from the embryonic lineage of the blastocyst, other stable stem cell lines can be derived from the extraembryonic tissues of the early mouse embryo. Trophoblast stem (TS) cells are derived from trophectoderm and early postimplantation trophoblast, and extraembryonic endoderm stem (XEN) cells are derived from primitive endoderm. The derivation of XEN cell lines from 3.5-dpc mouse blastocysts, described here, is similar to the derivation of TS cell lines. TS and XEN cells can self-renew in vitro and differentiate in vitro and in chimeras (in vivo) in a lineage-appropriate manner, showing the developmental potential of their origin, thus providing important models to study the mouse extraembryonic lineages.

+ View Abstract

Cold Spring Harbor protocols, 2017, 1559-6095, pdb.prot093963, 2017

PMID: 28049782

cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity.
Cerny O, Anderson KE, Stephens LR, Hawkins PT, Sebo P

The adenylate cyclase toxin-hemolysin (CyaA) plays a key role in immune evasion and virulence of the whooping cough agent Bordetella pertussis. CyaA penetrates the complement receptor 3-expressing phagocytes and ablates their bactericidal capacities by catalyzing unregulated conversion of cytosolic ATP to the key second messenger molecule cAMP. We show that signaling of CyaA-generated cAMP blocks the oxidative burst capacity of neutrophils by two converging mechanisms. One involves cAMP/protein kinase A-mediated activation of the Src homology region 2 domain-containing phosphatase-1 (SHP-1) and limits the activation of MAPK ERK and p38 that are required for assembly of the NADPH oxidase complex. In parallel, activation of the exchange protein directly activated by cAMP (Epac) provokes inhibition of the phospholipase C by an as yet unknown mechanism. Indeed, selective activation of Epac by the cell-permeable analog 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate counteracted the direct activation of phospholipase C by 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide. Hence, by inhibiting production of the protein kinase C-activating lipid, diacylglycerol, cAMP/Epac signaling blocks the bottleneck step of the converging pathways of oxidative burst triggering. Manipulation of neutrophil membrane composition by CyaA-produced signaling of cAMP thus enables B. pertussis to evade the key innate host defense mechanism of reactive oxygen species-mediated killing of bacteria by neutrophils.

+ View Abstract

Journal of immunology (Baltimore, Md. : 1950), 198, 1550-6606, 1285-1296, 2017

PMID: 28039302

XACT Noncoding RNA Competes with XIST in the Control of X Chromosome Activity during Human Early Development.
Vallot C, Patrat C, Collier AJ, Huret C, Casanova M, Liyakat Ali TM, Tosolini M, Frydman N, Heard E, Rugg-Gunn PJ, Rougeulle C

Sex chromosome dosage compensation is essential in most metazoans, but the developmental timing and underlying mechanisms vary significantly, even among placental mammals. Here we identify human-specific mechanisms regulating X chromosome activity in early embryonic development. Single-cell RNA sequencing and imaging revealed co-activation and accumulation of the long noncoding RNAs (lncRNAs) XACT and XIST on active X chromosomes in both early human pre-implantation embryos and naive human embryonic stem cells. In these contexts, the XIST RNA adopts an unusual, highly dispersed organization, which may explain why it does not trigger X chromosome inactivation at this stage. Functional studies in transgenic mouse cells show that XACT influences XIST accumulation in cis. Our findings therefore suggest a mechanism involving antagonistic activity of XIST and XACT in controlling X chromosome activity in early human embryos, and they highlight the contribution of rapidly evolving lncRNAs to species-specific developmental mechanisms.

+ View Abstract

Cell stem cell, , 1875-9777, , 2016

PMID: 27989768

Open Access

A Hox-Embedded Long Noncoding RNA: Is It All Hot Air?
Selleri L, Bartolomei MS, Bickmore WA, He L, Stubbs L, Reik W, Barsh GS

PLoS genetics, 12, 1553-7404, e1006485, 2016

PMID: 27977680

Open Access

miR-17∼92 family clusters control iNKT cell ontogenesis via modulation of TGF-β signaling.
Fedeli M, Riba M, Garcia Manteiga JM, Tian L, Viganò V, Rossetti G, Pagani M, Xiao C, Liston A, Stupka E, Cittaro D, Abrignani S, Provero P, Dellabona P, Casorati G

Invariant natural killer T cells (iNKT) cells are T lymphocytes displaying innate effector functions, acquired through a distinct thymic developmental program regulated by microRNAs (miRNAs). Deleting miRNAs by Dicer ablation (Dicer KO) in thymocytes selectively impairs iNKT cell survival and functional differentiation. To unravel this miRNA-dependent program, we systemically identified transcripts that were differentially expressed between WT and Dicer KO iNKT cells at different differentiation stages and predicted to be targeted by the iNKT cell-specific miRNAs. TGF-β receptor II (TGF-βRII), critically implicated in iNKT cell differentiation, was found up-regulated in iNKT Dicer KO cells together with enhanced TGF-β signaling. miRNA members of the miR-17∼92 family clusters were predicted to target Tgfbr2 mRNA upon iNKT cell development. iNKT cells lacking all three miR-17∼92 family clusters (miR-17∼92, miR-106a∼363, miR-106b∼25) phenocopied both increased TGF-βRII expression and signaling, and defective effector differentiation, displayed by iNKT Dicer KO cells. Consistently, genetic ablation of TGF-β signaling in the absence of miRNAs rescued iNKT cell differentiation. These results elucidate the global impact of miRNAs on the iNKT cell developmental program and uncover the targeting of a lineage-specific cytokine signaling by miRNAs as a mechanism regulating innate-like T-cell development and effector differentiation.

+ View Abstract

Proceedings of the National Academy of Sciences of the United States of America, 113, 1091-6490, E8286-E8295, 2016

PMID: 27930306

Open Access

Deletion of the Polycomb-Group Protein EZH2 Leads to Compromised Self-Renewal and Differentiation Defects in Human Embryonic Stem Cells.
Collinson A, Collier AJ, Morgan NP, Sienerth AR, Chandra T, Andrews S, Rugg-Gunn PJ

Through the histone methyltransferase EZH2, the Polycomb complex PRC2 mediates H3K27me3 and is associated with transcriptional repression. PRC2 regulates cell-fate decisions in model organisms; however, its role in regulating cell differentiation during human embryogenesis is unknown. Here, we report the characterization of EZH2-deficient human embryonic stem cells (hESCs). H3K27me3 was lost upon EZH2 deletion, identifying an essential requirement for EZH2 in methylating H3K27 in hESCs, in contrast to its non-essential role in mouse ESCs. Developmental regulators were derepressed in EZH2-deficient hESCs, and single-cell analysis revealed an unexpected acquisition of lineage-restricted transcriptional programs. EZH2-deficient hESCs show strongly reduced self-renewal and proliferation, thereby identifying a more severe phenotype compared to mouse ESCs. EZH2-deficient hESCs can initiate differentiation toward developmental lineages; however, they cannot fully differentiate into mature specialized tissues. Thus, EZH2 is required for stable ESC self-renewal, regulation of transcriptional programs, and for late-stage differentiation in this model of early human development.

+ View Abstract

Cell reports, 17, 2211-1247, 2700-2714, 2016

PMID: 27926872

Open Access

Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase.
Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski TP

DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a-Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20-30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling.

+ View Abstract

Nucleic acids research, , 1362-4962, , 2016

PMID: 27899645

Open Access

The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy.
Thienpont B, Aronsen JM, Robinson EL, Okkenhaug H, Loche E, Ferrini A, Brien P, Alkass K, Tomasso A, Agrawal A, Bergmann O, Sjaastad I, Reik W, Roderick HL

Cardiac hypertrophic growth in response to pathological cues is associated with reexpression of fetal genes and decreased cardiac function and is often a precursor to heart failure. In contrast, physiologically induced hypertrophy is adaptive, resulting in improved cardiac function. The processes that selectively induce these hypertrophic states are poorly understood. Here, we have profiled 2 repressive epigenetic marks, H3K9me2 and H3K27me3, which are involved in stable cellular differentiation, specifically in cardiomyocytes from physiologically and pathologically hypertrophied rat hearts, and correlated these marks with their associated transcriptomes. This analysis revealed the pervasive loss of euchromatic H3K9me2 as a conserved feature of pathological hypertrophy that was associated with reexpression of fetal genes. In hypertrophy, H3K9me2 was reduced following a miR-217-mediated decrease in expression of the H3K9 dimethyltransferases EHMT1 and EHMT2 (EHMT1/2). miR-217-mediated, genetic, or pharmacological inactivation of EHMT1/2 was sufficient to promote pathological hypertrophy and fetal gene reexpression, while suppression of this pathway protected against pathological hypertrophy both in vitro and in mice. Thus, we have established a conserved mechanism involving a departure of the cardiomyocyte epigenome from its adult cellular identity to a reprogrammed state that is accompanied by reexpression of fetal genes and pathological hypertrophy. These results suggest that targeting miR-217 and EHMT1/2 to prevent H3K9 methylation loss is a viable therapeutic approach for the treatment of heart disease.

+ View Abstract

The Journal of clinical investigation, , 1558-8238, , 2016

PMID: 27893464

Open Access

Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis.
Kilbey A, Terry A, Wotton S, Borland G, Zhang Q, Mackay N, McDonald A, Bell M, Wakelam MJ, Cameron ER, Neil JC

The three-membered RUNX gene family includes RUNX1, a major mutational target in human leukemias, and displays hallmarks of both tumor suppressors and oncogenes. In mouse models, the Runx genes appear to act as conditional oncogenes, as ectopic expression is growth suppressive in normal cells but drives lymphoma development potently when combined with over-expressed Myc or loss of p53. Clues to underlying mechanisms emerged previously from murine fibroblasts where ectopic expression of any of the Runx genes promotes survival through direct and indirect regulation of key enzymes in sphingolipid metabolism associated with a shift in the "sphingolipid rheostat" from ceramide to sphingosine-1-phosphate (S1P). Testing of this relationship in lymphoma cells was therefore a high priority. We find that ectopic expression of Runx1 in lymphoma cells consistently perturbs the sphingolipid rheostat, whereas an essential physiological role for Runx1 is revealed by reduced S1P levels in normal spleen after partial Cre-mediated excision. Furthermore, we show that ectopic Runx1 expression confers increased resistance of lymphoma cells to glucocorticoid-mediated apoptosis, and elucidate the mechanism of cross-talk between glucocorticoid and sphingolipid metabolism through Sgpp1. Dexamethasone potently induces expression of Sgpp1 in T-lymphoma cells and drives cell death which is reduced by partial knockdown of Sgpp1 with shRNA or direct transcriptional repression of Sgpp1 by ectopic Runx1. Together these data show that Runx1 plays a role in regulating the sphingolipid rheostat in normal development and that perturbation of this cell fate regulator contributes to Runx-driven lymphomagenesis. J. Cell. Biochem. 118: 1432-1441, 2017. © 2016 Wiley Periodicals, Inc.

+ View Abstract

Journal of cellular biochemistry, 118, 1097-4644, 1432-1441, 2017

PMID: 27869314

Open Access

TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells.
de la Rica L, Deniz Ö, Cheng KC, Todd CD, Cruz C, Houseley J, Branco MR

Ten-eleven translocation (TET) enzymes oxidise DNA methylation as part of an active demethylation pathway. Despite extensive research into the role of TETs in genome regulation, little is known about their effect on transposable elements (TEs), which make up nearly half of the mouse and human genomes. Epigenetic mechanisms controlling TEs have the potential to affect their mobility and to drive the co-adoption of TEs for the benefit of the host.

+ View Abstract

Genome biology, 17, 1474-760X, 234, 2016

PMID: 27863519

Open Access

Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters.
Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, Cairns J, Wingett SW, Várnai C, Thiecke MJ, Burden F, Farrow S, Cutler AJ, Rehnström K, Downes K, Grassi L, Kostadima M, Freire-Pritchett P, Wang F, , Stunnenberg HG, Todd JA, Zerbino DR, Stegle O, Ouwehand WH, Frontini M, Wallace C, Spivakov M, Fraser P

Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.

+ View Abstract

Cell, 167, 1097-4172, 1369-1384.e19, 2016

PMID: 27863249

Open Access

Identifying Causal Genes at the Multiple Sclerosis Associated Region 6q23 Using Capture Hi-C.
Martin P, McGovern A, Massey J, Schoenfelder S, Duffus K, Yarwood A, Barton A, Worthington J, Fraser P, Eyre S, Orozco G

The chromosomal region 6q23 has been found to be associated with multiple sclerosis (MS) predisposition through genome wide association studies (GWAS). There are four independent single nucleotide polymorphisms (SNPs) associated with MS in this region, which spans around 2.5 Mb. Most GWAS variants associated with complex traits, including these four MS associated SNPs, are non-coding and their function is currently unknown. However, GWAS variants have been found to be enriched in enhancers and there is evidence that they may be involved in transcriptional regulation of their distant target genes through long range chromatin looping.

+ View Abstract

PloS one, 11, 1932-6203, e0166923, 2016

PMID: 27861577

Expression Diversity Adds Richness to T Cell Populations.
Franckaert D, Liston A

Variation in protein expression is a feature of all cell populations. Using T cell subsets as a proof-of-concept, Lu et al. (2016) develop a framework for dissecting out the contributors to this cell-to-cell expression variation from high-parameter flow cytometry studies.

+ View Abstract

Immunity, 45, 1097-4180, 960-962, 2016

PMID: 27851924

Open Access